首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An objective evaluation method for woven fabric pilling has been developed using image processing and statistical analysis. Five ASTM photographic standard images were analyzed to determine a characterization method for fabric pilling. Images were filtered by various image analysis techniques such as fast Fourier transformation (FFT) and fast wavelet transformation (FWT). Three parameters including the number of pills, the total pixel area of pilling, and the sum of the gray values of pill images have been defined and extracted automatically from the images. Finally, the relationship between pilling grade and those parameters has been established by a series of statistical analyses.  相似文献   

2.
An objective pilling evaluation method has been developed using image analysis and artificial neural network. Pilling parameters obtained in the previous study were used as the input values for neural network. A total of 9 data sets including 5 standard grades and 4 interpolated intermediate grades were used for training the network. Nine samples were prepared to verify the validity of the trained network in comparison with the subjective evaluation results. 18 woven and 12 knitted samples were tested to investigate the effect of the fabric structure on the performance of the network. Finally, 55 woven fabric samples were tested to evaluate the performance of the newly developed method and it was proven to be suitable for the evaluation of pilling grade especially for woven fabrics.  相似文献   

3.
A pilled nonwoven fabric image consists of brightness variations caused by high frequency noise, randomly distributed fibers, fuzz and pills, fabric surface unevenness, and background illumination variance. They have different frequency and space distributions and thus can be separated by the two-dimensional dual-tree complex wavelet transform reconstructed detail and approximation images. The energies of the six direction detail sub-images, which capture brightness variation caused by fuzz and pills of different sizes, quantitatively characterize the pilling volume distribution at different directions and scales. They are used as pilling features and inputs of neural network supervised classifier. The initial results based on a nonwoven wool fabric standard pilling test image set, the Woolmark®, SM 50 Blanket set, suggest that this objective pilling evaluation method developed by the combination of pilling identification, characterization method and neural network supervised classifier is feasible.  相似文献   

4.
Previously, we proposed a new method to identify fabric pilling and objectively measure fabric pilling intensity based on the two-dimensional dual-tree complex wavelet reconstruction and neural network classification. Here we further evaluate the robustness of the method. Our results indicate that the pilling identification method is robust to significant variation in the brightness and contrast of the image, rotation of the image, and 2 i (i is an integer) times dilation of the image. The pilling feature vector developed to characterize the pilling intensity is robust to brightness change but is sensitive to large rotations of the image. As long as all fabric images are adjusted to have the same contrast level and the sample is illuminated from the same direction, the pilling feature vectors are comparable and can be used to classify the pilling intensity.  相似文献   

5.
Fuzz on the fabrics, which is the fibers protruded from the fabric surface, is very important in view of appearance quality, since it causes unpleasant appearance on the fabrics and also leads to pilling which makes fabric appearance and softness worse. However, fuzz on fabric surface is measured mostly by subjective methods (human vision) rather than objective methods. Thus, in this study, objective method using image analysis techniques has been developed for the measurement of fuzz on fabric surface. Fuzz on the fabric has also been ranked and rated by experts in order to see the reliability of the results obtained from the fuzz measurement. It was observed that correlation coefficient (r) between rating value and objective measurement value was 0.9 and this correlation coefficient value confirmed the reliability of this method.  相似文献   

6.
The effect of cashmere yarn twist, knitted fabric density, and cashmere properties on pilling rates of cashmere knitted fabric is investigated in this paper. The experimental results show that yarn twist and fabric density have little influence on pilling rates of cashmere knitted fabric for yarn 38.4 tex/2 when yarn twist varies from 234 T/m to 272 T/m, and the fabric density is 9.7, 10.7, and 11.2 yarns/inch, respectively. The length of cashmere fiber, in particular less than 7.5 mm, is responsible for the pilling rates of cashmere knitted fabric based on optimal scaling regression analysis.  相似文献   

7.
The fuzzing and pilling of untreated, chlorinated and oxidized wool knitted fabrics were compared with frictional coefficients measured by capstan method, surface modification observed by scanning electron microscopy (SEM), the surface roughness and the scale height assessed by atomic force microscopy (AFM), and hairiness imaged on the three-dimensional rotational microscopy. The pilling comparative experiments of the corresponding knitted fabrics were conducted by means of Pillbox method. Experimental results showed that some scales on the oxidized fiber surface were partially cleaved and some grooves generated. With oxidization treatment, the anti- and with-scale of friction coefficient increase with decreasing the thickness of scales and the yarn hairiness. There is good correlation between the result of AFM and the change in frictional coefficients. The pilling grade of knitted fabric comprised of oxidization wool is 2.5, and the average numbers of pills per 25 cm2 is 25. It is postulated that the surface topography, the frictional properties of oxidized wool fibers and surface hairs of corresponding yarns may limit the ability of those surface fibers to form fuzz and of those fuzz for pill formation.  相似文献   

8.
Enzyme treatment technologies in textile processing have become commonly-applied techniques for the modification of fabric-handle appearance, and other surface and mechanical characteristics of fabrics. Most studies have focused on understanding the impact of enzyme treatments on the fabric preparation, dyeing, and finishing processes of woven fabrics, whilst only limited research has been reported regarding any enzymatic effects on the surface and handproperties of knitted fabrics. The aim of this study was to analyze the effects of two different enzymes Trichoderma reesei whole cellulase, and enriched (EGIII) endoglucanase cellulase, at three different enzyme dosages on 100 % cotton interlock knitted fabric. This was in order to evaluate certain surface properties such as pilling, friction. and geometrical roughness. Furthermore, the compression and tactile properties of knitted fabric were also analyzed. The results show that treatment conditions with enzyme Trichoderma reesei whole cellulase had the more pronounced effect on the surface properties compared to the enriched EGIII enzymes. In general, it can be concluded that both types of enzymes improved the surface properties and hand when compared with the silicone softener-treated reference sample of interlock knitted fabric, as is statistically confirmed by one-way analysis of variance.  相似文献   

9.
The physical and mechanical characteristics of hollow polyester fibres were compared with solid polyester fibres in order to establish their processing behaviour and performance characteristics. The effects of hollow fibres on fabric properties were investigated by using microscopy and tests of tensile and bursting strength, pilling, abrasion resistance, water vapour permeability, and handle. The results show that tensile strength of hollow polyester fibres and yarns are negatively affected by the cavity inside the fibre. Hollow fibres also have higher stiffness and resistance to bending at relaxed state. Fabrics made from hollow polyester/wool blends and pure wool fabrics show three distinguishable steps in pilling. During pilling, hollow fibres break before being pulled fully out of the structure, leading to shorter protruding fibres. Microscopy studies showed that the breakdown of hollow fibres started during entanglement by splitting along the helical lines between fibrils. KES results showed that the friction between fibres and the fibre shape are the most important parameters that determine the fabric low stress mechanical properties. However, in some aspects, the hollow structure of the fibre does not have a significant effect.  相似文献   

10.
The purpose of this research is in solution of two important subjects mutually related; (1) creation of fabrics of various handlings by finish processing and (2) mechanism of generation of itchy feeling acting as the hindrance of a comfortable clothing life and establishment of its objective evaluation method. For the purpose of solution of these two subjects, the same fabrics were used and they were changed by 18 kinds of different physicochemical procedures, which come out 18 levels of fabric handlings ranging from very soft to very stiff. As for handlings of 18 kinds of fabrics, the items of Hand Value were calculated based on all of KES basic properties in terms of KES procedures. Solution of these subjects is also connected with a high level of fabric finishing technology. On the other hand, one of the authors is an expert in fabric finish processing, and has been sure of itchy feeling of fabrics being closely connected with the hardness of fabrics from many years of experience. The degrees of itchy feeling for 18 kinds of fabric were judged by 50 evaluators of different ages and occupations, in terms of five ranks of evaluation method beforehand. As a result, itchy feeling had a high correlation with shear properties and Koshi, and had a negative high correlation with Numeri. It was confirmed that that itchy feeling could be evaluated by objective data of KES properties in terms of KES procedure.  相似文献   

11.
A fabric drape shape database has been prepared to find the optimum combination of fabric physical properties for simulating the appearance of an actual fabric. First, an objective and quantitative evaluation method for the traditional Cusick drape tester has been devised. Then a virtual drape tester has been developed using an implicit integration based drape simulation engine to generate a series of virtually draped fabric with various physical properties. Finally, a search algorithm has been developed to find the optimum property combination for target fabric by comparing the simulated results with the Cusick drape tester result of that fabric.  相似文献   

12.
Digital intelligent recognition for the weave pattern of fabric plays an important role to improve automation and artificial intelligence in textile production process. In order to improve the data processing efficiency and minimize the negative influence such as human error in the conventional methods, a rapid, automatic and accurate method for the surface structure analysis and the fabric weave pattern recognition is proposed. First of all, an imaging system was designed to obtain the double-faced images of fabric samples, and then the captured images were treated by projection algorithm in both warp and weft directions to generate a grid net which splits the image into massive nodes. In the following step, the nodes were preliminary classified based on the intensity of the node’s quadrilateral boundary and at the same time, the color of the nodes was calculated by using the color clustering method. To improve the accuracy of node classification, the types and color information of the adjacent nodes, together with double-faced image information, were utilized for error correction. At last, the node information acquired was encoded and expressed digitally by a basic matrix, two one-dimension matrices (row and column) and a color mapping table. Following the procedure above, the digital model of the weave pattern of the sample fabric is established. Experiments have been conducted and show the performance of the proposed method.  相似文献   

13.
In this study, the effects of corona plasma process on the dyeability and certain physical properties of woolen fabric were investigated. For this purpose, acid and 1.2 metal complex dyes, which are the most applicable dyes in the wool market were used. The patterns were examined to assess their dyeability, wettability, pilling resistance, alkali solubility, and strength values. The surface morphology and chemical structures were tested by X-ray photoelectron spectroscopy and alkali solubility analyses and also scanned by electron microscopy. Hydrophility indexes of the dyes that were used were determined. With the results of the experiments, their hydrophobic index is of vital importance, which is a factor for plasma efficiency on color depth. By using plasma treatment on woolen fabric, it is achievable to get a product with high hydrophility and pilling resistance values, dyeability, and less burdened dyeing bath.  相似文献   

14.
15.
In this research work, multifunctional cotton fabric comprising of UV protection, superhydrophobicity and antibacterial activity has been developed using facile pad-dry-cure method. In the first step, the concentration of repellent chemical has been optimized. Then, formulations containing nanoparticles of ZnO or TiO2 along with optimized concentration of repellent chemical and organic-inorganic binder have been applied to cotton fabric followed by the evaluation of functional properties. The surface morphology and elemental composition of treated fabric has been characterized through SEM and EDX, respectively. The treated samples have shown promising UV protection, superhydrophobicity and antibacterial properties durable upto 20 washing cycles.  相似文献   

16.
This study develops a method to evaluate the contact coolness of fabric using the infrared thermal image of a small test specimen. By using infrared thermal images of 7 types of fabrics developed as cool fabric, the average temperature difference on the surface of the human palm and a heating plate, with and without fabric was measured and this was used for the scale of the ability of the fabric to cool by touch. By comparing the average temperature differences with the Qmax of a fabric, absorption coolness, subjective contact coolness, and correlations were investigated. More heat is transmitted via fabric when the Qmax value is higher and average temperature difference of thermogram image is smaller, which means the coolness perceived by the skin becomes stronger. Fabric with a small average temperature difference in infrared thermal imaging had a high Qmax value and it was evaluated as having strong coolness in subjective evaluation too. However, it was found that there was no relationship between average temperature differences and absorption coolness. Therefore, it can be concluded that the evaluation of fabrics’ coolness using infrared thermal image is useful when evaluating contact coolness at the point of physical contact. In addition, by comparing the methods using the palm and heating plate, the method using the palm showed higher correlation with Qmax (-.828, p<0.05). Therefore, we confirmed that evaluating the coolness of small test specimens using an infrared thermal camera and the palm is effective.  相似文献   

17.
Kim  Sungmin  Park  Chang Kyu 《Fibers and Polymers》2003,4(4):169-175
A simulation system for versatile garment drape has been developed. Using this system, the shape of a garment can be simulated in consideration of fabric physical properties as well as the interaction between fabrics and other objects. Each fabric piece in a garment is modeled using a geometrically constrained particle system and its behavior is calculated from an implicit numerical integration algorithm in a relatively short time. The system consists of three modules including a preprocessor for the preparation of fabric patterns and external objects, a postprocessor for the results of three-dimensional visualization, and a drape simulation engine. It can be used for the design process of textile goods, garments, furniture, or upholsteries.  相似文献   

18.
Spirality is one of the major potential problems in knitted fabrics and garments. It affects the aesthetics and physical properties of the garment produced, such as the seam displacement, shape retention, pattern distortion and sewing difficulties. In this paper, a comparative study has been carried out to evaluate the physical performance of 100 % cotton knitted fabrics and garments produced by the modified low twist and conventional ring yarns through the actual wearing and washing trials. Experimental results showed that the properties of side seam displacement, fabric spirality, dimensional stability and skewness change of the T-shirts and sweaters made by the modified single yarns are comparable to those of garments made from the control plied yarns but much improved when compared to those from the control single yarns. In addition, the pilling resistance and bursting strength of the knitted fabrics made by the modified single yarns can still maintain a reasonably high level at a low yarn twist.  相似文献   

19.
This paper assesses the color difference and color strength values (K/S) obtained for eight disperse-dyed polyester fabric samples with different fabric construction parameters (weft yarn type, weft yarn count, weft density and fabric weave) after four sets of abrasion cycles. Warp yarn type and count, warp density, and warp yarn twist are the same for all fabrics. Fabric samples are dyed in a commercial red disperse dye (C.I. Disperse Red 74:1) and four different abrasion cycles (2500, 5000, 7500, 10000) are used. TheK/S values of the abraided fabrics and color difference values between the control fabric (dyed but not abraided) and abraded fabrics are calculated. The main differences in theK/S and color difference values are observed between 0–2500 abrasion cycles. The high tenacity of the polyester fibers and continuous polyester yarns causes some fuzz but no pilling formation on the fabric surface that lead to increasedK/S values and color differences. Fiber dullness, yarn thickness, yarn density and fabric weave are concluded to have different effects on the appearance after abrasion.  相似文献   

20.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号