首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
In order to deepen insight into durum wheat prolamin composition in relation to both end use quality and gluten related disorders, a phenotyping of four genotypes of different release date and technological performance was carried out. A proteomic approach integrated with the evaluation of protein aggregation level, amino acid composition and reactivity to G12 monoclonal antibody, was adopted. The degree of polymerization, estimated as unextractable polymeric proteins (UPP), was positively influenced by Cys-rich proteins (Glu-B3 LMW-GS), with Saragolla showing up to 40% higher values than other genotypes. The proteomic assessment allowed to identify proteins involved in gluten related disorders. In particular, ω5-gliadin involved in wheat allergy (WA), resulted markedly over-expressed in the old landrace Dauno III, up to four-fold than in modern Saragolla. A marked influence of genotype on the expression level of gliadins containing toxic epitopes (TECP) was observed with the more recent genotypes showing lower values (−53%). Also, reactivity to G12 moAb resulted higher in the two old genotypes consistently to their higher celiac disease (CD) toxicity evaluated by the proteomic approach. In conclusion a better gluten composition for processing seems to be associated to a lower expression level of CD toxic peptides and Tri a 19.  相似文献   

2.
The breadmaking quality of wheat is affected by the composition of gluten proteins and the polymerisation of subunits that are synthesised and accumulated in developing wheat grain. The biological mechanisms and time course of these events during grain development are documented, but not widely confirmed. Therefore, the aim of this study was to monitor the accumulation of gluten protein subunits and the size distribution of protein aggregates during grain development. The effect of desiccation on the polymerisation of gluten proteins and the functional properties of gluten were also studied. The results showed that the size of glutenin polymers remained consistently low until yellow ripeness (YR), while it increased during grain desiccation after YR. Hence, this polymerisation process was presumed to be initiated by desiccation. A similar polymerisation event was also observed when premature grains were dried artificially. The composition of gluten proteins, the ratios of glutenin to gliadin and high molecular weight-glutenin subunits to low molecular weight-glutenin subunits, in premature grain after artificial desiccation showed close association with the size of glutenin polymers in artificially dried grain. Functional properties of gluten in these samples were also associated with polymer size after artificial desiccation.  相似文献   

3.
Maize is the main crop cultivated worldwide with more than 1 billion metric tons produced annually and is one of the most relevant sources of protein for human consumption in developing countries. Proteins and peptides isolated from maize exert relevant antioxidant activity which is increased by enzymatic hydrolysis. However, there is limited information about the antioxidant potential of proteins isolated from Quality Protein Maize (QPM) varieties and their hydrolysates. The aim of this research was to determine the differences in protein profile and antioxidant activity of protein fractions and hydrolysates between a hybrid white maize (Asgrow 773) and a QPM variety (CML-502). The biophysical evaluation and the total protein quantification by Kjeldahl and fractions by ninhydrin were consistent with the changes due to the breeding process of the QPM material. The antioxidant potential of the hydrolysates obtained from albumins and globulins had a 3-fold increase in both maize varieties. The prolamins hydrolysates presented an increase of 7-fold for the normal variety and 2-fold for the QPM variety. The results of this research allow indicate that the QPM varieties are a source of antioxidant peptides and promising candidates in the search for proteins and peptides with other bioactivities.  相似文献   

4.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

5.
This study aimed to evaluate the effect of sorghum and sweet potato on the bioavailability of iron, gene expression of proteins involved in iron metabolism and the plasma antioxidant capacity in animals fed with whole sorghum grains processed by dry heat or extrusion, combined or not with sweet potato flour with high content of carotenoids. Five experimental groups were tested (n = 7): dry heat sorghum flour (DS); extruded sorghum flour (ES); whole sorghum flour + sweet potato flour (DS + SP); extruded sorghum flour + sweet potato flour (ES + SP) and positive control (FS). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency, gene expression of divalente metal transporter 1 (DMT-1), duodenal citochroma B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The ES + SP group showed higher (p < 0.05) expression of DcytB, ferroportin and hephaestin when compared to the control group. The DS group showed high (p < 0.05) expression of DMT-1 and the ES showed high mRNA expression of transferrin and ferritin. The changes in the sorghum physicochemical properties from extrusion process reduced the iron and phytate content, and increased the gene expression of proteins involved in iron metabolism, improving iron bioavailability. The combination of sweet potato and sorghum flour (dry or extruded) improved the iron capture and total antioxidant capacity, probably due to the presence of β-carotene and antioxidant compounds.  相似文献   

6.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

7.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

8.
The role of gluten proteins during lamination and fermentation of multi-layered wheat flour pastry dough was examined by including oxidizing or reducing agents in the recipe to respectively strengthen or weaken the gluten protein network. Pastry burst rig textural measurements showed that dough strength increases during lamination up to 16 fat layers. However, further lamination up to 64 and 128 fat layers decreases the dough strength, most likely due to destruction of layer integrity. Redox agents strongly affect dough strength. Furthermore, fermentation and spread tests showed that they strongly influence elastic recoil immediately after lamination and during relaxation. Moreover, elastic recoil consistently occurs to a greater extent in the final direction of sheeting. None of the observed changes in dough strength and relaxation behaviour could be linked to changes in the levels of protein extractable in sodium dodecyl sulfate containing medium (SDS-EP). This suggests that changes occur preferentially either within the SDS-extractable or within the non-SDS-EP fraction and that they do not render non-extractable protein fractions extractable or vice versa. Furthermore, elastic recoil is most likely caused by reformation of inter- and intramolecular hydrogen bonds and hydrophobic interactions.  相似文献   

9.
Maize kernels contain different bioactive compounds that are important for human health. The aim of this study was to analyze the distribution of the bioactive compounds in maize fractions derived from two industrial dry-milling processes, characterized by a dry-degermination (DD) system and a tempering-degermination (TD) system.The bioactive compounds in maize resulted unevenly distributed in the milling fractions of the kernel. By-products such as the germ and the animal feed flour, had higher total antioxidant capacity (TAC), total polyphenol content (TPC) and total dietary fibre content (TDF) than the whole grains, while xanthophyll and resistant starch resulted to be higher in the fractions derived from the vitreous endosperm. The germ fraction showed also the highest folate content. Results also showed that the type of degermination process influences the bioactive compound contents in the milling fraction, in accordance to the effectiveness of the germ and bran removal from the endosperm fractions. In particular, the animal feed flour obtained by means of TD system resulted in a higher TAC, TPC and TDF than the same fraction obtained by means of the DD system. Conversely, the extraction rate do not affect the recovery of bioactive components in particular fractions.  相似文献   

10.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

11.
A size exclusion – high performance liquid chromatography (SE-HPLC) method originally developed for separating wheat, barley or rice proteins was applied to study the extractability and molecular weight (MW) distribution of rye flour proteins. These were extracted with 50 mmol/l sodium phosphate buffer (pH 6.8) containing 2.0% (w/v) sodium dodecyl sulfate (SDS) and, optionally, 1.0% (w/v) dithiothreitol (DTT). About 95% of the proteins were extracted in buffer containing 2.0% SDS. Addition of 1.0% DTT to such buffer increased the protein extractability to 100%, indicating that rye flour contains some proteins cross-linked by disulfide (SS) bonds. The SE-HPLC profiles revealed that rye flour contains SS-linked HMW-secalins and 75 k γ-secalins which elute in specific peaks. Upon reduction, these SS-linked protein aggregates dissociate and some entrapped albumins, globulins and/or ω-secalins are released. Rye flour albumins and globulins elute over the entire SE-HPLC profile. In contrast, the monomeric ω-secalins and 40 k γ-secalins are detected in specific well resolved SE-HPLC peaks. The applied fast and reproducible method can be used to characterise and quantify rye flour proteins and to determine changes as a result of processing.  相似文献   

12.
Immature rice was reported to contain higher quantities of bioactive compounds than mature rice. Young rice protein is easy to digest and has hypoallergenic potential, with protein content of 7.2–11.5% compared to rice bran at 9.8%. Few studies have reported on bioactivities and characterization of young rice proteins and their hydrolysates. Bioactivities of native protein and protein hydrolysates of two rice varieties (white rice and colored rice) were characterized and investigated for four development stages (flowery, milky, dough, and mature). Degree of hydrolysis of young rice protein was considerably higher than at the mature stage. Highest DPPH and iron chelating activity were found in alcalase® protein hydrolysate during the flowery-to-milky stage. Iron chelating activity was constant in all development stages because of the low polar amino acid content in rice. The ACE activity of alcalase® protein hydrolysate was higher than native protein at the same development stage, as observed in the milky and dough stages. Inhibitory activity of young rice hydrolysate HepG2 cells was concentration-dependent and not correlated with protein molecular size.  相似文献   

13.
Dough rheological properties and noodle-making performance of non-waxy whole-wheat flour (WWF) with partial- or full-waxy (PW- or FW-) WWF substitution were studied. The substitution levels were 0, 250, 500, 750, and 1000 g/kg, respectively. FW-WWF reduced the peak viscosity and pasting temperature of WWF blends as its substitution level was increased due to its higher proportions of B-type starch granules and short amylopectin chains, while PW-WWF increased peak viscosity with the increasing substitution level because of its higher amylopectin content. As demonstrated by farinograph and rheometer measurements, FW-WWF interfered with gluten development because of the increased competition for water by arabinoxylans and amylopectin; however, PW-WWF enhanced dough strength due primarily to its increased protein content. Consequently, FW-WWF showed a detrimental effect on cooked noodle texture as the cooked noodle hardness was reduced by 50% at the 1000 g/kg substitution level. In contrast, PW-WWF enhanced noodle integrity and elasticity by increasing cooked noodle cohesiveness and resilience by 10.1% and 14.8%, respectively, at the 1000 g/kg substitution level. The results suggest that with waxy WWF substitution, the changes in starch composition, arabinoxylans, and protein content could modify the interactions among flour components and influence the quality characteristics of noodle products.  相似文献   

14.
Four sets of durum samples were used in this study to further understand the interrelationships among hard vitreous kernels (HVK), protein content, and pigment concentration, with a focus on the interaction and synergistic effects of protein content and vitreousness on durum quality. HVK level increases with higher protein content in the range of 9.5–12.5%, but this relationship is less evident in durum samples with high protein content (12.5–14.5%). Both protein content and kernel vitreousness can significantly affect durum milling quality. White starchy kernels (WSK) in low protein durum have a very detrimental impact on milling and pasta processing quality, but high protein content can mitigate the adverse impact of WSK on durum quality. Although protein content plays a dominant role, higher HVK might contribute positively to pasta firmness. There was no significant difference in yellow pigment content between HVK and WSK. However, pigment loss from semolina to dough was higher for WSK than HVK. Despite the difference in protein content, HVK and WSK have little difference in gluten strength. The monomeric protein was preferentially accumulated in HVK. The glutenin proteins of HVK and WSK were similar in the ratios of 1Bx/1By and HMW/LMW-GS.  相似文献   

15.
The purpose of the research was to identify the phenolic and flavonoid compounds of seven different traditional pigmented whole rice cultivars grown in the temperate regions of Kashmir so as to study their relationship with in vitro antioxidant capacities. The completely pigmented rice cultivars were found to have higher phenolic, flavonoid, anthocyanin contents and exhibited higher antioxidant capacities than the light colored and sparely colored rice cultivars. A total of 40 compounds had been identified in the analyzed rice cultivars that were found to be distributed in 6 major categories with 6-phenolics, 6-flavonoids, 11-hydroxycinnamic acid derivatives, 7-hydroxybenzoic acid derivatives, 3-anthocyanins and 7-flavonoid glucosides of different flavonoid compounds. Among the free and bound fractions for each cultivars the light and sparsely colored depicted higher content of phenolics and in vitro antioxidant properties in bound faction, while the completely pigmented cultivars showed higher antioxidant properties in free fractions. The anthocyanins quercetin-3-O-galactoside, cyanidin-3-O-rutinoside and pelargonidin-3-O-diglucoside had been identified by LC-MS existing in the free fractions of the analyzed rice cultivars whereas, the free fraction of acetone + H2O possessed higher percentage of phenolic compounds as compared to methanolic extracts and bound fractions. The black colored cultivars possessed higher DPPH scavenging activity and lipid peroxidation inhibition.  相似文献   

16.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

17.
Albumin (Alb), globulin (Glo), glutelin (Gll) and glutenin (Gln) were separately extracted from wheat germ and wheat gluten. Amino acisd composition, molecular weight distribution, solubility, in vitro digestibility, and immunomodulatory activities were all analyzed. Gll and Gln have similar molecular weight distributions, which differed from those of Alb and Glo. Alb showed the highest solubility at various pH values (except pH 4.0), whereas Glo showed the highest in vitro digestibility. Glo and Gll have the highest proportion of essential to total amino acids, while Alb and Gll have the highest protein digestibility-corrected amino acid scores. Gll had the strongest immunomodulatory effects in terms of stimulation of RAW 264.7 cells to produce IL-6, TNF-α, and IL-10, and good stimulatory effects on splenocyte proliferation, production of IL-2, phagocytosis, and secretion of nitric oxide in RAW 264.7 cells. Gll can be considered a good protein source for use in health foods.  相似文献   

18.
This study aimed to valorise the underutilised by-product of proso millet decortication. Millet bran was sieved into three fractions with substantially different nutritional profile. The fraction with diameter <500 μm had the highest nutrient density (14% protein, 26% starch, 36% dietary fibre, 9% fat, and 3 mg GAE/g phenolics (d.w.)) and was analysed for oxidative stability, micronisation effect under cryogenic or ambient conditions (2, 4, 8, 12 min), and baking applicability. The bran was oxidatively stable under refrigerator conditions for 150 days. Micronisation slightly increased the antioxidant activity measured by FRAP and ABTS assays as well as the content of fibre soluble in water and 78% ethanol as the bran particle size decreased from 171 μm to 26–46 μm. Gluten-free bread containing 10% of the nutrient-dense fraction of millet bran had higher dietary fibre (76%) and phenolics content (117%), improved volume and crumb softness, regardless of the bran particle size (diameter of 50th percentile 171 vs. 26 μm).  相似文献   

19.
To provide food and nutrition security for a growing world population, continued improvements in the yield and nutritional quality of agricultural crops will be required. Wheat is an important source of calories, protein and micronutrients and is thus a priority to breed for improvements in these traits. The GRAIN PROTEIN CONTENT-B1 (GPC-B1) gene is a positive regulator of nutrient translocation which increases protein, iron and zinc concentration in the wheat grain. In the ten years since it was cloned, the impacts of GPC-B1 allelic variation on quality and yield traits have been extensively analyzed in diverse genetic backgrounds in field studies spanning forty environments and seven countries. In this review, we compile data from twenty-five studies to summarize the impact of GPC-B1 allelic variation on fifty different traits. Taken together, the results demonstrate that the functional copy of the GPC-B1 gene is associated with consistent positive effects on grain protein, Fe and Zn content with only marginally negative impacts on yield. We conclude that the GPC-B1 gene has the potential to increase nutritional and end use quality in a wide range of modern cultivars and environments and discuss the possibilities for its application in wheat breeding.  相似文献   

20.
Durum wheat is an important food crop used primarily for pasta production. High-molecular-weight glutenin subunits (HMW-GS) encoded by the closely linked genes Glu-B1x and Glu-B1y are known for their combined effects on pasta quality, but their individual contributions and interactions remain poorly understood. In this study, we show that individual loss-of-function mutants of Glu-B1x (ΔBx6) and Glu-B1y (ΔBy8) were associated with significant reductions in gluten strength compared to the wildtype, with stronger effects in the ΔBxy double mutant. Reductions in gluten strength were reflected in reduced mixograph and alveograph parameters, gluten index, faster extrusion flow rates and increased cooking loss. Interestingly, the Glu-B1x mutation was also associated with significant increases in grain and semolina protein content, increased pasta firmness, reduced starch viscosity and increased amylose in ΔBx6 and ΔBxy. In general, the ΔBx6 mutation had stronger effects than the ΔBy8 mutation, and significant interactions between the two genes were frequent. In addition to the basic knowledge gained on the individual effects of the Bx6 and By8 subunits and their interactions, the genetic stocks developed in this study provide useful tools to study the effects of natural or synthetic HMW-GS on pasta quality parameters in a background lacking endogenous HMW-GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号