首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis was tested that certain physico-chemical characteristics might be used as indicators of total starch availability and rate of starch availability of milled rice. Milled unparboiled (uPB) and parboiled (PB) rice samples (n=93) were characterized using standardized methods of physical tests and chemical analyses and anin vitromethod was used for measuring the rate of starch digestion on a subsample of rice (n=26). The rice varieties were dominated by medium long, bold rice grain with high amylose rice and intermediate gelatinization temperature (GT), but a wide range in all characteristics was measured. Small amounts of resistant starch (RS) were measured in the cooked rice, indicating virtually complete starch availability. The RS of PB rice (0·4 g/100 g rice as eaten) was significantly (P<0·004) higher than the RS of uPB rice (0·1 g/100 g) however. The rate of starch digestion was significantly affected by both variety and parboiling. The starch digestion index (SDI) values of the PB samples (mean value 73·7) were significantly (P<0·001) lower than those of the uPB samples (mean value 79·0). The apparent amylose content (AC) was the strongest determinant for SDI in both uPB and PB rice. The widths and shapes of the raw grains and the elongation after cooking were correlated significantly with SDI values for the uPB rice, while the relatively mild parboiling procedure followed in this study eliminated this correlation. The minimum cooking times were correlated significantly with the SDI values in the uPB samples.  相似文献   

2.
Starch gelatinization and formation of crystalline amylose–lipid complexes during the heat/moisture treatment step in rice parboiling were studied with temperature resolved wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) using flour from Puntal (24% apparent amylose) and Jacinto (12% apparent amylose) rice samples [66, 40 or 25% moisture content (mc)]. Temperature resolved WAXS showed that the crystallinity index (CI, i.e. the relative amount of A-type crystals) of non-parboiled rice flours at 66% mc, monotonically decreased between 65 °C (Puntal) and 70 °C (Jacinto) and 90 °C (both Puntal and Jacinto). These temperatures were in agreement with the respective onset and conclusion temperatures of the M1 endotherm measured by DSC. At 40% mc, the CI decreased monotonically from 65 °C (Puntal) and 70 °C (Jacinto) until 105 °C. In DSC both M1 and M2 endotherms were present. The conclusion temperature of the M2 endotherm was higher than 105 °C. At 25% mc, the CI decreased very gradually and A-type crystals were no longer present at 145 °C. Under these conditions, no DSC endotherms were detected. No type II amylose–lipid complexes were formed during heating at 66% mc. In contrast, at 40 and 25% mc, Vh-type crystals were formed from 100 and 130 °C, respectively. Non-parboiled white rice flour had a strong A-type pattern. Mildly parboiled rice had a clear A-type, with a weak Vh-type and B-type pattern. Severe parboiling resulted in partially crystalline systems with superimposed A-type, Vh-type and B-type crystals. It was concluded that the rice variety, the combination of mc and the moisture distribution in the rice kernel and the temperature during parboiling all impact the level and the types of crystals in the parboiled rice.  相似文献   

3.
A previous microscopical examination of barley kernels indicated an uneven distribution of amylose in the waxy cultivar SW7142-92, where the subaleurone layer was strongly stained by iodine. To explain these results, starch was isolated from fractions of inner and peripheral parts of kernels of the waxy cultivar and a cultivar with normal starch. Analyses of amylose content showed a higher concentration of amylose in starch from the outer part of the waxy barley kernel, where the amylose, determined by a colorimetric method, made up 8·6% of the starch compared with 5·9% in the middle and 2·2% in the innermost part of the waxy kernel. This difference in amylose distribution was not observed in the normal starch kernel. The results were confirmed by gel permeation chromatography. No differences in amylopectin chain length distribution were detected by size exclusion HPLC and HPAEC-PAD of amylopectins from different parts of the barley kernels.  相似文献   

4.
Paddy processing can affect glycemic index (GI) and bioactive compounds of rice. Therefore, the effects of processing conditions such as germination, parboiling and polishing on total polyphenols, ferulic acid and gamma-aminobutyric acid (GABA) contents of seven landrace varieties from Thailand were investigated. Subsequently, the best rice variety was chosen to evaluate GI in pre-diabetic subjects. Four different rice forms used were brown rice (BR), parboiled brown rice (PBR), germinated parboiled brown rice (GPBR) and polished rice (PR). Results showed that polishing process strongly reduced all bioactive compounds. In contrast, parboiling the grains slightly increased polyphenol, and germination followed by parboiling significantly increased polyphenol content. Ferulic acid content was found to be similar among BR, PBR and GPBR and the highest GABA content was found in GPBR. Furthermore, Leuang Awn variety exhibited the highest polyphenol (126.70 ± 1.08 mg GAE/100 g), ferulic acid (17.77 ± 0.16 mg/100 g) and GABA content (78.57 ± 1.00 mg/100 g) and was selected for GI study. PBR and GPBR had medium GI values (55.10 ± 5.37 and 60.58 ± 6.48) and PR showed high GI value (83.10 ± 5.10). In conclusion, parboiling and germination had less effects on the bioactive compounds of whole grain rice and produced low-medium GI, which could be beneficial for health promotion.  相似文献   

5.
College,Laguna, Philippines.Received 1 ABSTRACT Eight indica and japonica milled rices with low amylose content and low starch gelatinisation temperature were analysed for cooked rice energy and N balance in growing rats and for protein properties. Digestible energy values were similar. Japonica rices Koshihikari and Sasanishiki had higher true digestibility (TD) and net protein utilisation in rats than indica rices IR24 and PR23383-15. Similar results were obtained from in vitro proteolysis. High TD of cooked rices was not significantly correlated with low prolamin content in raw rice and with low waxy gene product (protein bound to starch granule) but was significantly correlated with low cysteine content in protein and with low denatured prolamin content in cooked rice. In two pairs of cooked waxy milled rices, which are devoid of waxy gene product, japonica rice still tended to show higher rat TD and in vitro protein digestibility than indica rice, consistent with lower cysteine content in japonica protein.  相似文献   

6.
This study identified the role of milling and parboiling on arsenic (As) content and its species in large numbers of rice samples. Total As contents were 108 ± 33 μg/kg in polished rice grains (PR), 159 ± 46 μg/kg in unpolished rice grains (UR), 145 ± 42 μg/kg in parboiled polished rice grains (PPR) and 145 ± 44 μg/kg in parboiled unpolished rice grains (PUR). The percentages of inorganic As (iAs) were 66% ± 8% in PR and from 72% to 77% in other grain categories. The polishing process reduced the As content in the rice grains, removing outer part of the UR with high amount of As, whereas the parboiling technique transferred the semimetal content within the grain. Total As and iAs contents were not significantly different in UR, PPR and PUR, homogenizing its distribution inside the grains. The results allowed to understand how different operations affect As fate and its chemical forms in grains.  相似文献   

7.
Partial waxy (reduced amylose) and fully waxy (amylose-free) tetraploid durum wheats (Triticum turgidum L. var. durum) were used to investigate the relationships between both intra- and inter-granular variation in amylose concentration and starch functionality. Starches isolated from each genotype (intra-granular amylose variants) were compared to those of commercially available hexaploid wild-type and waxy starches, and functionalities compared to blends (inter-granular variants) of durum waxy and wild-type starches of 0, 6, 12, 18, 24, & 30% amylose content. Starch particle size distributions were not significantly different amongst partial waxy and wild-type genotypes; waxy samples had significantly smaller mean starch granule size. Few significant differences for crystallite melting and related intrinsic heat as determined by differential scanning calorimetry (DSC) were observed. The detected differences in starch gel color or gel strength generally were observed for the waxy samples relative to wild-type. Numerous significant differences were observed via Rapid-Visco Analysis (RVA). Pasting peak viscosity and breakdown were inversely proportional to % amylose. Wx-B1 null final viscosity differed significantly from that of all other blends and genotypes, demonstrating that genotypic differences exist amongst the partial waxy types, independent of amylose concentration per se.  相似文献   

8.
Parboiling was used as a technique for folic acid fortification in brown rice. A range of parboiling conditions (i.e. 70 °C soaking for 1, 2 and 3 h with 0.15, 0.3, 0.6 and 1.2 g folic acid/300 g brown rice and milled for 0, 60 and 120 s) were studied to investigate the uptake of folic acid in the fortified rice. Approximately 20–300 μg folic acid/g was found in the fortified rice and an average of 90% of folic acid was retained in the washed and cooked fortified rice. The quality of the fortified rice was evaluated based on head rice yield (HRY), kernel dimensions and color. No significant change in HRY and grain dimensions were observed between raw and fortified rice, suggesting the economic value of rice will not be compromised with the fortification process and rice uniformity may likely be achieved after mixing with the untreated rice. Despite the inherent yellow color of folic acid, in comparison with parboiled rice, a significant difference in yellowness was exhibited only in rice fortified at 1.2 g folic acid/300 g brown, but not among those fortified at lower fortificant concentrations. The difference in lightness (ΔL) (between fortified rice and parboiled rice) was reduced as soaking duration increased.  相似文献   

9.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

10.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

11.
The effect of acetylation of milled rice grains of selected varieties (TDK 8, YRW 4, Reiziq, Amber 33, and SHZ 2) with varying apparent amylose contents (3.8–26.6%) on their physicochemical properties was investigated. Milled rice samples were treated with different acetic anhydride concentrations (0.004–0.04 g per 100 g of milled rice samples in 225 mL of water). Results showed that glutinous (TDK 8), very low amylose (YRW 4) and low amylose containing varieties (Reiziq) were prone to acetylation even with 0.004 g of acetic anhydride. X-ray diffraction patterns showed an increase in the crystallinity in acetylated samples and formation of V-type crystals, suggesting the possible interaction of acetic anhydride with starch. Acetylation of rice grains resulted in reduced peak and final viscosities and gel strength, particularly in glutinous (TDK 8) and very low amylose (YRW 4) rice. Differential calorimetric study showed that acetic anhydride treatment resulted in reduced thermal transition temperatures and enthalpy of all varieties. Although increase in the retrogradation thermal temperatures was observed, the enthalpy of retrogradation was reduced with increasing acetylation, suggesting that the extent of starch retrogradation was lower in all varieties with more prominent reduction in the glutinous type. Furthermore, the texture of cooked acetic anhydride treated rice grains was less hard and showed more adhesiveness. This study demonstrated that the acetylation of rice grains (instead of flour) was successfully achieved, showing the potential of applying acetylation to alter the textural, pasting, thermal and retrogradation properties of rice.  相似文献   

12.
Three types of rice cultivars (indica, japonica and hybrid rice) with four levels of amylose were selected for assessing variability in starch digestibility. A vitro enzymatic starch digestion method was applied to estimate the glycemic index in vivo based on the kinetics of starch hydrolysis in vitro. The results indicated that significant differences in term of glycemic response were observed in three types of rice. Amylose content had an obviously impact on the estimated glycemic score (EGS) value and resistant starch (RS) content. The contents of RS were increased with the increasing amylose in the same type of rice. Japonica rice was significantly lower in RS content compared to indica rice and hybrid rice with similar amylose. The high amylose rice cultivar ZF201, which was characterized by low major RVA parameters, i.e. peak viscosity (PKV), hot paste viscosity (HPV) and cool paste viscosity (CPV), were obviously higher in RS content and lower in EGS. The retrogradation of cooked rice led to a reduction of HI and EGS of all varieties. Starch hydrolysis tends to be more quick and complete for the waxy and low amylose rice than for the intermediate and high amylose rice.  相似文献   

13.
The glass transition temperatures (Tg) of starch with different amylose/amylopectin ratios were systematically studied by a high-speed DSC. The cornstarches with different amylose contents (waxy 0; maize 23, G50 50 and G80 80) were used as model materials. The high heating speed (up to 300 °C/min) allows the weak Tg of starch to be visible and the true Tg was calculated by applying linear regression to the results from different heating rates. It is confirmed for the first time, that the higher the amylose content is, the higher the Tg is for the same kind of starch. The sequence of true Tg of cornstarch is G80 > G50 > maize > waxy when samples contain the same moisture content, which corresponds to their amylose/amylopectin ratio. It was found that Tg was increased from about 52 to 60 °C with increasing amylose content from 0 to 80 for the samples containing about 13% moisture. The microstructure and phase transition were used to explain this phenomenon, in particular the multiphase transitions that occur in high-amylose starches at higher temperatures, and the gel-ball structure of gelatinized amylopectin.  相似文献   

14.
The physicochemical properties and in-vitro digestibility of extruded rice noodles with different amylose contents were characterized from a rheological point of view. Thermo-mechanical measurements showed that the rice flour with higher amylose contents exhibited greater stability to dual-mixing and higher degrees of starch gelatinization and retrogradation. In addition, greater elastic properties were clearly observed in the high amylose rice samples. The use of high amylose rice flour produced noodles with a harder texture, consequently contributing to reduced cooking loss. Furthermore, the rheological changes of extruded rice noodles were monitored in real time during the in-vitro starch digestion. The rice noodle digesta with higher amylose contents exhibited greater viscosities throughout the simulated oral-gastric-intestinal digestion steps. The flow behaviors of the rice noodle digesta consisted of the Power-law region and infinite shear plateau that were satisfactorily characterized by the Sisko model (R2 > 0.99).  相似文献   

15.
The optimum conditions for producing rice starch enriched in slowly digestible and resistant fractions by citric acid treatment determined by a response surface methodology (RSM) model equation, were: reaction temperature, 128.4 °C; reaction time, 13.8 h; and citric acid, 2.62 mmol/20 g starch. The slowly digestible and resistant starch fractions of the optimally acid-treated rice starch totalled 54.1%, which was 28.1% higher than the control. The slowly digestible and resistant fractions of the acid-treated rice starch did not differ significantly after heat treatment, whereas those of raw rice starch decreased by 49.6–63.8%, depending on the type of heat treatment (cooking at 100 °C or autoclaving). The slowly digestible fraction of the acid-treated starch increased by 8.9–14.2%. After autoclaving, the glucose response of the acid-treated starch was lower than untreated starch, but similar to that of Novelose 330. After heat treatment, the rate of blood glucose decrease was slower for the acid-treated starch than for Novelose 330. Compared to raw rice starch, the acid-treated starch exhibited increases in apparent amylose content, blue value, dextrose equivalent, cold-water solubility and transmittance, and decreases in wavelength of maximum absorbance, viscosity, and gel-forming ability.  相似文献   

16.
The effects of addition of whole barley and barley components (starch, β-glucans and arabinoxylans) on rheological properties of dough prepared from wheat flours with variable gluten quality (cv. Glenlea, extra-strong; cv. Katepwa, very strong; cv. AC Karma, strong; and cv. AC Reed, weak) were investigated in these studies using Mixograph and dynamic rheological measurements. Whole barley meal, starch and non-starch polysaccharides from hulless barley with variable starch characteristics (normal, high amylose, waxy, and zero amylose waxy) were tested. Upon addition of either β-glucans or arabinoxylans, significant increases in peak dough resistance, mixing stability, and work input were recorded in all flours. The addition of starch to various wheat flours reduced the strength of the respective flour-water doughs. The improvement of dough strength upon addition of waxy or zero amylose waxy barley meal was associated with the high content of total and soluble β-glucans present in barley samples. The addition of arabinoxylans or β-glucans increased the G′ of wheat doughs; arabinoxylans had a greater effect than β-glucans. Starch substantially decreased the elastic modulus of dough prepared from cv. Glenlea but waxy and high amylose starches increased the G′ of dough prepared from cv. AC Karma. A combination of the high amounts of non-starch polysaccharides and unusual starch characteristics in barley seems to balance the negative effects associated with gluten dilution brought about by addition of barley into wheat flour.  相似文献   

17.
The effect of partial gelatinization and retrogradation on in vitro enzymatic digestibility of waxy rice starch was investigated, and the relationship between the residual crystallinity and digestibility measured. An aqueous dispersion of starch (5%, dry weight basis) was partially gelatinized by heating at different temperatures (60, 65, or 70 °C for 5 min). The relative melting enthalpy values of the starch samples, based on the melting enthalpy of native starch, were 69.0, 36.7, and 8.5%, respectively. Retrograded starch samples were also prepared by storing a fully gelatinized starch paste (5% starch) at 4 °C for 2, 4, or 7 d, and the relative melting enthalpy values for the starch samples were 36.7, 67.2, and 79.9%, respectively. The partial gelatinization and retrogradation changed the enzymatic digestion behavior of the waxy rice starch samples, and the changes were significant in the initial stage of digestion. The digestion rate was reduced as the melting enthalpy increased. The amounts of slowly digestible starch (SDS) and resistant starch (RS) correlated positively with the relative melting enthalpy of the partially gelatinized or retrograded starch samples. The glycemic index (GI) estimated using an in vitro digestion test correlated negatively with the relative melting enthalpy. At similar melting enthalpy levels, the partially gelatinized starch samples were more resistant to enzymatic digestion than the retrograded starch samples, indicating that the thermal history and the crystalline morphology affected the enzymatic digestion behavior of starch.  相似文献   

18.
In this study, we evaluated the effects of amylopectin/amylose ratio and non-solvent type on starch nanoparticle formation including the average particle size, polydispersity index, size distribution, and nanoparticle morphology using dynamic light scattering (DLS) and scanning electron microscopy (SEM). The most uniform particles were obtained from normal corn starch with ethanol. The average particle size was 98.8 ± 1.8 nm using DLS while combination of size distribution study and SEM images showed that particle size ranged between 60 and 90 nm. A bimodal distribution was observed with two defined groups of nanoparticles when waxy corn starch (Amioca) was nanoparticulated with ethanol. SEM images of freeze dried samples and DLS size distribution curves of fresh samples showed that high amylose starch including Hylon V and Hylon VII gave uniform, spherical and small nanoparticles in the size range of 20–60 and 15–50 nm, respectively. The smallest nanoparticles were fabricated by precipitation with methanol, followed by ethanol and the largest nanoparticles were formed using acetone. Re-dispersion of nanoparticles was good when nanoparticles were fabricated using ethanol and acetone especially for Amioca, whereas redispersion of samples in aqueous PBS solution, precipitated using methanol was difficult especially in the case of Hylon VII. Stability of curcumin in the presence of 1 mg/ml native starch nanoparticles was much higher (83.7 ± 3.1%) than curcumin in phosphate buffered saline at pH 7.0 (5.5 ± 1.5%) over 10 days at ambient temperature. Interaction between iodine-potassium iodide solution and starch nanoparticles showed that the helical structures of amylose and amylopectin molecules remain in the nanoparticles and curcumin may interact with these helical structures giving it the stability which is not observed in water.  相似文献   

19.
糯小麦与酿酒谷物黏度特性的比较   总被引:2,自引:0,他引:2  
为明确糯小麦与其他酿酒谷物糊化特性的差异,为糯小麦在白酒酿造中的应用提供参考依据,比较分析了CD糯麦-2、普通小麦、糯米、高粱和玉米籽粒的淀粉RVA黏度特性。结果表明,不同作物的糊化特性有很大的差异,高梁的峰值黏度最高,糯小麦次之,玉米最低,普通小麦比糯米高,但二者差异较小;到达峰值黏度的时间为5.2~11.2 min,其中糯米糊化最快,糯小麦与糯米接近,比普通小麦快近2 min,普通小麦与高粱相近,玉米最慢;到达峰值黏度的温度为67.2~92.2℃,其中糯小麦和糯米低,分别为70.3℃和67.2℃,普通小麦和高粱分别为84.6℃和83.1℃,玉米则高达92.2℃,糯小麦比普通小麦低约14.3℃。糯小麦配粉能改变谷物的黏度特性,对糊化温度和糊化时间的影响小于对峰值黏度的影响,从不同作物考虑,糯小麦配粉对糯米的黏度特性影响相对较小。结果显示,糯小麦像糯米一样直链淀粉含量极低,其淀粉易糊化,糊化温度低,耗能少;向其他谷物中添加糯小麦可改变其淀粉黏度特性;糯小麦具有代替其他谷物酿造新型风味白酒的潜在优势。  相似文献   

20.
Parboiling is an age old technique carried out to improve rice quality. Different grain parboiling techniques have been traditionally followed and scientifically developed for preparation and industrialization of rice. The state of Assam, India produces a large number of rice varieties, some of which are traditionally processed into peculiar parboiled rice products like Hurum, Komal chaul, Bhoja chaul and Sandahguri, which are of both ethnic and possible commercial importances. In spite of extensive research carried out on parboiled rice, these products and their special parboiling techniques have not been sufficiently explored. The status of research on parboiled rice as a whole with special attention to these lesser known speciality products of Assam is extensively reviewed. Future scope of research on these products is also identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号