首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
施氮量对强筋小麦产量、氮素利用率和品质的影响   总被引:11,自引:0,他引:11  
为探明协同提高强筋小麦产量、氮素利用率和品质的施氮量,以强筋小麦品种济麦20(中穗型)和洲元9369(大穗型)为材料, 研究了180、240和300 kg·hm-2三个氮肥水平(分别用N180、N240和N300表示)对强筋小麦产量、氮素利用率、品质及其相关指标的影响。结果表明,相同施氮量下,洲元9369的产量、氮素利用率、面团形成时间、面团稳定时间、面包体积和面包评分均高于济麦20。当施氮量由N180增至N240时,2个品种的产量无显著变化,但沉降值、面团形成时间、面团稳定时间、面包体积和面包评分均显著提高;施氮量增至N300后,2个品种的产量和品质又都显著下降,籽粒总蛋白含量、谷蛋白含量、SDS-不可溶性谷蛋白含量、醇溶蛋白含量和谷蛋白聚合指数均明显降低,而SDS-可溶性谷蛋白含量和谷醇比却表现为上升趋势。经相关分析,SDS-不可溶性谷蛋白含量、谷蛋白聚合指数与面团形成时间、面团稳定时间、面包体积和面包评分均呈显著正相关。以上结果表明,谷蛋白聚合程度降低是过量施氮条件下强筋小麦品质下降的主要原因。综合考虑小麦产量、氮素利用率和籽粒品质,240 kg·hm-2为本研究条件下的最佳施氮量。  相似文献   

2.
追氮时期和基追比例对强筋小麦产量和品质的调控效应   总被引:5,自引:0,他引:5  
为给小麦高产优质栽培中氮肥合理运筹提供依据,以济麦20号为材料,在施氮量为240kg·hm-2下,研究追氮时期(起身、拔节、孕穗、开花)和基追比例(1∶1、3∶7和3∶17)对强筋冬小麦产量和品质的调控效应。结果表明,起身期和拔节期追氮处理间产量差异不显著,但二者显著高于孕穗期和开花期追氮处理。起身和拔节期增加追氮比例可提高产量,孕穗和开花期增加追氮比例则使产量降低。在起身和拔节期追氮时,籽粒蛋白质、醇溶蛋白和清、球蛋白含量随追氮比例增加均呈下降趋势;在孕穗和开花期追氮时,籽粒蛋白质、醇溶蛋白和清、球蛋白随追氮比例增加呈上升趋势。在各时期增加追氮比例均可提高谷蛋白、HMW-GS、LMW-GS含量和面团稳定时间。在一定的基追比条件下,拔节期追氮处理的谷蛋白、HMW-GS、LMW-GS含量和面团稳定时间均高于起身期追氮处理,追氮时期自拔节期后移至孕穗和开花期时谷蛋白、HMW-GS、LMW-GS含量和面团稳定时间均不同程度降低。本试验条件下,综合考虑产量和品质,强筋小麦济麦20号以基肥∶拔节肥比例为3∶17为最佳氮肥运筹方式。  相似文献   

3.
为明确非对称性增温对小麦籽粒品质的影响及其机理,以不同品质类型的扬麦13(弱筋)和烟农19(中筋)为材料,采用大田模拟增温的方法研究了冬春季夜间增温对小麦籽粒蛋白质形成的影响及其与植株氮代谢的关系。结果表明,冬季增温(WT)、春季增温(ST)及冬春季持续增温(WST)均不同程度地提高了冬小麦籽粒蛋白质、麦谷蛋白大聚合体(GMP)、高分子量和低分子量麦谷蛋白亚基含量,且均以WST处理效应最大。同时,各增温处理对籽粒谷蛋白含量的提高幅度最大,并提高了谷醇比。各夜间增温处理均增加了开花期旗叶面积,提高了氮含量,增强了孕穗至花后21 d旗叶的硝酸还原酶(NR)、谷氨酰胺合成酶(GS)活性,说明夜间增温促进了叶片生长,增强了植株氮素同化能力。夜间增温处理显著提高了小麦植株氮素积累量及贮存氮素转运量,从而增加了氮素向籽粒的分配,促进了籽粒蛋白质合成。因此,冬春季夜间增温提高了小麦氮素吸收同化能力及氮素在籽粒中的分配比例,从而提高小麦籽粒蛋白质含量,且冬春季持续增温对籽粒蛋白质形成有更大的促进效应。  相似文献   

4.
为了解越冬期测墒补灌对冬小麦光合特性和水分利用效率的影响,于2013-2014年小麦生长季,选用高产冬小麦品种济麦22为材料,在大田条件下,依据0~40 cm土层进行测墒补灌。设置5个试验处理,即全生育期不灌水(W0)、越冬期不灌水(W1)、越冬期补灌至土壤相对含水量70%(W2),越冬期补灌至土壤相对含水量75%(W3)及越冬期+拔节期+开花期各灌溉60 mm(W4),其中W1、W2和W3处理在越冬期补灌基础上于拔节期和开花期分别补灌至土壤相对含水量的65%和70%,对不同水分条件下冬小麦叶片净光合速率、蒸腾速率、气孔导度、干物质积累、籽粒产量和水分利用效率进行了分析。结果表明,小麦各生育期总灌水量为W4>W3>W2>W1>W0。在灌浆中期,小麦旗叶净光合速率、蒸腾速率和气孔导度均表现为W4>W2、W3>W1>W0,拔节期、开花期和成熟期干物质积累量表现为W4>W2>W3>W1>W0;W2处理开花后干物质积累量和对籽粒的贡献率与W4处理无显著差异,均显著高于W0、W1和W3处理;各处理籽粒产量表现为W4>W2、W3>W1>W0;水分利用效率表现为W2>W1、W3>W4>W0。依据0~40 cm土层进行测墒补灌,小麦越冬期土壤目标相对含水量达70%的W2处理的补灌水量低于W3和W4处理,籽粒产量和水分利用效率较优,分别为8 864. 46 kg·hm-2和22.14 kg·hm-2·mm-1,是高产节水的最佳灌溉处理。  相似文献   

5.
为了给优质面包、馒头、面条专用品种选育提供品质辅助选择指标,以30份新疆冬小麦品种(包括自育品种和引进品种)为材料,分析了新疆冬小麦品种品质性状与面包、馒头、面条加工品质的关系.回归分析结果表明,小麦籽粒性状、面粉品质、面团特性、淀粉糊化特性以及面粉色泽对新疆冬小麦品种面包、馒头和面条加工品质均有显著影响;面粉灰分、湿面筋、稀懈值、亮度和红度是影响面包、馒头和面条加工品质的共同品质性状;形成时间、稳定时间、延展度是影响面包和面条加工品质的共同品质性状;而籽粒性状仅对新疆冬小麦品种馒头加工品质有显著影响.相关分析结果表明,千粒重、形成时间、稳定时间、拉伸面积、最大拉伸阻力、红度和黄度与面包总分呈显著相关关系,相关系数分别为0.460、0.516、0.537、0.719、0.707、0.534和-0.403;籽粒蛋白质含量、面粉蛋白含量和湿面筋含量与馒头总分呈显著相关关系,相关系数分别为-0.397、-0.458和-0.552,面团延展度、稀懈值与面条总分呈显著相关关系,相关系数分别为0.438和0.432.从以上结果可以看出,面包与面团流变学特性,馒头与蛋白质和面筋数量,面条与面团流变学特性及淀粉糊化特性的关系更为密切,这些品质性状可以作为新疆冬小麦品种面包、馒头、面条加工品质改良时的辅助选择指标.  相似文献   

6.
为给邯郸地区小麦节水栽培提供依据,于2016-2017年选用高产小麦品种邯麦16号进行大田试验,设置了3个测墒补灌处理(分别用W70、W75和W80表示,W70处理拔节期、开花期的0~40 cm土层目标相对含水量均为70%,W75处理均为75%,W80处理均为80%),以全生育期不灌溉W0和当地常规灌溉WN为对照,研究了拔节期、开花期测墒补灌对邯麦16号小麦产量及耗水特征的影响。结果表明,与WN处理相比,W75处理的总灌水量明显降低,土壤水消耗量及其占总耗水量的比例明显提高,促进了小麦对土壤水的利用;W75处理的总耗水量明显下降,籽粒产量、水分利用效率、灌溉水利用效率、灌溉效率均显著增加。开花期依据土壤含水量补灌至目标相对含水量为75%的水分管理措施,较传统灌溉明显降低了总耗水,同时提高了小麦产量和水分利用率,实现了高产、节水及水分高效利用,是本试验条件下最优测墒补灌处理。  相似文献   

7.
返青至孕穗期控水对冬小麦氮素吸收与转运的影响   总被引:2,自引:0,他引:2  
为了解冬小麦合理控水与氮素高效利用的关系,以中麦8号为材料,通过盆栽试验,应用15 N同位素示踪技术,研究了返青至孕穗期的土壤水分对冬小麦氮素吸收转运特性的影响。结果表明,在本试验条件下,小麦吸收的氮素中,土壤氮占61.45%~65.33%,肥料氮占34.67%~38.55%。中度土壤水分处理(相对含水量70%)的籽粒氮素积累量最高,氮肥生产效率最高;低土壤水分处理(相对含水量55%)的开花期营养器官氮素积累量最低,肥料氮的土壤残留量最高,营养器官转运氮对籽粒氮的贡献率最高,籽粒氮素积累量最低;高土壤水分处理(相对含水量85%)的开花前营养器官积累的氮素向籽粒的转运效率最低,氮素收获指数最小。由此得出,返青至孕穗期土壤水分亏缺和过多均不利于小麦高产和氮素的有效利用。  相似文献   

8.
追氮时期对冬小麦籽粒品质和产量的影响   总被引:64,自引:17,他引:64  
采用水泥池栽和大田栽培两种种植方式 ,研究了追氮时期对冬小麦品质和产量的影响。结果表明 ,与起身期施氮肥相比较 ,拔节期和挑旗期追施氮肥 ,促进了籽粒各蛋白质组分和蛋白质总量的提高 ,增加了谷蛋白大聚合体的含量 ;提高了籽粒容重、出粉率和面粉的湿面筋含量及沉淀值 ;延长了面团稳定时间 ,同时籽粒产量亦显著增加  相似文献   

9.
为明确播后镇压和冬前灌溉对高产冬小麦干物质和氮素转移及氮素利用效率的影响,以冬小麦品种石新828和石麦12为材料,采用裂区田间试验,于开花期和成熟期,测定不同器官的干物质和氮积累量和转移量、籽粒产量、蛋白质产量、氮吸收效率和氮肥生产效率。结果表明,冬灌和镇压处理下,2个品种开花期和成熟期的干物质积累量下降,开花前各营养器官干物质的转移量、转移率及对籽粒的贡献率均降低,但开花后籽粒中的干物质积累量增加。冬灌处理小麦成熟期的总干物质积累量和产量下降。冬灌处理下,石新828开花后籽粒中的氮积累量增加,开花后氮素对籽粒的贡献率提高,但各器官的氮转移量显著降低,籽粒氮积累总量显著减少,氮吸收效率下降;冬灌对石麦12成熟期籽粒氮素积累量影响不显著。与不镇压相比,镇压处理下,2个品种开花期的氮积累总量和不同器官中的氮积累量均降低,而成熟期各器官氮积累量及分配比例的差异均不显著。镇压处理与不镇压处理相比,2个品种开花前营养器官中的氮转移量、转移率和贡献率均降低,但是开花后的氮积累量及其对籽粒氮的贡献率提高,其中,镇压的石麦12开花前氮转移量、贡献率和开花后氮积累量、贡献率与不镇压的差异达显著水平;成熟期籽粒氮素积累量的差异不显著。建议在足墒播种条件下不必进行冬灌,应根据播种前后土壤和水分条件确定是否需要镇压。  相似文献   

10.
小麦籽粒蛋白质组分的变异及其与面粉品质的关系   总被引:4,自引:0,他引:4  
为了探究小麦籽粒蛋白质组分的变异及其相对比例的变化对小麦籽粒品质的影响,在两个不同的小麦品质生态区,选用大面积推广的40个小麦品种(系)为材料,研究了小麦籽粒蛋白质各组分在基因型与环境间的变异,以及蛋白质组分与面粉品质的关系。结果表明,小麦籽粒蛋白质各组分含量在基因型间差异显著,而在环境间各组分含量的变异是一种非比例的增减,导致了籽粒蛋白质质量在环境间的显著差异。徐州点生态环境利于谷蛋白的合成,谷醇比显著大于南京点。在蛋白质各组分的关系中,清蛋白含量的增加降低了谷蛋白和醇溶蛋白含量,球蛋白含量的增加则降低了谷醇比,从而降低了沉淀值。蛋白质各组分含量及比例与面粉品质密切相关,是理想的品质微量评价指标。在高蛋白品种中,当谷醇比为1.3左右时,面粉面包烘烤品质较好。  相似文献   

11.
为筛选适宜于黄淮冬麦区小麦节水高产栽培的测墒补灌深度,在大田条件下设置0~20cm(D1)、0~40cm(D2)、0~60cm(D3)和0~140cm(D4)4个测墒补灌土层深度,越冬期各土层土壤相对含水量补灌至75%,拔节期补灌至70%,开花期补灌至75%,研究了测墒补灌深度对小麦旗叶光合作用和产量的影响。结果表明,D2处理越冬期、拔节期、开花期灌水量和总灌水量显著高于D1和D4处理,拔节期灌水量和总灌水量显著低于D3处理,土壤水消耗量与D1和D3处理无显著差异,但低于D4处理。D2和D3处理旗叶光合速率高于D4处理,旗叶磷酸蔗糖合成酶活性和蔗糖含量、籽粒支链淀粉和总淀粉含量高于D1和D4处理。D2和D3处理间千粒重和籽粒产量均无显著差异,但显著高于D1和D4处理;D2和D3处理的水分利用效率高于D4处理。0~40cm是本试验条件下小麦节水高产的适宜补灌深度。  相似文献   

12.
水氮互作对小麦籽粒蛋白质组分和品质的影响   总被引:1,自引:0,他引:1  
为了给强筋小麦高产优质高效栽培提供理论依据,以高产强筋小麦品种济麦20为材料,研究了施氮量和灌溉量对小麦籽粒蛋白质组分和品质的影响.结果表明,施氮量由120 kg*ha-1(N1)增加至240 kg*ha-1(N2),籽粒蛋白质含量、清蛋白和球蛋白含量增加,(醇溶蛋白+麦谷蛋白含量)/(清蛋白+球蛋白含量)比值(谷醇/清球比值)降低,面团稳定时间缩短.同一施氮量条件下,由不灌水(W0)到灌2水(W1),籽粒蛋白质含量增加,谷醇/清球比值降低,面团稳定时间缩短;由灌2水(W1)到灌3水(W2)和5水(W3),籽粒蛋白质含量降低,蛋白质组分中清蛋白和球蛋白含量升高,醇溶蛋白和麦谷蛋白含量降低,谷醇/清球比值降低,面团稳定时间亦缩短.以上结果表明,在本试验条件下,增加施氮量和灌水量导致面团稳定时间缩短,原因是清蛋白和球蛋白占总蛋白含量的比例,即谷醇/清球比值降低.  相似文献   

13.
为给强筋小麦高产优质栽培的水氮合理运筹提供理论依据,以强筋小麦济麦20为试验材料,在大田条件下设置了3个施氮水平:0 kg·hm-2(N0)、180 kg·hm-2(N1)、240 kg·hm-2(N2);每个施氮水平下设置4个灌水处理:不灌水(W0)、底水+拔节水+开花水(W1)、底水+冬水+拔节水+开花水(W2)、底水+冬水+拔节水+开花水+灌浆水(W3),每次灌水量60 mm,研究了水氮互作对强筋小麦济麦20籽粒蛋白质品质及其相关酶活性、产量及氮素和水分利用效率的影响。结果表明,旗叶硝酸还原酶、谷氨酰胺合成酶、内肽酶、羧肽酶和氨肽酶活性均为N2处理最高,N0处理最低。各施氮水平下硝酸还原酶活性和谷氨酰胺合成酶活性均以W0处理最低,W3处理与W1和W2处理相比,灌浆后期硝酸还原酶活性和谷氨酰胺合成酶活性提高,但各蛋白质水解酶活性降低。不施氮条件下,W3处理促进了籽粒蛋白质积累;施氮条件下,W1、W2和W3处理的籽粒蛋白质含量无显著差异。每公顷施纯氮180 kg条件下,W1处理的沉淀值高于其他灌水处理,湿面筋含量、面团稳定时间、籽粒产量、氮肥表观利用率和氮肥农学效率与W2处理无显著差异,高于W0和W3处理,水分利用效率高于W2和W3处理。综合考虑籽粒品质、产量、氮素和水分利用效率,施氮量为180 kg·hm-2、全生育期灌底水+拔节水+开花水的N1W1处理为高产优质高效的最佳组合。  相似文献   

14.
高产条件下不同小麦品种耗水特性及籽粒产量的差异   总被引:2,自引:0,他引:2  
为给高产条件下小麦生产提供合理的节水灌溉方案,以山农15和烟农21为材料,设置3个水分(0~140 cm土层平均相对含水量)处理[W0:拔节(60%)+开花(55%);W1:拔节(75%)+开花(65%);W2:拔节(75%)+开花(75%)],研究了不同小麦品种耗水特性、籽粒产量及水分利用效率的差异及对水分供应的响应。结果表明,两品种在W1处理下灌溉水利用效率最高;W2处理获得最高的籽粒产量和水分利用效率;在W1和W2条件下,山农15籽粒产量和水分利用效率显著高于烟农21。山农15各水分处理的总耗水量显著高于烟农21。在W0和W1条件下,山农15播前土壤贮水利用量和比例显著高于烟农21,而生育期降水利用比例低,灌溉水利用量无显著差异;在W2条件下,山农15播前土壤贮水利用量高于烟农21,生育期降水利用比例无显著差异,灌溉水利用量和比例高。在W0和W1条件下,山农15对20~60、60~100、140~200 cm土层的播前土壤贮水利用量均高于烟农21,说明山农15利用中下层播前土壤贮水的能力高。在本试验条件下,山农15为高产和高水分利用效率品种,两个品种均以W2为兼顾高产和高水分利用效率的最佳水分处理。  相似文献   

15.
为了解灌水对不同小麦品种旗叶水分生理特性和产量的影响,于2009-2010年度在田间栽培条件下,以2个小麦品种济麦22和洲元9369为材料,采用测墒补灌的方法研究了不灌水(W0)、拔节期0~140cm土层土壤相对含水量补灌至75%+开花期补灌至70%(W1)、拔节后8d补灌至75%+开花后8d补灌至70%(W2)、拔节后8d补灌至75%+开花后8d补灌至75%(W3)4个不同灌水处理下小麦旗叶渗透调节、光合速率和籽粒产量的差异。结果表明:(1)W3处理的小麦旗叶相对含水量、水势、渗透调节能力和光合速率高于W1和W2处理;济麦22旗叶相对含水量低于洲元9369,旗叶水势、渗透调节能力和光合速率高于洲元9369。(2)W3处理下穗数和千粒重显著增加,但穗粒数显著低于W1处理,以高的灌水量和耗水量获得最高籽粒产量,水分利用效率无显著变化。济麦22籽粒产量、穗数、千粒重、耗水量和水分利用效率均显著高于洲元9369,穗粒数低于洲元9369。本试验条件下,在拔节后8d和开花后8d0~140cm土层平均土壤相对含水量补灌至75%,是兼顾节水和高产的最优处理。  相似文献   

16.
为探究拔节期和开花期不同补灌方案对不同穗型冬小麦耗水特性、籽粒产量和水分利用效率的影响,于2017-2019年在山东省泰安市以大穗型品种山农23和中多穗型品种山农29为试验材料,以拔节后无灌水(T1)为对照,设置拔节期补灌目标为0~20 cm土层相对含水率达100%田间持水率(T2)、拔节期和开花期补灌目标为0~20 cm土层相对含水率达100%田间持水率(T3)和拔节期补灌目标为0~40 cm土层相对含水率达100%田间持水率(T4) 3种补灌方案。结果表明,拔节后不同补灌方案对大穗型和多穗型小麦品种影响基本一致。与T1处理相比,T4处理显著提高了0~100 cm土层土壤相对含水率,使60~100 cm土层土壤相对含水率在开花期仍保持较高水平;T3处理显著提高了拔节期0~60 cm和开花期0~40 cm土层土壤相对含水率。与T3处理相比,T4处理的拔节至开花阶段耗水量增加了28.9%,其中对上层土壤总供水的表观消耗量增加了66.4%;T4处理在开花至成熟阶段对深层土壤总供水的表观消耗量增加了68.0%,对上层土壤总供水的表观消耗量降低了37.4%。在开花至成熟期降水较多(121.2 mm)的年份,T4处理的开花至成熟阶段耗水量、开花后旗叶净光合速率和籽粒产量相对于T3处理均无显著变化,但总耗水量较高,水分利用效率显著降低;在开花至成熟期降水较少(45.2 mm)的年份,T4处理的开花至成熟期的阶段耗水量、开花后旗叶净光合速率、籽粒产量和水分利用效率较T3处理均显著降低。因此,在小麦全生育期降水量为111.6~220.2 mm、开花后降水量为45.2~121.2 mm的条件下,大穗型和中多穗型小麦品种均以在拔节期和开花期将0~20 cm土层补灌至100%田间持水率的补灌方案最优,可同时实现高产和高水分利用效率。  相似文献   

17.
为了解土壤相对含水量对小麦耗水特性和籽粒产量的影响,以小麦品种济麦22为材料,在田间试验条件下,设置5个土壤水分处理(W0~W4),其中各处理在0~140cm土层越冬、拔节和开花期土壤相对含水量分别为:80%、60%和52%(W0),80%、70%和65%(W1),85%、70%和65%(W2),80%、70%和70%(W3),85%、70%和70%(W4),比较分析了不同土壤水分条件下小麦耗水特性、旗叶水势和相对含水量及籽粒产量的差异。结果表明,W2处理的降水量占总耗水量的比例显著高于W3和W4处理,与W1处理无显著差异;灌水量及其占总耗水量的比例低于W4处理,与W3处理无显著差异;土壤耗水量占总耗水量的比例显著高于W4处理,低于其他处理。灌浆前期W2处理旗叶水势低于W3和W4处理,与W1处理无显著差异,旗叶相对含水量与其他处理无显著差异;灌浆后期W2处理旗叶水势和相对含水量均显著高于W1和W3处理,与W4处理无显著差异。W2和W4处理的籽粒产量无显著差异,均高于其他处理;W2处理的水分利用效率和灌溉效益高于W4处理。综合来看,本试验条件下,W2处理为冬小麦兼顾高产和节水的最佳测墒补灌模式。  相似文献   

18.
不同水氮处理对小麦耗水特性及产量的影响   总被引:3,自引:0,他引:3  
为给小麦高产节水栽培提供理论依据,以百农矮抗58为材料,在大田条件下设置3个灌水水平[不灌水(W0),灌1水(W1,拔节水),灌2水(W2,拔节和开花水)]和5个施氮水平[0kg·hm-2(N0)、90kg·hm-2(N1)、180kg·hm-2(N2)、240kg·hm-2(N3)、300kg·hm-2(N4)],研究水氮处理对冬小麦耗水特性及产量的影响。结果表明,随着施氮量的增加,小麦总耗水量和土壤贮水消耗量先增加后降低,以N3处理最高,各种水分利用效率也表现出相似趋势。随灌水次数的增加,总耗水量、土壤水利用效率和降水利用效率均提高,而水分利用效率和灌水利用效率则相反。阶段耗水量均随灌水次数增加而提高,施氮对阶段耗水量的影响因灌水不同而异,其中,N2和N3处理在拔节至开花期的耗水量较高,而在开花至成熟期则较低。籽粒产量随施氮量增加呈先升后降趋势,随灌水次数增加则持续提高。综合考虑产量和生产成本,W1N3处理为本试验条件下节水高产的水氮运筹推荐模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号