首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate the effects of semidry-milling on the quality attributes of rice flour and rice noodles, the properties of rice flours and cooking properties of rice noodles prepared with wet-, dry- and semidry-milled rice flours were characterized. The level of starch damage of semidry-milled rice flour at 30% moisture was significantly decreased to the level of wet-milled rice flour (P < 0.05); the whiteness of dry-milled rice flour was decreased compared with wet-milled rice flour (P < 0.05), while that of semidry-milled rice flour was not; the wet- and semidry-milled rice flours showed similar morphology and water hydration properties; the dry milling method reduced significantly the hardness, chewiness, and resilience of rice noodles (P < 0.05) compared with wet-milling, but semidry-milling did not; the cooking qualities of rice noodles produced by semidry-milling were comparable to wet-milling. It indicated the semidry-milling at 30% moisture may provide the protective effects on the characteristics of rice flours, which could be used to produce similar qualities of rice noodles to the wet-milling.  相似文献   

2.
Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90°C of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.  相似文献   

3.
Rice flour is a starchy material with low-cost, because it can be produced from rice that is broken during processing. The aim of this study was to develop biodegradable films based on rice starch and rice flour, and to characterize their physicochemical, microscopic and mechanical properties. Films from rice starch and rice flour were prepared by casting, with glycerol or sorbitol as plasticizer. SEM analysis of starch and flour films revealed compact structures. Rice flour films prepared in the present work have similar mechanical properties to those of starch based films. However, their water vapor permeabilities are two times higher than those of starch based films. Films with sorbitol were less permeable to water and more rigid, while films with glycerol are more plasticized and have poorer water vapor barrier properties. Therefore, preparing edible films from rice flour is a new alternative for using this raw material, which is sometimes much cheaper than commercial starches.  相似文献   

4.
The present work was designed to obtain information on the effect of germination time on the selected physicochemical properties of brown rice flour and starch prepared from three different rice cultivars. Changes in total starch, amylose and amylopectin contents of flour, amylopectin/amylose ratio and molecular weight of starch, gelatinization, pasting, rheological, and morphological properties of flour and starch during 5 days of germination were investigated. Significant changes of pasting and rheological properties of brown rice flour were found during germination, but only small changes of these properties could be found in isolated starch. Scanning electron micrographs of flour showed that the continuous matrix structure of flour was highly destroyed after germination and scanning electron micrographs of isolated starch showed that after three days of germination, pits and holes were discovered on the surface of some starch granules. Germination had little effect on the average molecular weight of starch, but the polydispersity value in germinated brown rice (2–5 days germination) was higher than that in non-germinated brown rice. The changes observed in physicochemical properties of brown rice flour and starch after germination provided a crucial basis for understanding flour and starch modification mechanisms with potential applications for an industrial scale.  相似文献   

5.
Flours derived from rice varieties with different amylose content possess distinct physicochemical and molecular properties. The aim of this study was to determine optimal processing conditions for preparing rice flour-based foods with reduced starch digestibility. To do so, we evaluated the in vitro starch digestibility of rice flours with five varieties. Reducing the amount of water (from 10-fold to 4-fold of rice flour) used for cooking rice flour lowered its starch digestibility, and the magnitude of the decrease was positively correlated with amylose content. When retrogradation of cooked rice flour proceeded for 7 days, the digestibility of high-amylose rice flours declined rapidly in the first 3 days, whereas the digestibility of low-amylose rice flours declined continuously. Our analysis also demonstrated that the chain length distribution of starch molecules and the final and setback viscosity pasting properties were the most important parameters affecting the digestibility of rice flours. Based on our results, it appears possible to reduce rice starch digestibility by establishing optimum processing conditions for different varieties. We suggest a 7-fold addition of water and retrogradation for 1 day for high-amylose rice varieties and a 4-fold addition of water with 3 days of retrogradation for low-amylose rice.  相似文献   

6.
The physicochemical properties and in-vitro digestibility of extruded rice noodles with different amylose contents were characterized from a rheological point of view. Thermo-mechanical measurements showed that the rice flour with higher amylose contents exhibited greater stability to dual-mixing and higher degrees of starch gelatinization and retrogradation. In addition, greater elastic properties were clearly observed in the high amylose rice samples. The use of high amylose rice flour produced noodles with a harder texture, consequently contributing to reduced cooking loss. Furthermore, the rheological changes of extruded rice noodles were monitored in real time during the in-vitro starch digestion. The rice noodle digesta with higher amylose contents exhibited greater viscosities throughout the simulated oral-gastric-intestinal digestion steps. The flow behaviors of the rice noodle digesta consisted of the Power-law region and infinite shear plateau that were satisfactorily characterized by the Sisko model (R2 > 0.99).  相似文献   

7.
Prolamin is a major class of rice proteins but its influence on the physicochemical properties of rice is not clear. Rapid Visco Analyser (RVA) and TA-XT2 TPA textural analyses were performed on rice starch with the addition of prolamin extracted from three rice cultivars (Hitomebore, M103 and Amaroo), and on rice flour with the prolamin removed by propan-2-ol extraction. Addition of prolamin to rice starch was found to cause a significant (P<0.05) increase in RVA breakdown viscosity but significant (P<0.05) decreases in hardness, adhesiveness and gumminess of the starch gel. Similarly, when prolamin was removed from rice flour, exactly the opposite effect was observed. Addition of prolamin to rice starch also caused it to absorb water faster during cooking but the gelatinised starch absorbed less water compared with control samples without prolamin.  相似文献   

8.
The effect of two rice endosperm proteins, glutelin and globulin, on the physicochemical properties of rice starch and flour was investigated. Albumin, globulin, prolamin and glutelin were sequentially extracted from defatted rice flour with de-ionised water, 1.5 M NaCl, propan-2-ol and 0.1 M NaOH, respectively, followed by dialysis and lyophilisation. Globulin and glutelin were then added to pure rice starch at various concentrations, separately and together, and the pasting and textural properties of mixtures were analysed by the Rapid Visco Analyser (RVA) and TA-XT2 textural analyser, respectively. The presence of glutelin in rice starch caused an increase in pasting temperature but a decrease in the viscosity parameters of the starch paste. The concentration of glutelin was also positively correlated with the hardness and adhesive properties of the starch gel. The presence of globulin, on the other hand, resulted in a decrease in all the pasting and textural parameters except gel hardness and the changes were linearly correlated with the concentration of the protein for most of the physical parameters. When the two proteins were added to rice starch together, the outcomes in pasting and textural properties were generally dependent upon the relative concentrations of the two proteins, but were also influenced by the presence of the other two protein fractions, albumin and prolamin. The presence of globulin initially accelerated the rate of water absorption by starch during cooking while the presence of glutelin slowed it down, but in both cases, the ultimate amount of water absorbed was significantly lower than that by pure starch. The contrasting effects of the different protein fractions mean that it might be possible to manipulate the textural properties of rice starch and flour to achieve desirable sensory outcomes by varying the proportions of the protein fractions in product formulations.  相似文献   

9.
Starch, as the main component of flour products, determines the physicochemical properties of dough. This work investigated the relationship of the physical properties of seven types of starches from various cereals with the structural features of reconstituted dough. Results of mixing and tensile properties analysis and scanning electron microscopy displayed that rice reconstituted flour exhibited maximum water absorption; pea reconstituted flour had higher dough stability; sweet potato dough had higher tensile resistance; highland barley dough had the greatest extensibility. Moisture distribution analysis revealed that various model dough showed remarkably different water distribution, which was distributed at T21 (0.07–0.11 ms), T22 (0.8–2.66 ms) and T23 (10.0–20.82 ms). Correlation analysis indicated that large starch granules associated with good dough stability; amylose content of starch positively affected tensile resistance of dough; crystallinity of starch showed negative effects on water absorption; starch with higher crystallinity associated with greater dough stability.  相似文献   

10.
A low temperature impact mill (LTIM) was created and used for grinding brown rice. The nutritional components and physicochemical properties of the resulting flour were investigated and compared with those ground by traditional wet colloid mill (CM) and dry high-speed universal grinder (HUG). It was found that LTIM produced a fine flour with unimodal particle size distribution, and well retained non-starch nutrients. Especially, the phenolic content of flour prepared by LTIM was two times higher than that prepared by CM. LTIM also led to less damaged starch content than HUG. The damaged starch content related well with the thermal and gel hydration properties. Interesting, comparing the particle size distribution before and after enzymolysis, it was found that LTIM could pulverize dietary fiber of brown rice efficiently. The results from this study indicated that the LTIM may provide a promising technology for pulverizing brown rice thus open its new applications.  相似文献   

11.
The dry milling of maize and accelerated fermentation of dough for kenkey production were studied as part of a wider investigation into the possibility of industrial production of a dehydrated kenkey flour. Dough containing an enrichment of lactic acid bacteria was used successfully to achieve, within 24-h incubation at 30°C, the required level of acidification of dry-milled maeze flour to obtain kenkey dough. Cabinet and drum drying were used to prepare dehydrated kenkey flour and pre-gelatinised aflata, respectively. Drum-drying was an effective method for the preparation of pre-gelatinised aflata, but it resulted in a 34% reduction in the titratable acidity (TA) of the fermented dough. Cabinet drying, on the other hand, had a less drastic effect on the TA of fermented dough, suggesting the possible use of a mixture of drum-dried aflata and uncooked cabinet-dried flour for convenient preparation of kenkey at the household level. Dry-milled maize flours had pasting and set-back viscosities that were inferior to those of the traditionally prepared doughs, and consequently they were unsuitable for the production of pre-gelatinised aflatas. Pre-getalinised aflata from unfermented dry-milled flours resulted in a crumbly and friable kenkey product. It was concluded, therefore, that, although dry-milling of maize and accelerated fermentation of dough could drastically reduce kenkey production time, from about 6 days to within 24 h, omission of the soaking step practised traditionally results in a product with inferior textural quality.  相似文献   

12.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

13.
Fuel ethanol production from barley is increasing and there is a need to develop more efficient production processes. In the conventional ethanol production process, the hulls (fiber) in barley do not get fermented. The objective of this study is to evaluate a wet fractionation method, similar to the one used in corn wet milling in the endosperm fiber separation step, on the flour remaining after hull separation from barley in order to increase the starch content of barley flour. Hulls were separated from hammer milled barley flour using a combination of sieving and air classification. The remaining flour was soaked in water and the slurry was ground using an attrition mill. The cell wall material was screened out from the fine slurry. The fermentation material produced by hull separation followed by wet fractionation comprised 80.9% by weight of the original flour and contained 10.1% higher starch and 7.9% lower fiber (neutral detergent fiber; NDF) contents than the original flour. The cell wall coproduct has potential as a functional food ingredient because it has high fiber (NDF of 42.7%), high beta-glucan (4.5%) and high protein (20.2%) contents. The increase in starch content may be beneficial in fuel ethanol production.  相似文献   

14.
木薯全粉的功能特性   总被引:2,自引:0,他引:2  
开发推广木薯源大宗食物,充分发挥木薯的资源优势,拓展人们日常消费的食物资源,积极应对日益严重的粮食危机.通过对木薯全粉与鲜木薯、木薯淀粉中的营养成分的测定对比,及对木薯全粉的黏度特性、透光率、膨胀度等进行分析,并对木薯全粉的营养成分保留及功能性质进行评价,探讨木薯全粉在食品工业中的潜在应用范围.结果表明,木薯全粉相对于鲜木薯、木薯淀粉营养成分保持良好,食用安全,同时具有较好的加工性能,在食品工业中应用前景广阔.  相似文献   

15.
Aflata is a gelatinised maize paste, serving as intermediate in the manufacture of kenkey, a traditional cooked fermented maize product of Ghana. The effect of water uptake during soaking of whole or dry-milled maize, the extent of starch damage, dough pH, fermentation time, and of endogenous and added enzymes on pasting and set-back viscosities of aflata dough were studied. Water uptake by coarsely dry-milled maize (grits) reached 0·63 mL/g dry matter in just 1 h, compared with 0·50 mL/gin 3 days for whole grain. High endogenous activity of proteases and carbohydrases were recorded in both grits and whole maize when soaked at 4 °C or 25 °C. These were significantly reduced after soaking at 60 °C. Soaking of grits at 60 °C with a heat-stable protease, or wet fine-milling of fermented grits resulted in significant (P<0·05) increases in pasting viscosities. Peak viscosities increased with fermentation time up to 24 h. Pasting viscosities decreased with repeated wet milling of fermented dough.  相似文献   

16.
The effect of blending of commercially available full fat and defatted rice brans in India from modern multistage rice mills with parboiling/stabilizing facilities in different food products in comparison to those obtained from laboratory milling of rice is reported. Bread volume and cookie spread decreased but muffin volume increased with the addition of different types of bran to wheat flour, however, the cookie spread factor was not affected by addition of full fat rice bran. The yields of the extrudate were increased by the blending of full fat rice bran but were decreased by the addition of defatted rice bran. Rice brans could be added to different food products to the extent of 5–10%. However, the full fat rice bran could not be used for production of extruded snack food.  相似文献   

17.
Rice gel is a novel form of processed rice, where gelatinized rice is sheared at high speed to create a gel with unique viscoelastic properties, which can partially replace wheat flour in bakery products. In this study, the viscoelastic properties and bubble structures of rice gels made from two high-amylose rice cultivars and two different ratios of rice to water were studied, focusing on the effect of cooling the gelatinized rice before high-speed shearing (cooled rice gel) as opposed to shearing the gelatinized rice while hot (hot rice gel). Increasing the water content and cooling the rice before high-speed shearing generally decreased the dynamic storage (E′) and loss moduli (E″) in the viscoelasticity measurement and introduced fewer but larger and uniform bubbles in the rice gel. In addition, breads made from cooled rice gel showed significantly higher volume than those made from hot rice gel. The application of mechanical shearing to gelatinized starch has a great potential in creating novel food materials with characteristic textures, and can also be used for the processing of cereals other than rice.  相似文献   

18.
Rice grain chalkiness is an important characteristic, but the difference between chalky and translucent parts in grains is still unclear. Here, we investigated the differences of flour made from the chalky or translucent part of rice grains in three indica and three japonica rice varieties. The chalky flour had significantly lower amylose and protein contents and looser starch granule morphology, and starches in the chalky flour had higher relative crystallinity, higher short chain content but lower long chain content than those in the translucent flour. The water states, determined with nuclear magnetic resonance, differed between the chalky and translucent flour after soaking, cooking and retrograding, and the chalky flour had more bound and free water but less constructural water than the translucent flour. Mostly, the chalky flour had lower viscosity and shorter gel consistency, but higher onset temperature and gelatinization enthalpy than the translucent flour. The results indicated that starch granule morphology would be more indicative than other attributions on pasting and gelatinization properties of chalky and translucent parts of rice grains.  相似文献   

19.
The investigation explores the possibility of utilizing legume flour (pigeon pea:10–30%) and brown rice flour (35–45%) for production of pasta using twin screw extruder. RSM was used to analyse the effect of feed moisture (28–36%), barrel temperature (70–110 °C) and legume:brown rice ratio on quality responses (in vitro starch and protein digestibility, degree of starch gelatinization, cooking quality, pasting properties, color and textural properties) of pasta. Extrusion processing significantly enhanced in vitro starch and protein digestibility of prepared pasta. The in vitro starch and protein digestibility of pasta ranged between 15.00 and 26.77 g/100 g and 50.34–84.82 g/100 g respectively. Addition of brown rice flour and pigeon pea flour exhibited dominating positive effect on cooking quality of the pasta. Degree of gelatinization of prepared pasta was found in range of 52.13–90.10 per cent. Color characteristics viz. luminosity, redness and yellowness of pasta enhanced with feed moisture. Pasting properties revealed lower peak and final viscosity at higher processing conditions. Firmness of cooked pasta elevated with an increase in the barrel temperature. Acceptability score of health based pasta on the basis of sensory attributes was 8 as inferred from 9 point hedonic scale.  相似文献   

20.
Cryomilling of rice starch was evaluated as a non-chemical way to modify starch structure and properties. Cryomilling in a liquid nitrogen bath (63–77.2 K) was done to Quest (10.80% amylose) and Pelde (20.75% amylose) rice starch at five different time frames (0, 15, 30, 45, and 60 min). The viscosity of the cryomilled rice starch decreased significantly (p < 0.05) with increasing milling duration, including peak viscosity, hot-paste viscosity, cold-paste viscosity, breakdown, and consistency. Increasing milling time significantly increased (p < 0.05) water solubility index and water absorption index. Infra-red spectroscopy and X-ray diffraction crystallography both showed that the crystallinity of the cryomilled starch decreased with increasing milling time. Differential scanning calorimetry (DSC) analyses showed that after 60 min cryomilling there was partial loss of crystallinity (86% for Quest and 91% for Pelde) of both cryomilled starches. The cryomilling process modified the rice starch by causing a loss of crystallinity, that reduced its pasting temperature and increased water absorption, and by fragmentation of starch (probably the amylopectin fraction) that reduced the viscosity and increased solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号