首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to explore the effect of –OH functional groups in Cs+ adsorption, we herein used the low temperature plasma-induced grafting method to graft chitosan onto carbon nanotubes (denoted as CTS-g-CNTs), as raw-CNTs have few functional groups and chitosan has a large number of –OH functional groups. The synthesized CTS-g-CNT composites were characterized using different techniques. The effect of –OH functional groups in the Cs+ adsorption process was evaluated by comparison of the adsorption properties of raw-CNTs with and without grafting chitosan. The variation of environmental conditions such as pH and contact time was investigated. A comparison of contaminated seawater and simulated groundwater was also evaluated. The results indicated that: (1) the adsorption of Cs+ ions was strongly dependent on pH and the competitive cations; (2) for CNT-based material, the –OH functional groups have a positive effect on Cs+ removal; (3) simulated contaminated groundwater can be used to model contaminated seawater to evaluate the adsorption property of CNTs-based material. These results showed direct observational evidence on the effect of –OH functional groups for Cs+ adsorption. Our findings are important in providing future directions to design and to choose effective material to remedy the removal of radioactive cesium from contaminated groundwater and seawater, crucial for public health and the human social environment.  相似文献   

2.
Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1) enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2) the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3) synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.  相似文献   

3.
We prepared a series of polyurethane(PU)/chitosan composite foams with different chitosan content of 5∼20 wt% and investigated their adsorption performance of acid dye (Acid Violet 48) in aqueous solutions with various dye concentrations and pH values. It was observed that PU/chitosan composite foams exhibited well-developed open cell structures. Dye adsorption capacities of the composite foams increased with the increment of chitosan content in composite foams, because amine groups of chitosan serve as the binding sites for sulfonic ions of acid dyes in aqueous solutions. In addition, dye adsorption capacities of composite foams were found to increase with decreasing the pH value, which stems from the fact that the enhanced chemisorption between protonated amine groups of chitosan and sulfonic ions of acid dye is available in acidic solutions. The dye adsoption kinetics and equilibrium isotherm of the composite foams were well described with the pseudo-second order kinetic model and Langmuir isotherm model, respectively. The maximum adsorption capacity (q max) for the PU/chitosan composite foams with 20 wt% chitosan content is evaluated to be ca. 30 mg/g.  相似文献   

4.
This article focuses on the functional finishing of textiles using silver nanoparticles (AgNPs) and chitosan derivative binder, which was synthesized by a modification of chitosan using α-ketoglutaric acid. The binder covalently linked to cotton fabric via esterification of the hydroxyl groups on the cotton surface, and tightly adhered to surface of the AgNPs by coordination bonds. As a result, the coating of AgNPs on the cotton fabric showed excellent antibacterial property and laundering durability. After 30 consecutive laundering cycles, the Ag content on the fabrics decreased to 37.6 %, but the bacterial reduction rates against both S. aureus and E. coli were maintained over 95 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

5.
The thermodynamics of adsorption of laccaic acid (lac dye) onto chitosan were investigated under acidic condition over various concentrations (20–293 mg/l). Langmuir, Freundlich, and Temkin isotherms were used to analyze the equilibrium data at different temperatures, with the Freundlich isotherm fitting the experimental data significantly better than the other isotherms. The effect of temperature on the adsorption isotherm was studied by carrying out a series of isotherms at 10, 20, 40, and 60 °C. It was found that more dye was strongly adsorbed by chitosan when the temperature of the dye solution increased. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were also evaluated. The negative value of ΔG° and positive value of ΔH° indicated that the laccaic acid adsorption process is a spontaneous and an endothermic one. Attenuated total reflectance Fourier transform infrared spectroscopy confirmed the functional groups of chitosan that affected the laccaic acid adsorption. Therefore, laccaic acid molecules could interact with the chitosan via electrostatic forces, hydrogen bonding, and ion-dipole interactions under acidic condition. From the toxicity study, the dye solution with the initial dye concentrations of 40 and 120 mg/l before dye removal showed significant mortality to earthworm Diplocardia communis (P<0.01).  相似文献   

6.
Polyacrylonitrile (PAN) is a widely used polymer in the textile industry. PAN contains cyano groups on the surface due to which it possess low hydrophilicity and limits its application. Thus, there is a need to modify the functional groups on the surface of PAN for its industrial demand to improve moisture uptake, dyeability with ionic dyes, without affecting mechanical properties. A number of strategies such as chemical treatment, plasma treatment, enzymatic treatment etc. have been applied for the surface modification of polymer but enzymatic treatment are advantageous over plasma treatment and chemical treatment. In enzymatic treatment, reaction is limited to polymer surface only, and provides milder condition with less damage to polymer. In present study, it was found that enzyme system of Amycolatopsis sp.IITR215 was effective enzyme system for modification of surface nitrile groups of polyacrylonitrile. PAN powder was treated with the cell free extract of Amycolatopsis sp.IITR215 and it was found that the nitrile metabolizing enzymes of this strain were efficiently able to transform -CN to -COOH groups present on the surfaces of PAN powder. The formation of carboxyl group was quantified by ammonia released and dye binding assay. Further, confirmation of carboxyl group on polymer was done by FTIR and XPS. This study indicates that, specific adsorption of enzyme probably plays an important role in the enzymatic surface modification of polymer.  相似文献   

7.
Chitosan is the N-deacetylated derivative of chitin, a naturally abundant mucopolysaccharide that consists of 2-acetamido-2-deoxy-β-d-glucose through a β (1→4) linkage and is found in nature as the supporting material of crustaceans, insects, etc. Chitosan has been strongly recommended as a suitable functional material because of its excellent biocompatibility, biodegradability, non-toxicity, and adsorption properties. Boosting all these excellent properties to obtain unprecedented performances requires the core competences of materials chemists to design and develop novel processing strategies that ultimately allow tailoring the structure and/or the composition of the resulting chitosan-based materials. For instance, the preparation of macroporous materials is challenging in catalysis, biocatalysis and biomedicine, because the resulting materials will offer a desirable combination of high internal reactive surface area and straightforward molecular transport through broad “highways” leading to such a surface. Moreover, chitosan-based composites made of two or more distinct components will produce structural or functional properties not present in materials composed of one single component. Our group has been working lately on cryogenic processes based on the unidirectional freezing of water slurries and/or hydrogels, the subsequent freeze-drying of which produce macroporous materials with a well-patterned structure. We have applied this process to different gels and colloidal suspensions of inorganic, organic, and hybrid materials. In this review, we will describe the application of the process to chitosan solutions and gels typically containing a second component (e.g., metal and ceramic nanoparticles, or carbon nanotubes) for the formation of chitosan nanocomposites with a macroporous structure. We will also discuss the role played by this tailored composition and structure in the ultimate performance of these materials.  相似文献   

8.
Marine-derived substances are known for their beneficial influences on aquatic animals’ performances and are recommended to improve intestinal health, immunity, and anti-oxidative status. The present study investigates the role of chitosan nanoparticles on the intestinal histo-morphometrical features in association with the health and immune response of Grey Mullet (Liza ramada). Chitosan nanoparticles are included in the diets at 0, 0.5, 1, and 2 g/kg and introduced to fish in a successive feeding trial for eight weeks. The final body weight (FBW), weight gain (WG), and specific growth rate (SGR) parameters are significantly increased while feed conversion ratio (FCR) decreases by chitosan nanoparticles compared to the control (p < 0.05). The morphometric analysis of the intestines reveals a significant improvement in villus height, villus width, and the number of goblet cells in chitosan-treated groups in a dose-dependent manner. Additionally, there is a positive correlation between the thickness of the enterocyte brush border and the chitosan dose, referring to an increasing absorptive activity. Histologically, the intestinal wall of Grey Mullet consists of four layers; mucosa, sub-mucosa, tunica muscularis (muscular layers), and serosa. The histological examination of the L. ramada intestine shows a normal histo-morphology. The epithelial layer of intestinal mucosa is thrown into elongated finger-like projections, the intestinal villi. The values of hemoglobin, hematocrit, red blood cells (RBCs), total protein (TP), albumin, and globulin are significantly increased in fish fed 1, and 2 g/kg of chitosan nanoparticles compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest levels of TP and albumin are observed in fish fed 1 g/kg diet (p < 0.05). The lysozyme activity and phagocytic index are significantly enhanced by feeding chitosan nanoparticles at 0.5, 1, and 2 g/kg, whereas the phagocytic activity is improved in fish fed 1 and 2 g/kg (p < 0.05). The highest lysozyme activity and phagocytic index are observed in fish fed 1 g/kg. SOD is significantly activated by feeding chitosan nanoparticles at 1 g/kg. Simultaneously, glutathione peroxidase (GPx) and catalase (CAT) activities also are enhanced by feeding chitosan at 1 and 2 g/kg, compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest GPx and CAT activities are observed in fish fed 1 g/kg (p < 0.05). Conversely, the malondialdehyde (MDA) levels are decreased by feeding chitosan at 1 and 2 g/kg, with the lowest being in fish fed 1 g/kg (p < 0.05). To summarize, the results elucidate that L. ramada fed dietary chitosan nanoparticles have a marked growth rate, immune response, and anti-oxidative response. These improvements are attributed to the potential role of chitosan nanoparticles in enhancing intestinal histo-morphometry and intestinal health. These results soundly support the possibility of using chitosan nanoparticles at 1–2 g/kg as a feasible functional supplement for aquatic animals.  相似文献   

9.
Sulfur-modified chitosan hydrogel (SMCH) was successfully synthesized by grafting dimethyl 3,3′-dithiodipropionate onto chitosan and then crosslinking with N,N′-methylene diacrylamide (MBA). The structure and properties of chitosan and sulfur-modified chitosan (SMC) were characterized and analyzed by Fourier transform infrared spectroscopy (FT-IR), Nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD) and Thermogravimetric analysis (TGA). Meanwhile, chitosan hydrogel and SMCH were characterized by Scanning electron microscope (SEM). In addition, static adsorption Hg(II) ions properties of chitosan hydrogel and SMCH were also investigated. The FT-IR and 1H NMR manifested that SMC was synthesized successfully. The XRD and TGA showed that the crystallinity and thermal stability of SMC decreased. SEM showed that the SMCH had much more pores and bigger specific surface area than chitosan hydrogel. The result of adsorption experiment indicated that the SMCH showed noticeable improvements in the adsorption capacity of Hg(II), and had the highest adsorption capacity (187.5 mg/g) at pH 5.0. The equilibrium was achieved at 40 min. And the maximum adsorption capacities were 186.9 mg/g of SMCH.  相似文献   

10.
In this present study, an organic-inorganic hybrid membrane was prepared by embedding yttrium(III) into chitosan matrix for the removal of Cr(VI) from aqueous solutions. Several techniques, including fourier infrared spectrum (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM) are employed to characterize the properties of the membrane. The mechanical properties of the membrane were also examined. The chitosan/poly(vinyl alcohol) containing yttrium(III) (CY) membrane was experimentally used for the removal of Cr(VI) ions from aqueous solution under the optimized conditions. The results showed that the adsorption capacity for the removal of Cr(VI) ions was enhanced when yttrium(III) was introduced. The adsorption data from the experiment were fit well by Langmuir isotherm. Based on Langmuir model, q m was calculated to be 38.48 mg g?1. Kinetic study results indicated that the adsorption process followed a pseudo-second-order kinetics.  相似文献   

11.
Quaternized chitosan (QCS) was prepared and its interface behavior on cellulosic substrates was investigated. FT-IR result indicated that quaternary ammonium groups were connected to -NH2 in chitosan, and the highest degree of substitution (DS) of QCS was 80.0 %. The adsorption behavior of QCS was well performed on cellulosic substrates. The initial critical concentrations of QCS were between 10 mg/l and 20 mg/l, which were related to its DS and the weight average molecular weight (M w ): the critical concentration decreased with the increasing DS of QCS, and the concentration increased when M w increased. The results from SEM and particle size revealed that the flocculation took place mainly because the electrostatic interaction between cellulosic substrates and QCS, which can be accelerated by forming a charge patch. At last, QCS displayed high efficiency as a retention and drainage-aid agent through a Schopper-Riegler beating degrees tester.  相似文献   

12.
A novel eco-friendly porous adsorbent of cellulose (CE)/chitosan (CS) aerogel was prepared through sol-gel process and freeze-drying to remove Congo Red (CR). A series of aerogels were prepared by adjusting the mass ratios of CE and CS. Composite aerogels were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). SEM images showed that it was possible to change the structure of the aerogel by adjusting the amount of chitosan. The effects of dosage of chitosan, initial pH, temperature, adsorbent dosage, contact time, and initial dye concentration on adsorption capacities for CR were studied in detail. Batch adsorption studies showed that aerogel exhibited maximum removal efficiency to CR at a composite ratio of 1:3 and dosage of 2.5 g/l. CE/CS aerogel had excellent adsorption capacities for CR at a pH range of 3-11, which indicated stability of the aerogel in both acidic and alkaline conditions. CR adsorption on the composite aerogel fitted pseudo-second-order kinetics and Langmuir isotherm. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for CR was 381.7 mg/g at pH 7.0 at 303 K for 24 h. The adsorption mechanism included electrostatic and chemical interactions. The results indicated that the adsorption capacity of CE/CS aerogels was higher than the other chitosan composites adsorbents.  相似文献   

13.
A series of antimicrobial fibers with different weight ratio of chitosan (CS) and polyvinyl alcohol (PVA) were fabricated via a primarily industrialized trail of wet-spinning method, and the morphology and structure of the resulting fibers were studied with the aid of scanning electron micrography (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The CP60 blend fiber (60 % chitosan content) was confirmed as the best optimal sample among the blend fibers owing to strong intermolecular hydrogen bonds between PVA and chitosan and showed the maximum mechanical, antistatic, moisture absorption/desorption properties. The CP60 also exhibited good antimicrobial effects against Escherichia coli and Staphylococcus aureus as the chitosan fiber and could be recommended as the alternative material for the wound dressing and the food packing.  相似文献   

14.
In this study, anionic hydrogels were prepared using a crosslinker (N,N′-methylenebisacrylamide) through a free radical addition reaction in aqueous solutions of neutral acrylamide or 2-hydroxyethyl methacrylate monomer and anionic monomers, mesaconic acid or aconitic acid. Cationic dyes along with safranine (azine-), nile blue (oxazine-) and methylene blue (thiazine-) were selected as models of pollutants, and adsorption of these dyes onto the hydrogels was investigated. To examine the effect of concentration on adsorption, dye solutions prepared with a concentration range of 5–50 mg l?1 and 0.1 g hydrogel at 25 °C were exposed to the hydrogels until equilibrium was established. Dye adsorption onto the hydrogels was found to be an L type Giles adsorption isotherm. Monolayer sorption capacity and adsorption constant values were calculated from the Langmuir plots. To calculate RL values, a non-dimensional analysis was used and they were always found to be 0<R<1. In other words, the hydrogels were favorable for adsorption of these dyes. Aqueous solutions of dyes were observed to interact with hydrogels in the following order: oxazine > azine > thiazine. Furthermore, the higher the number of carboxyl groups in the hydrogel composition, the higher the adsorbed amount of substance.  相似文献   

15.
A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group’s structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7–23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed.  相似文献   

16.
Novel eucalyptus essential oil liposomes (EEOLs)/chitosan composite sponges (EC) were successfully fabricated by electrostatic self-assembly. EEOLs were prepared by the thin-membrane hydration method with sonication and blended with chitosan solution to create the sponges by lyophilization. The observations of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed the existence of eucalyptus essential oil in the lipid bilayer of liposomal membrane and the location of the liposomes in positive holes formed by the protonated amino groups of chitosan. The average size of EEOLs was about 60 nm. Fourier transform infrared (FTIR) analysis showed the destroy of inter- and intramolecular hydrogen bonding among chitosan chains and the construction of the intermolecular hydrogen bonding between chitosan and molecules on the surface of EEOLs. The incorporation of EEOLs in chitosan sponges slightly decreased the porosity, fluid absorptivity, gas permeability and hemostatic property of sponges, but increased their biodegradation ability. EC exhibited more rapid and efficient microbicidal effects against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Candida albicans (C. albicans) than pure chitosan sponges. EC showed no toxicity toward human HEK293T cells and no significant adverse effect on cell attachment and proliferation of HEK293T cells. This inherent behaviour can be exploited to apply in the medical field.  相似文献   

17.
Chitosan film has potential applications in agriculture, food, and pharmacy. However, films made only from chitosan lack water resistance and have poor mechanical properties. Forming miscible, biodegradable composite film from chitosan with other hydrophilic biopolymers is an alternative. The objective of this study was to prepare chitosan/starch composite films by combining chitosan (deacetylated degree, 90%) solution and two thermally gelatinized cornstarches (waxy starch and regular starch with 25% amylose). The film’s tensile strength (TS), elongation-at-break (E), and water vapor transmission rate (WVTR) were investigated. The possible interactions between the two major components were evaluated by X-ray diffraction and Fourier-transform infrared spectroscopy (FTIR). Regardless of starch type, both the TS and E of the composite films first increased and then decreased with starch addition. Composite film made with regular starch showed higher TS and E than those with waxy starch. The addition of starch decreased WVTRs of the composite films. The introduction of gelatinized starch suppressed the crystalline peaks of chitosan film. The amino group band of chitosan molecule in the FTIR spectrum shifted from 1578 cm−1 in the chitosan film to 1584 cm−1 in composite films. These results indicated that there was a molecular miscibility between these two components.  相似文献   

18.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on chitosan for biomedical applications. The presence of primary amine groups in repeating units of chitosan grants it several properties like antibacterial activity, antitumor activity and so on. Chitosan forms nanoparticles spontaneously on the addition of polyanion tripolyphosphate which has greater antimicrobial activity than parent chitosan. In the present study, chitosan nanoparticles (ChNP) were prepared by the ionic gelation method. The physiochemical characteristics of nanoparticles were analyzed using XRD, SEM, FTIR. The antibacterial activity of chitosan nanoparticles against medical pathogens Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa was evaluated by calculation of minimum inhibitory concentration (MIC) and compared with chitosan and chitin activity. The mode of action and factors affecting antibacterial activity were also analyzed. ChNP compounds exhibited superior antimicrobial activity against all microorganisms in comparison with chitosan and chitin. The antibiofilm activity was studied using crystal violet assay and growth on congo red agar. The study is thus a good demonstration of the applicability of chitosan nanoparticles as an effective antimicrobial agent with antibiofilm activity as well.  相似文献   

19.
The synthesis of chitosan 6-OH immobilized cyclodextrin (CTS-6-CD) via click chemistry was investigated. After protecting the 2-NH2 group of chitosan by forming a Schiff base (BCTS) with benzaldehyde, the protected chitosan C6-OH p-toluenesulfonate (BCTS-6-OTs) was generated by treating with p-toluenesulfonyl chloride. Afterwards, nucleophilic substitution of the sulfonate with NaN3 furnished the Schiff base protected chitosan C6-N3 (BCTS-6-N3). On the other hand, alkynylic β-cyclodextrin (CD-OPg) was obtained by alkynylation of β-cyclodextrin (β-CD). With these two substrates in hand, β-CD was immobilized at the Schiff base protected chitosan 6-OH position via click chemistry between CD-OPg and BCTS-6-N3 to afford BCTS-6-CD, and then chitosan 6-OH immobilized cyclodextrin derivates (CTS-6-CD) was obtained by deprotecting the Schiff base of BCTS-6-CD. The structures of these products were characterized by FTIR, and their crystal properties and thermal stabilities were studied by XRD and TG respectively. By using UV spectroscopy to determine the immobilized amount, we also investigated the effect of the click reaction conditions on the immobilized loading of the synthesized BCTS-6-CD. It was found that the immobilized loading was 197.61 µmol·g?1 in the BCTS-6-CD that was synthesized under the optimum conditions, and it went up to 223.17 µmol·g?1 in CTS-6-CD by deprotecting the Schiff base group.  相似文献   

20.
Cellulose fabrics (viscose and cotton) were treated with atmospheric pressure dielectric barrier discharge (DBD) in air. After DBD treatment, samples were characterized and volume electrical resistance was measured under different relative humidity conditions (φ=40-55 %). Results have shown that DBD treatment increases wettability and polar surface functional groups content, which consequently causes a decrease of volume electrical resistivity of cellulose fabrics in measured relative humidity range (φ=40-55 %). Metal ions (silver, copper, and zinc) were incorporated in untreated and plasma treated samples through sorption from aqueous solutions and incorporation of metal ions into plasma treated cellulose samples decreased electrical resistivity even further. Resistivity of cotton and viscose fabrics with incorporated metal ions followed the order Zn2+ > Cu2+ > Ag+. The most pronounced decrease, for entire order of a magnitude, was obtained by modification of cotton fabric with DBD and silver ions, where value of resistivity dropped from GΩ to a several dozens of MΩ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号