首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
Pretreated soy flour was used to replace 10, 20, 30 and 40% of fermented yam flour as a protein supplement. The effect of the supplementation on the physicochemical and sensory properties of amala, a popular West African food made from rehydrated yam flour, was investigated. Blanching (10 min in boiling water) and subsequent fermentation (24 h) as pretreatment methods produced flour that was lighter in color than the unfermented samples. Protein content of the yam-soy mixture increased from 3.5% in the control to 19.7% for 40% soy fortification. Water binding capacity increased from 212.6 g/100 g for the yam flour control to 257.3 g/100 g for the blend with 40% soy flour. However, swelling capacity and solubility were adversely affected with increased soy flour addition as dough became sticky and soft. There was no significant difference in color, taste, flavor or overall acceptability when compared with the control up to 20% soy substitution. Dough with 20% soy flour is a possibility for increasing the protein content of yam flour in human feeding.  相似文献   

2.
Color and taste are permanent features of amala, a traditional thick paste obtained from yam chips flour. To assess these attributes, 23 yam chips presenting various quality attributes were processed. The sensory attributes of their derived amala were determined and some biochemical characteristics of yam flours measured. A panel defined five main taste attributes for amala: sweetness, bitterness, acidity, fermented, and roasted tastes. Amala color was measured instrumentally and sensory scores were highly correlated with flour biochemical analyses; amala sweetness was positively correlated with glucose and fructose content of the flour, whereas amala acidity and fermented taste were linked to organic acids and lactic acid contents of flour, respectively. In addition, darkness, bitterness, and roasted tastes of amala could be tightly predicted by multiple regression analysis from phenolic compound and glucose–fructose contents. Phenolic content of yam flour plays thus a key role on sensorial quality of amala. However, polyphenol oxidase and peroxidase activities were almost null in yam flours and their specific role on yam flour phenolic content needs to be clarified.  相似文献   

3.
Wheat flour was separately substituted with fenugreek flour (raw, soaked, and germinated) at 5–20% levels for product making. Nutrient analysis of the blends, product development, and their acceptability were carried out. Replacement of wheat flour with fenugreek flour increased the protein, fat, lysine, minerals, and dietary fibre contents proportionately to the level of substitution. Among the composite flours, the blends containing germinated fenugreek flour were found superior in nutritional quality compared to others. However, products, viz., bread, biscuits, noodles, and macaroni prepared from the wheat–fenugreek blends at 10, 15, and 20% levels, were found organoleptically acceptable.  相似文献   

4.
Full-fat African breadfruit flour was used to replace 30, 40, 50, 60 and 70% of sweet potato flour. The chemical composition and functional properties of composite flours showed that they contains more protein, fat, and ash and less carbohydrate than sweet potato flour. With increasing level of supplementation of breadfruit, ash, protein and fat contents increased while carbohydrate decreased. The composite flours possessed higher water absorption than sweet potato flour. The water absorption capacity increased from 20% for sweet potato flour to the range of 85–120% for composite flours. The oil absorption capacities for some composite flours were higher than that for sweet potato but less than that of breadfruit. Composite flours had good foaming capacity but lacked foaming stability. The bulk density of the composite flours was found to be low which will be an advantage in the preparation of weaning food formulations.  相似文献   

5.
Air-classified wheat flour was dry-coated with microparticulated rice flour (30%, db) and/or microparticulated soybean hulls (up to 10%, db) using a hybridization system, and the physical properties of the dry-coated wheat flour were examined. The composite wheat flours exhibited the higher water-holding capacity but lower swelling power and oil-holding capacity than their counterpart mixtures. In pasting viscosity, the composites of wheat and rice flours had substantially lower values for peak viscosity and breakdown than did pure wheat flour. The incorporation of soybean hulls to the composites of wheat and rice flours further reduced the peak viscosity. The composites with rice flour and soybean hulls showed slightly higher melting (gelatinization) temperatures but lower melting enthalpy compared to the counterpart mixtures. By using the composite flours for the deep-fat fried doughnut preparation, the oil uptake could be substantially reduced by approximately 30%, in comparison to pure wheat flour or the mixture samples. The composite wheat flours with microparticulated rice flour and soybean hulls produced dough matrices with improved compactness and cell structure, which were attributed to the reduced fat uptake during frying.  相似文献   

6.
Air-classified wheat flour was dry-coated with microparticulated rice flour (30%, db) and/or microparticulated soybean hulls (up to 10%, db) using a hybridization system, and the physical properties of the dry-coated wheat flour were examined. The composite wheat flours exhibited the higher water-holding capacity but lower swelling power and oil-holding capacity than their counterpart mixtures. In pasting viscosity, the composites of wheat and rice flours had substantially lower values for peak viscosity and breakdown than did pure wheat flour. The incorporation of soybean hulls to the composites of wheat and rice flours further reduced the peak viscosity. The composites with rice flour and soybean hulls showed slightly higher melting (gelatinization) temperatures but lower melting enthalpy compared to the counterpart mixtures. By using the composite flours for the deep-fat fried doughnut preparation, the oil uptake could be substantially reduced by approximately 30%, in comparison to pure wheat flour or the mixture samples. The composite wheat flours with microparticulated rice flour and soybean hulls produced dough matrices with improved compactness and cell structure, which were attributed to the reduced fat uptake during frying.  相似文献   

7.
A study was conducted to determine consumer acceptable proportions of flours in sorghum (var. serena) and maize or sorghum, maize and cassava composite flours. Breeder's serena flour extracted at 75 percent was mixed at various proportions with maize or with maize and cassava to constitute composite flours. The various composite flours were made into stiff porridge and presented to a group of panellists for sensory evaluation. The evaluation was conducted by scoring on a hedonic scale of 0–5 for poor to excellent, respectively, for the parameters colour, texture, flavour, taste and overall acceptability. The responses were analysed statistically. Alternatively the panellists were allowed to eat ad-lib any of the presented samples which appealed to them. The results demonstrated that slight incorporation (<10%) of sorghum (var. serena) to maize flour leads to reduction in consumer acceptability. However, increased incorporation of sorghum in excess of 10 percent leads to no significant decrease in consumer acceptability until a level of 30 percent incorporation is exceeded. In sorghum, maize, cassava composite flours the formulation of 30:40:30, respectively, was found to be most acceptable. It is suggested that at this combination of flours desirable textural characteristics of the porridge overrides other factors in contributing to its acceptability.  相似文献   

8.
The thermal, paste and rheological properties of brown flours from four Indica rice subspecies with different amylose content were examined using Differential scanning calorimetry (DSC), Brabender Viscometer and rheometer. Peak, final and setback viscosities (p < 0.05) increased with increasing amylose content from Brabender micro Visco-Amylo-Graph (MVA), but the phase transition temperatures of brown rice flour from DSC (p < 0.05) decreased with increasing amylose content. Rheological properties were determined by steady shear, small amplitude oscillatory shear (SAOS) and thixotropic experiments. SAOS results showed a gel-like viscoelastic behavior with G′ higher than G″. Steady-shear results showed that the brown rice flour exhibited a non-Newtonian shear-thinning behavior and the flow curves can be well described by the Herschel-Bulkley model. The upward-downward rheograms showed that brown rice flour gel, except IR-1, had a hysteresis loop, indicating a strong thixotropic behavior.  相似文献   

9.
The objective of this study was to investigate the feasibility of incorporating common buckwheat (Fagopyrum esculentum Moench) into instant noodle formulations. Australian Soft (AS) and Baker's flours were used to evaluate the effects of varying buckwheat contents (0–40%) on noodle quality. The results of texture analysis indicate that noodles made using AS flour produced softer texture whereas there was minimal effect for Baker's flour when buckwheat was incorporated. The colour, measured by L* values, decreased with increased addition of buckwheat for both flours. Fat uptake for noodle samples made from AS flour was only marginally affected, but increased for Baker's flour, when higher levels of buckwheat flour were added. The antioxidant rutin was detected in noodles made from both wheat flours, generally increasing with % buckwheat flour added. These findings indicate that the incorporation of 20% buckwheat into the formulation can be used to enhance the quality of instant noodles.  相似文献   

10.
The acceptability of sorghum as human food has been a problem in Tanzania even in regions showing promising potential for its production and utilization. Reasons given for low acceptability of sorghum products as human foods include unpleasant colour, aroma, mouthfeel, taste, unpleasant aftertaste and stomachfeel. An acceptability test of selected sorghum products was, therefore, conducted in the Department of Food Science and Technology, Sokoine University of Agriculture, Morogoro, Tanzania. The objective of the test was to determine consumers' preference for the following wheat-sorghum composite flour products: bread and buns or maandazi. The products were prepared using sorghum flour composited with wheat flour in the following proportions: 100% brown sorghum flour (standard products); and 80:20%; 60:40%; 40:60% and 20:80% for wheat/sorghum (white and brown) composite flours. Results indicated that in the case of composite flour bread, preference for the product improved as the amount of sorghum flour decreased. In the case of buns or maandazi the 100% sorghum flour products of both white and brown were equally preferred. Buns prepared from 100% sorghum flour of white and brown varieties showed promising potential in the improvement of the acceptability of sorghum products. Taking advantage of such products, especially in villages, could enhance sorghum utilization in rural communities.  相似文献   

11.
Experimental weaning foods were prepared from alfalfa leaves, peanut oil, and mung bean, chickpea or soy flour. The weaning foods were analyzed to determine their yield, proximate composition and amino acid content. Yields from starting materials ranged from 29 to 99%. Highest yields were obtained when 20% legume or oilseed flour was incorporated into leaf protein-peanut oil gels. The moisture content of the weaning foods ranged from 42 to 65%, protein from 3.4 to 6.5%, fat from 23 to 48%, and carbohydrate from 3 to 13%. Proteins in the experimental weaning foods were found to be deficient in the sulfur amino acids. Amino acid scores for weaning foods containing 20% legume or oilseed flour ranged from 50 for mung bean to 62 for soy. It was estimated that a four-ounce daily serving of one of the soy weaning foods would supply 40% of the energy and 35% of the protein needs of a one-year-old infant.  相似文献   

12.
Flour was prepared from seeds ofAfzelia africana dehulled by different treatments and used to replace 10, 20, 30, 40 and 50% wheat flour in biscuits and doughnuts. The composition and water and oil absorption properties of the flour blends were evaluated. The biscuits and doughnuts made from each flour blend were evaluated organoleptically. The composite flour containing the highest proportion (50%) ofA. africana seed flour contained the highest levels of protein and fat, exhibited the highest water absorption property but the lowest oil absorption capacity. Sensory scores showed high overall acceptability for products with a 10–30% level of substitution.  相似文献   

13.
Wheat germ flour (WGF) has been developed as a functional food ingredient with high nutritional value. In this study, WGF was applied in steamed bread-making in order to improve the quality of Chinese steamed bread (CSB). Partial substitution of wheat flour with WGF at levels of 3%, 6%, 9% and 12% (w/w) was carried out to investigate physicochemical properties of blends and their steaming performance. Falling number (FN) values of composite flours ranged from 199 to 223 s. Viscosity analysis results showed that wheat flour mixed with WGF had higher pasting temperature and lower viscosities. Dough rheological properties were also investigated using farinograph and extensograph. The addition of WGF diluted the gluten protein in dough and formed weak and inextensible dough, which can be studied by scanning electron microscope (SEM) analysis. CSB made with WGF had significantly lower volume, specific volume and higher spread ratio. The sensory acceptability and physicochemical quality of CSB were improved with the application of a low level of WGF (3% and 6%). However, results showed that a high level of WGF over 9% is not recommended because of unsatisfactory taste. As a whole, addition of appropriate level of WGF in wheat flour could improve the quality of CSB.  相似文献   

14.
小麦淀粉与面条质量关系的研究进展   总被引:5,自引:0,他引:5  
小麦淀粉品质对白盐面条的质量(尤其是煮后的感官特性)有重要影响。直链与支链淀粉的含量及比例是影响面条质量的重要因素,是造成不同小麦品种淀粉糊化和膨胀特性及面条质量差异的物质基础。较低直链淀粉含量的小麦粉具有较好的糊化和膨胀特性,制作的面条煮制时吸水率高,烹调损失低,具有较高的感官评分。优质白盐面条的直链淀粉含量应在22%左右。峰值黏度、稀懈值、峰值时间是影响面条质量的重要糊化参数,这3项参数高的小麦粉适合制作优质面条。高膨胀势或膨胀体积的小麦粉制作的面条中等偏软,光滑且富有弹性,可以作为面条用小麦的重要选择标准。一般认为,直链淀粉含量较低、峰值黏度和稀懈值高、峰值时间长、膨胀势或膨胀体积高的小麦粉适合制作优质白盐面条。其中,直链淀粉含量、峰值黏度和膨胀势是优质面条小麦评价的关键品质性状。  相似文献   

15.
Flour samples were prepared from fermented and unfermentedAfrican oil bean (Pentaclethra macrophylla) seeds (AOBS). The flour samples were evaluated for proximate composition and certain functional properties. The influenceof defatting on these properties was also determined. Fermentation significantly increased (p<0.05) the proteinand decreased the crude fiber, ash, fat and carbohydrate contents of the AOBS flours. The nitrogen solubility of both fermented and unfermented flours was pH dependent withminimum and maximum solubility at pH 4.0 and pH 8.0, respectively, and with increased nitrogen solubility in the fermented sample. The fermented and unfermented flour sampleshad least gelation concentrations of 14 and 16% (w/v), respectively. The water absorption capacity and foam capacitiesof the fermented flour were 36 and 34%, respectively, over the unfermented seed flour. On the other hand, fermentation decreased the fat absorption capacity, emulsion activity and emulsion and foam stabilities. Fermentation decreased (p<0.05) the bulk density of AOBS flour by 15%. Defattingimproved all the functional properties evaluated except emulsion activity. These results indicate potential food usesof fermented and unfermented AOBS flour samples as protein supplements in diets and as functional ingredients in formulated foods.  相似文献   

16.
Wheat flour replacement from 0 to 40% by single tef flours from three Ethiopian varieties DZ-01-99 (brown grain tef), DZ-Cr-37 (white grain tef) and DZ-Cr-387 (Quncho, white grain tef) yielded a technologically viable ciabatta type composite bread with acceptable sensory properties and enhanced nutritional value, as compared to 100% refined wheat flour. Incorporation of tef flour from 30% to 40% imparted discreet negative effects in terms of decreased loaf volume and crumb resilience, and increase of crumb hardness in brown tef blended breads. Increment of crumb hardness on aging was in general much lower in tef blended breads compared to wheat bread counterparts, revealing slower firming kinetics, especially for brown tef blended breads. Blended breads with 40% white tef exhibited similar extent and variable rate of retrogradation kinetics along storage, while brown tef-blended breads retrograded slower but in higher extent than control wheat flour breads. Breads that contains 40% tef grain flour were found to contain five folds (DZ-01-99, DZ-Cr-387) to 10 folds (DZ-Cr-37) Fe, three folds Mn, twice Cu, Zn and Mg, and 1.5 times Ca, K, and P contents as compared to the contents found in 100% refined wheat grain flour breads. In addition, suitable dietary trends for lower rapidly digestible starch and starch digestion rate index were met from tef grain flour fortified breads.  相似文献   

17.
The objective of the present work is to compare some different crop products such as protein isolates and defatted whole flours from legumes, as chickpea and soy bean, involved in the molded compression processing to obtain plastics. The present work analysed the possibility of forming new plastic materials with products of chickpea, and soy bean seeds typically from the North West of Argentina, conditioned as chickpea isolate (CI), chickpea whole flour (CWF) in relation with soy protein isolate (SI) and soy whole flour (SWF). The blends containing isolates or defatted whole flour of chickpea, with the addition of glucopolysaccharide, glycerol and water as plasticizers were compression molded at 120°C, at 20 MPa, for 7 min. The glucopolysaccharide employed from this vegetals presented a ratio of amylose to amylopectin structure 95/5. The molded specimens were calculated for their tensile strength, percent elongation at break and water absorption. The chickpea isolate would be important in the production of plastic materials because of the best mechanical properties and the smallest water absorption. The chickpea whole flour product gave better material than soy whole flour product, even if the mechanical properties of both are lower than chickpea and soy isolates, respectively. Addition of boric acid in the blend induced a fall in water absorption in the case of soy plastics, but was not important in chickpea plastics. The effect of irradiation was to decrease water absorption in soy plastics and chickpea whole flour, while the effect on mechanical properties was not important.  相似文献   

18.
Whole wheat flour samples having protein content of 8.9% and 10.6% were subjected to dry and moist heat conditions to improve the functionality. Dry heat treated flours (DHTF) had higher values of falling number and SDS sedimentation values when compared to moist heat treated flour (MHTF). MHTF showed decrease in water absorption from 75.4 to 56.7%, increase in dough development time from 3.3 to 11.9 min, increase in peak viscosity and cold paste viscosity from 467 to 778 BU and 678 to 1017 BU respectively when compared to untreated flour. MHTF lost its elasticity, SDS-page gel electrophoresis indicated the change especially in the region of gliadin and ELISA indicated 41% reduction in immunogenicity against gliadin. The specific volume of breads prepared from MHTF was significantly lower whereas the crumb firmness value was higher than breads from untreated flours. Breads from treated flours also showed reduction in immunogenicity against gliadin.  相似文献   

19.
We report the isolation of a pure form of cell walls from wheat endosperm ‘popped’ out from the whole, enzyme deactivated and soaked grain, and compare them with cell walls isolated from milled flours of extraction rates from 45% to 75%, at physiological (37 °C) and elevated (70 °C) temperatures. Cell walls isolated from flours all contained non-endosperm walls whereas walls from popped endosperm were apparently pure. The monosaccharide composition of ‘popped’ cell walls was different to that of cell walls isolated from flour, particularly glucose and mannose contents (34 and 7% for ‘popped’ cf 29 and 3% for flour respectively) and arabinose to xylose ratios (0.45 for ‘popped’ cf 0.58 for flour). Total phenolic contents of popped endosperm cell walls were three to four times lower than for cell walls from flour. Elevated isolation temperature also had a solubilising effect, altering the cell wall composition. This study provides a novel method of isolating pure wheat endosperm cell walls, and demonstrates how contaminating (thick cell walled) non-endospermic material in milled flours can have a major influence on cell wall compositional analyses.  相似文献   

20.
A technique for development of potato flour was standardized. Five products viz. cake, biscuit, weaning food, panjiri and ladoo were prepared incorporating potato flour, defatted soy flour and corn flour. Baking and roasting were the major processing techniques employed for the development of these products. Protein, ash and fat contents of potato flour were almost similar to those of raw potatoes. Significant differences in protein, ash and fat contents of all the products were observed. Protein and starch digestibility of potato flour was significantly higher than that of raw potatoes. Protein digestibility increased by 12 to 17 percent on baking or roasting of products. Processed products had significantly higher starch digestibility and mineral availability compared to raw products. Thus, it can be concluded that roasting and baking are effective means of improving starch and protein digestibility and mineral availability of products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号