首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The effect of rate of application of Sinorhizobium (Ensifer) fredii SMH12 or Bradyrhizobium japonicum USDA110 inoculants on grain yields of soybean [Glycine max (L.) Merrill] cv. Osumi was studied in a field experiment laid out in Southern Spain. All inoculant doses tested (104, 105, 106 and 107 rhizobia/seed) produced higher seed yields than those obtained in un-inoculated plots. Increments in nodule dry weight, seed yield and seed N content were observed when the number of rhizobia applied to seed increased from 104 up to 107. The addition of N fertilizer to inoculated soybean plants (50 kg N/ha applied at R1 or R4 stage) did not increase seed yields in comparison with treatments that were only inoculated. Survival of strains SMH12 and USDA110 was monitorized for three years in two different soils of Southern Spain after soybean inoculation. Rhizobia survival was varied dependent on the soil and the rhizobia strain used.  相似文献   

2.
Summary

Legumes are an important source of protein for humans and livestock. Legumes have also been used for soil improvement for centuries because of their N and non-N rotational benefits to non-legume crops. The N benefits include N2 fixation and mineralization, sparing of soil inorganic N, and reduced immobilization of soil inorganic N. The non-N benefits include breaking pest cycles, improvement of soil structure, and the nutritional and disease-control effects of endophytic rhizobia. Therefore, optimizing the legume-Rhizobium symbiosis is important, and it can be done by selecting or modifying either (or both) symbiotic partner(s) for desirable traits related to N2 fixation. Rhizobium strains can be selected or genetically modified for traits like N2 fixation potential, nodulation competitiveness, persistence in soil, compatibility with inoculant carriers, and tolerance to environmental stress factors. Legume genotypes can also be selected, bred or genetically modified for N2 fixation potential, restricted or preferential nodulation, and tolerance to nitrate and environmental stress factors. When choosing prospective strains or legume genotypes for a particular environment, time and resources can be saved by realizing that the most adaptable rhizobia or legume genotypes are usually those isolated from similar environments. Inoculant delivery methods also affect N2 fixation. Soil inoculation, particularly with granular inoculants, seems to be often better and never worse than seed inoculation for initiating nodulation and N2 fixation. Use of pre-inoculated seeds eliminates the seed inoculation operation, but Rhizobium numbers in pre-inoculated seeds tend to be lower than those in traditional inoculant products. Therefore, the time saved by using pre-inoculated seeds should be weighed against the possibility that crop yields may be lower if insufficient Rhizobium numbers are delivered. Until tools for genetic modification of rhizobia or legumes to suit specific requirements are commonly used, N2 fixation can be enhanced by adopting practices like choosing the best combinations of Rhizobium strains and legume genotypes, the best inoculant formulation and delivery methods, optimum inoculation rates, and providing favourable growing conditions for the crop.  相似文献   

3.
Seed survival of Striga hermonthica is influenced by amendments of organic matter; however, the role of organic matter quality (C:N ratio) and mechanisms for enhanced seed decay are inadequately understood. In a field experiment, plots received a single dose of 6 t organic matter per hectare but with large differences in quality in terms of C:N ratio. Soil moisture, soil temperature and soil ethylene concentrations were measured, while buried nylon seed bags were periodically withdrawn from the soil and assayed for seed viability and germination. Organic matter amendments incorporated in the soil significantly depressed S. hermonthica seed survival. The effect was strongest with organic matter of high quality. Organic matter of low-quality enhanced soil water content during the first five days after a rainfall event and resulted in a 0.5 °C lower soil temperature. The highest observed ethylene concentrations in the soil were between 2 and 3 ppm, high enough to stimulate S. hermonthica seed germination. Maximal seed germination in vitro was obtained after 48 h of exposure to 1 ppm ethylene. However, observed changes in seed germination and viability of retrieved seed batches (seed survival) did not correlate with soil ethylene concentrations. The latter in turn did not differ between qualities of the applied organic matter. Seed survival decreased with increasing time of burial, especially after 4–8 weeks. As S. hermonthica attachment mainly occurs during the first four weeks of the cropping season the observed effect of seed decay may hardly be beneficial for the on-going cropping season. Nutrient release through decomposition of organic matter, enhancing decay of S. hermonthica seeds, is proposed as the probable cause of seed depletion in the soil.  相似文献   

4.
Nitrogen uptake,fixation and response to fertilizer N in soybeans: A review   总被引:2,自引:0,他引:2  
Although relationships among soybean (Glycine max [L.] Merr) seed yield, nitrogen (N) uptake, biological N2 fixation (BNF), and response to N fertilization have received considerable coverage in the scientific literature, a comprehensive summary and interpretation of these interactions with specific emphasis on high yield environments is lacking. Six hundred and thirty-seven data sets (site–year–treatment combinations) were analyzed from field studies that had examined these variables and had been published in refereed journals from 1966 to 2006. A mean linear increase of 0.013 Mg soybean seed yield per kg increase in N accumulation in aboveground biomass was evident in these data. The lower (maximum N accumulation) and upper (maximum N dilution) boundaries for this relationship had slopes of 0.0064 and 0.0188 Mg grain kg−1 N, respectively. On an average, 50–60% of soybean N demand was met by biological N2 fixation. In most situations the amount of N fixed was not sufficient to replace N export from the field in harvested seed. The partial N balance (fixed N in aboveground biomass − N in seeds) was negative in 80% of all data sets, with a mean net soil N mining of −40 kg N ha−1. However, when an average estimated belowground N contribution of 24% of total plant N was included, the average N balance was close to neutral (−4 kg N ha−1). The gap between crop N uptake and N supplied by BNF tended to increase at higher seed yields for which the associated crop N demand is higher. Soybean yield was more likely to respond to N fertilization in high-yield (>4.5 Mg ha−1) environments. A negative exponential relationship was observed between N fertilizer rate and N2 fixation when N was applied on the surface or incorporated in the topmost soil layers. Deep placement of slow-release fertilizer below the nodulation zone, or late N applications during reproductive stages, may be promising alternatives for achieving a yield response to N fertilization in high-yielding environments. The results from many N fertilization studies are often confounded by insufficiently optimized BNF or other management factors that may have precluded achieving BNF-mediated yields near the yield potential ceiling. More studies will be needed to fully understand the extent to which the N requirements of soybean grown at potential yields levels can be met by optimizing BNF alone as opposed to supplementing BNF with applied N. Such optimization will require evaluating new inoculant technologies, greater temporal precision in crop and soil management, and most importantly, detailed measurements of the contributions of soil N, BNF, and the efficiency of fertilizer N uptake throughout the crop cycle. Such information is required to develop more reliable guidelines for managing both BNF and fertilizer N in high-yielding environments, and also to improve soybean simulation models.  相似文献   

5.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

6.
《Field Crops Research》2003,80(2):147-155
Soybean (Glycine max (L.) Merr.) is one of the most important food and cash crops in China and a key protein source for the farmers in northern China. Previous experiments in both the field and greenhouse have shown that N2 fixation alone cannot meet the N requirement for maximizing soybean yield, and that N top-dressing at the flowering stage was more efficient than N top-dressing at the vegetative stages. However, the effect of N fertilizer application at other reproductive stages of soybean is unknown. Thus, a field experiment was conducted to study the effects of N applications at various reproductive stages on growth, N2 fixation and yield of three soybean genotypes. The results showed that starter N at 25 kg ha−1 resulted in minimum yield, total N accumulation and total amount of N2 fixed in all three genotypes. N top-dressing at 50 kg ha−1 at either the V2 or R1 stages, significantly increased N accumulation, yield and total amount of N2 fixed in all three genotypes. However, N top-dressing at the same rate at either the R3 or R5 stage did not show this positive effect in any of the three genotypes. Thus, the best timing for N top-dressing during reproduction is at the flowering stage, which increased seed yield by 21% for Wuyin 9, 27% for You 91-19, and 26% for Jufeng, respectively, compared to the treatment without N top-dressing.  相似文献   

7.
Developing soybean cultivars with high seed protein concentration has been hampered by the negative correlation between seed protein and seed yield. While previous in vitro studies have documented the impact of assimilate supply to the seed in determining seed protein, in planta studies generally have failed to link seed protein accumulation directly with assimilate supply per plant during seed filling. It may be possible to reconcile this apparent contradiction by expressing the relationship between seed protein and assimilate supply in planta on a per seed basis. We evaluated the association between seed composition and assimilate supply per seed in closely related experimental lines varying in seed protein concentration and in several elite varieties from the Iowa State University breeding program. High seed protein content was associated with greater leaf area per seed at R5.5, which was a consequence of fewer seeds set per plant. The more favorable source/sink ratio provided greater assimilate per seed during grain filling, but limited the yield potential of the high protein lines because of reduced seed set. Depodding during grain filling increased seed size of low protein lines and increased seed protein concentration to levels comparable to those in the untreated high protein lines. Seed size was far less responsive to depodding in the high protein lines. These results suggest that high protein lines maintain assimilate supply per seed at or near saturating levels during seed filling. Improving seed protein levels in high yielding varieties will require increasing assimilate supply per seed without sacrificing seed numbers.  相似文献   

8.
Climate variability and current farming practices have led to declining soil fertility and pH, with a heavy reliance on fertilizers and herbicides. The addition of forage and grain legumes to farming systems not only improves soil health but also increases farm profitability through nitrogen (N) fertilizer cost offsets. However, the formation of effective symbioses between legumes and rhizobia can be unreliable and is considered at risk when combined with dry sowing practices such as those that have been designed to obviate effects of climate change. This research was initiated to improve the robustness of the legume/rhizobia symbiosis in low pH, infertile and dry soils. Production from two cultivars of field pea (Pisum sativum) and two species of vetch (Vicia spp.), and symbiotic outcomes when inoculated with a range of experimental rhizobial strains (Rhizobium leguminosarum biovar viciae), was assessed in broad acre field trials which simulated farmer practice. New rhizobia strains increased nodulation, N fixation, produced more biomass and higher seed yield than comparator commercial strains. Strain WSM4643 also demonstrated superior survival when desiccated compared to current commercial strains in the laboratory and on seed when delivered as inoculant in peat carriers. WSM4643 is a suitable prospect for a commercial inoculant in Australia and other agricultural areas of the world where growing peas and vetch on soils generally considered problematic for this legume/rhizobia symbiosis. A particular advantage of WSM4643 may be that it potentiates sowing inoculated legumes into dry soil, which is a contemporary response by farmers to climate variation.  相似文献   

9.
通过研究结果表明:使用种衣剂处理大豆种子,不但能提高田间出苗势、出苗率,能刺激幼苗生长,而且能提高单株结荚数、单株粒数及百粒重,其中以锐胜150g十适乐时200mL+种子100kg产量增加最多,为223.53kg/667m^2,较CK增产3.21%,但未达显著水平。  相似文献   

10.
《Plant Production Science》2013,16(2):119-125
Abstract

Three pot experiments were conducted to investigate the effects of soil amendment with crab shell on (1) soybean (Glycine max Merr., cv. Akishirome) yield after 120 days outdoors, (2) soybean nodulation after 6 weeks in the greenhouse, and (3) soil chemical properties after 10 weeks in the greenhouse. The experimental treatments were addition of crab shell at rates of 0.1, 0.2, 0.3, 0.5, and 1% (w/w), standard fertilizer (NPK) treatment, and an untreated control with neither crab shell nor fertilizer application. The crab shell amendment treatment was applied either two months before seeding (incubated) or immediately before seeding (non-incubated). The soil used was a volcanic ash soil (Andosol) from Kakamigahara. Addition of crab shell just before seeding caused a significant increase in seed yield and 100-seed weight compared to the control, but similar yield to NPK treatment. However, seed yield and 100-seed weight did not differ with the crab shell application rate. Amendment by 0.1–0.3% crab shell without incubation lead to the formation of slightly more nodules than in the NPK and control treatments. Reduced numbers of nodules were observed in soil incubated at 0.5–1%, and in non-incubated soil with 1% crab shell application. Nodule fresh weight and N2-fixation plant?1 were decreased in all incubation treatments and 0.3-1% non-incubation treatments as compared to the NPK treatment and the control. Both nodule fresh weight and N2 fixation were lower in incubated soils than in non-incubated soils, at corresponding rates of crab shell treatment. Dry matter production of soybean plants in soil given the crab shell treatment, especially when incubation was used, was found to be reduced after 6 weeks of plant growth. EC, N, and P availability increased with the increasing rate of crab shell treatment. However, there was a gradual decrease of soil pH following the crab shell treatment. In conclusion, although soybean nodulation and N2 fixation were not improved by crab shell application, seed yields were similar to those obtained with the NPK fertilizer.  相似文献   

11.
《Field Crops Research》2004,85(2-3):135-148
Seed N concentration is one of the main quality parameters in grain legume crops. Since few studies have aimed at modelling both seed and vegetative parts N concentrations, our objective was to model N partitioning between vegetative parts and filling seeds for pea (Pisum sativum L.) in field situations where both N nutrition and the plant genotype varied. A crop model component predicting the time courses of vegetative and seed N concentrations was built using knowledge concerning N partitioning during the seed filling period, which include a previously demonstrated relationship between the rate of individual seed N accumulation and the N availability within plants. A greenhouse experiment where assimilate availability was non-limiting was conducted with two genotypes. This experiment demonstrated the genotypic variability of one of the crop model component parameters, the maximum rate of individual seed N accumulation (SNRmax), allowing introduction of this parameter in the crop model component for the studied genotypes. Field experiments spanning 3 years and comprising various crop N nutrition and four genotypes were conducted to evaluate the crop model component. Observed seed and vegetative parts N concentrations ranged at harvest from 19.3 to 39.1 mg g−1 and from 3.6 to 18.4 mg g−1, respectively. N partitioning was well-simulated by the crop model component except when crops had deficient N nutrition. These results suggest that the parameter “NCn-remob” (proportion of N in vegetative parts which is not available for remobilization to filling seeds), which is taken as constant in the crop model component, could depend upon the crop nutrition level. A sensitivity analysis highlights the need for a precise calibration of the parameters “NCn-remob” and “SNRmax”. When the crop N nutrition level and further genotypic variability of these parameters are incorporated in the proposed crop model component, it will become a useful part of a pea crop model predicting yield and seed N concentration.  相似文献   

12.
Drought is by far the most important environmental factor contributing to crop yield loss, especially in soybean [Glycine max (L.) Merr.] where symbiotic fixation of atmospheric nitrogen (N2) is sensitive to even modest soil water deficits. Decline of N2 fixation with soil drying causes yield reductions due to inadequate N for protein production, which is the critical seed product. In this paper, we present a combined physiological and breeding research effort to develop soybean lines that have diminished sensitivity of N2 fixation to drought. A preliminary physiological screen was used to identify lines that potentially expressed N2 fixation drought tolerance. One hundred progeny lines derived from a cross between Jackson, a cultivar proven to have N2 fixation tolerance to drought, and KS4895, a high-yielding line, were tested in the screen. Seventeen lines were identified for subsequent yield trials in moderate- and low-yielding rainfed environments. Two lines, found to have higher yields than commercial checks in these environments were then tested in the greenhouse for their N2 fixation activity in drying soil. Nitrogen fixation activity was found to persist at lower soil water contents than exhibited by the sensitive parent. These two soybean lines offer a genetic resource for increased yields under rainfed conditions as a result of decreased sensitivity of N2 fixation to water deficit.  相似文献   

13.
Despite several experiments on row spacings and seeding rates of grain soybeans, limited information is available on the most suitable row spacing and seeding rate for tall and robust forage type soybeans grown for seed. The objectives of this study were to investigate seed yield, oil and protein content, and several morphological traits as affected by row spacing (20, 40, 60 and 80 cm) and seeding rate (330,000, 660,000, 990,000 and 1,320,000 seeds ha−1) in tall and robust forage type soybeans in three irrigated Mediterranean environments in Turkey in a randomized split plot design with three replications in 2004 and 2005. Row spacings had no significant effect on plant height but tall and profusely branched plants developed in wide row spacing and light seeding conditions. Seed yield responded positively and linearly to row spacing up to 60 cm and then decreased slightly in all locations. Seed yield was the highest at 990,000 seeds ha−1 seeding rate in all three locations (3072.5 kg ha−1 in Bursa LSD = 214.7 kg ha−1, 3295.1 kg ha−1 in Mustafakemalpasa LSD = 298.6 kg ha−1 and 3311.3 kg ha−1 in Samsun LSD = 321.1 kg ha−1). Averaged across years, locations, row spacings, and seeding rates the mean seed yield was an impressive 3013.4 kg ha−1 compare with 3500.0 kg ha−1 average seed yield of grain types. Crude protein and oil content of forage type soybean were not significantly affected by row spacings and seeding rates. It was concluded that forage type soybeans can be grown for multiple purposes at the 990,000 seeds ha−1 seeding rate and 60 cm row spacings in Mediterranean environments.  相似文献   

14.
Salinity and alkalinity are the two most important factors limiting agricultural productivity in arid and semiarid regions. Reclaiming these lands for commercial crops is too costly for most countries to afford. Faced with a declining base of arable farmland and increasing demand for food, fiber and energy, this warrants the need for utilization of naturally salt tolerant species (halophytes) in irrigated and non-irrigated agriculture. Salvadora persica, a facultative halophyte appears to be a potentially valuable oilseed crop for saline and alkali soils, since the seed contains 40–45% of oil rich in industrially important lauric (C12) and myrestic (C14) acids. Attempts were made to assess the performance of the species on saline and alkali soils. From the results it was evident that the species can be grown on both soil types, however height, spread and seed yield were significantly higher for plants grown on saline soils as compared to plants cultivated on alkali soils. No significant difference was observed in oil content between seed obtained from plants grown on saline and alkali soils. The study indicated that S. persica can be cultivated as a source of industrial oil on both saline and alkali soils for economic and ecological benefits, otherwise not suitable for conventional arable farming.  相似文献   

15.
Brassica oilseed yield trend has declined in Finland by over 20% during the last 15 years. Improved genetic yield potential of turnip rape (B. rapa L.) and oilseed rape (B. napus L.) can be better realised with increased understanding of yield determining processes under northernmost growing conditions. This study aimed at (1) determining the genetic improvements in seed yield, yield components, quality traits and duration of the main growth phases and (2) comparing all these traits in turnip rape and oilseed rape. This work is based on the dataset from long-term Official Variety Trials (1976–2006), covering the entire historically relevant period of rapeseed cultivation in Finland. The results indicated that number of seeds per square metre dominated production of high yields, while single seed weight was not correlated with yield. Over the years, seed yields were produced with very different combinations of seed numbers and weights, differing markedly between the two crops. While high seed numbers were required for production of superior seed yields, single seed weights were not particularly high. Environmental variation markedly affected seed yield, seed number per square metre and duration of flowering compared with its effect on single seed weight. Duration of flowering was, however, negatively associated with seed number. Even though seed weight was largely determined by genotype, no marked plant breeding improvements were identified, contrary to those in number of seeds per square metre, seed yield, oil content and oil yield. For oilseed rape the increase in seed yield (41%) was far higher than for turnip rape (19%) without being associated with a longer seed-filling phase and later ripening, but rather the contrary.  相似文献   

16.
Soybean (Glycine max (L.) Merrill) is susceptible to the fungal pathogen, Sclerotium rolfsii from seedling emergence to pod fill. A few systemic and non-systemic fungicides have been recommended as pre-sowing seed treatment (ST) for the management of Sclerotium blight of soybean worldwide. But farmers, especially in developing countries do not utilize ST mainly on account of preoccupation in other practices considered by them essential for sowing. The possibility of ST applied well in advance of sowing was therefore investigated. Results indicated that ST on average increased field emergence by 26.19%, reduced post-emergence mortality (POM) by 49.03% and enhanced seed yield by 23.00%. Seed treatment with carboxin 37.5% + thiram 37.5% @ 0.2% was the best. Seed treatment 50 days prior to sowing was superior by increasing emergence, reducing POM and enhancing seed yield with high monetary returns and energy output.  相似文献   

17.
Field experiments were conducted during the rainy seasons of 2009 and 2010 for the management of the major diseases of mungbean, namely, wet root rot (Rhizoctonia solani), cercospora leaf spots (Cercospora canescens and Pseudocercospora cruenta) and yellow mosaic (Mungbean Yellow Mosaic Virus) by using different combinations of an insecticide, fungicide, and bio-formulation as seed treatment, with or without foliar sprays. A combination of seed treatment with thiamethoxam (Cruiser™) at 4 g kg−1, carboxin (Vitavax™) at 2 g kg−1 and Pusa 5SD (Trichoderma virens) at 4 g kg−1 followed by simultaneous foliar sprays of thiamethoxam (Actara™) 0.02% and carbendazim (Bavistin™) 0.05% at 21 and 35 days after sowing resulted in the highest seed germination and grain yield in mungbean with the lowest intensities of cercospora leaf spots and mungbean yellow mosaic, and moderate incidence of wet root rot. The lowest whitefly population was also observed in this treatment during all stages of the crop. The treatment combinations having Pusa 5SD as seed treatment provided the lowest wet root rot incidence. Two sprays were superior to single spray for all variables recorded, but in combination with seed treatment, single spray was found to be more cost effective as it obtained the highest return per rupee of input. Use of T. virens based bio-formulation Pusa 5SD with insecticide thiamethoxam has been effectively demonstrated for the first time along with fungicides Bavistin and Vitavax for the management of the major diseases of mungbean.  相似文献   

18.
《Field Crops Research》2004,88(1):57-67
Increasing atmospheric CO2 concentration has led to concerns about global changes to the environment. One area of global change that has not been fully addressed is the effect of elevated atmospheric CO2 on agriculture production inputs. Elevated CO2 concentration alterations of plant growth and C:N ratios may modify C and N cycling in soil and N fertility. This study was conducted to examine the effects of legume, soybean (Glycine max (L.) Merr.), and non-legume, grain sorghum (Sorghum bicolor (L.) Moench.) carbon dioxide-enriched agro-ecosystems on N soil fertility in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with crop species (soybean and grain sorghum) as the main plots and CO2 concentration (ambient and twice ambient) as subplots using open top field chambers. Fertilizer application was made with 15N-depleted NH4NO3 to act as a fertilizer tracer. Elevated CO2 increased total biomass production in all 3 years of both grain sorghum (average 30%) and soybean (average 40%). With soybean, while no impact on the plant C:N ratio was observed, the total N content was greatly increased (average 29%) due to increased atmospheric N2 fixation with elevated CO2 concentration. With grain sorghum, the total N uptake was not affected, but the C:N ratio was markedly increased (average 31%) by elevated CO2. No impact of elevated CO2 level was observed for fertilizer N in grain sorghum. The results from this study indicated that while elevated CO2 may enhance crop production and change N status in plant tissue, changes to soil N fertilizer application practices may not be needed.  相似文献   

19.
20.
Low phytic acid (LPA) crops have recently been considered as a potential way to combat nutritional and environmental issues related to seed phytic acid phosphorus (PA-P). Although, a number of LPA mutant lines have been developed in various crops, they are often featured with lower grain yield and seed viability compared with wild type (WT) parents. We recently developed several LPA mutant lines in rice with PA-P reductions varying from 33.8% to 63.6%. In this study, the performance of grain yield and seed viability of these mutants were investigated. Four of the five mutant lines had 12.5–25.6% reductions in grain yield compared to the corresponding WT parental lines. The reduction in grain weight, varying from 5.4% to 10.7%, was found to be the main causative factor of yield reduction. Similarly, LPA mutants had inferior seed viability to their corresponding WT parent varieties; all mutant lines had a significantly lower simplified vigour index (seed germination rate × seedling dry weight) than their parents, with reductions of 7.8–26.3%, although some mutant lines had similar germination rates as their WT parents. The two mutant lines, which had similar germination rates as their WT parent, however, had significantly lower field emergence rates. More pronounced differences of simplified vigour index were observed after artificial aging treatments between four LPA lines from their WT parents, implying that LPA rice seeds were more susceptible to storage than WT. The yield and yield-related traits of F2 plants and F3 lines from three crosses were evaluated; the results showed that while LPA was associated with significantly lower grain yield and grain weight than WT sibs, there were also LPA plants and lines that out-performed WT controls. These results implied that the negative effect of LPA mutations on grain yield might be reduced or minimized through cross and selection breeding. The implications of these findings were discussed with regard to LPA rice breeding and potential commercial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号