首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
From their introduction in 1996, glyphosate resistant (GR) soybean cultivars have been rapidly adopted by farmers in Argentina and in other countries in the world. The high rate of adoption of this technology seems to be based on the simplicity of use provided by a single herbicide (glyphosate), its high efficacy to control many weeds and, the low costs of the technology relative to that used in conventional crops. During 2001–2002, 2002–2003 and 2003–2004 soybean growing seasons, field surveys and field experiments were performed with the aim of studying the effect of different glyphosate management strategies on the diversity of soybean weed communities, weed control, individual survival, fecundity and crop yield. In addition, the emergence pattern of three important weeds, Digitaria sanguinalis, Cyperus rotundus and Anoda cristata, was also studied. Both field surveys and field experiments were carried out on no-till soybean crops sown immediately after wheat or barley harvest (double cropped system). Experiments were set up in commercial soybean crops and consisted of different times of a single glyphosate application, two glyphosate applications and also the application of glyphosate plus a residual herbicide imazethapyr. A. cristata, D. sanguinalis, Stellaria media, Chenopodium album and Cyperus sp. were the most prevalent weeds recorded at pre-harvest of the soybean crops, showing regional constancy higher than 80% in both years. In three out of four field experiments, crop yield was not increased when glyphosate was applied twice compared with a single application of the herbicide. In addition there was a lower negative effect on weed species richness when glyphosate was applied once during the crop cycle than with two applications of glyphosate or glyphosate plus imazethapyr. D. sanguinalis escaped the glyphosate early treatment because of the long weed emergence period, while A. cristata and C. rotundus survived treatments due to their high individual tolerance. The results suggest that it is possible to manage glyphosate application to get high crop yield with a low impact on weed diversity, depending on the weed species and their abundance.  相似文献   

2.
Winter cover crops were evaluated for their effect on Amaranthus palmeri establishment and growth in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye. Cover crop biomass in monoculture was greatest for rye and lupine (>6750 kg ha1), while clover, pea, and vetch were less and ranged from 2810 to 4610 kg ha1. Cover crop biomass was more than doubled when rye was mixed with clover or vetch relative to the legume monoculture. In early-June, A. palmeri densities were 46 seedlings m2 in the non-disturbed areas between cotton rows in the fallow, while populations were <4 seedlings m2 with rolled vetch or pea and 18 and 29 seedlings m2 in rolled clover and lupine. Rye and legume mixtures reduced A. palmeri densities to <3 seedlings m2, while rye monocultures had 8 seedlings m2. There were no differences in A. palmeri densities (≥144 plants m2) in the cotton row among cover crop treatments. By late-June, rye and winter pea controlled A. palmeri in the row middle >80% relative to the non-cover crop fallow treatment, while control from clover, vetch and lupine ranged from 64 to 70%. The relationship between A. palmeri control in between cotton rows and cover crop biomass was described by a log-logistic regression model with 4530 kg ha1 providing median weed control (Bio50); predicted A. palmeri control was 25, 50, and 75% from 2950, 4900, and 8600 kg ha1 cover crop biomass, respectively. However, A. palmeri plants in the cotton rows prevented yield production in the absence of herbicides. Where A. palmeri was controlled with herbicides, the highest yields occurred following rye, with lower yields following lupin/rye mixture and treatments including pea. Management of herbicide resistant weed species requires diverse management tactics; this may include high-biomass cover crops to reduce weed establishment between crop rows. However, greater research effort is needed to devise weed management options for the crop row that do not rely exclusively on the diminishing array of herbicide tools.  相似文献   

3.
Weeds are a major constraint for organic crop production. Previous research has found that cover crops in reduced tillage systems can provide weed interference, subsequently reducing inputs and improving crop yield. However, questions remain about effects of cover crop species identity and cover crop biomass on weed suppression and crop yield. This four-year study investigated how winter cover crops grown alone or in mixture influenced weed presence and crop yield in a reduced tillage organic vegetable system. Treatments were barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), mixed barley + crimson clover, and a no-cover crop control. Plots were flail-mowed and strip-tilled prior to planting main crops (2011 and 2012: broccoli Brassica oleracea L.; 2013 and 2014: crookneck squash Cucurbita pepo L.). We measured density, diversity, and community composition of weeds and viable weed seeds, changes in weed percent cover within growing seasons, and crop yield. We found that the presence of barley, crimson clover, or barley + crimson clover reduced weed density by 50% relative to the control. Cover crop biomass negatively influenced weed density and weed seed diversity, and positively influenced squash yield. Weed percent cover within growing seasons did not respond differentially to cover crop treatment. Cover crop treatment and cover crop biomass had no influence on weed or weed seed community composition. These results suggest that reduced tillage winter cover crops in mixture or monoculture can similarly suppress weeds and improve yield, primarily due to biomass effects.  相似文献   

4.
Sinapis alba subsp. mairei (H. Lindb. fil.) Maire, a wild subspecies of S. alba L., which is distributed throughout the Mediterranean basin, has been recently introduced in southern Spain as a winter cover crop in olive groves. The reason behind using this cover crop is for the reduction of Verticillium dahliae inoculum. The effectiveness of this cover crop for weed control has not been assessed to date, despite weed flora in olive groves being highly diverse and competitive, especially in spring and summer, when rainfall is low, temperature is high and crop water needs are at their maximum. The objective of this work is to assess the ability and optimum management of S. alba subsp. mairei cover crop residues for controlling summer weeds. This work offers a more detailed study of the influence of this cover crop on the seedling emergence of Amaranthus blitoides (prostrate pigweed) and Chenopodium album (common lambsquarters) in rainfed field conditions. A factorial design was conducted during the 2002 and 2003 seasons. The studied factors were the following: (1) S. alba subsp. mairei cover crops versus bare soil; (2) two different S. alba residue management techniques after mowing and chopping (incorporation into the soil with shallow tillage versus leaving the residues as a mulch); and (3) the effect on two artificially sown-out summer weeds (prostrate pigweed versus common lambsquarters). The S. alba subsp. mairei cover crop residues reduced the weed infestation by 50 and 60%, and it delayed weed appearance by 3 and 4 weeks the first and second years, respectively, compared with bare soil. The optimum cover crop residue management for weed control was to leave mulch. This management was especially efficient for controlling prostrate pigweed, whether no differences were found for common lambsquarters control when the residues were incorporated into the soil with tillage. These results indicate the great ability of S. alba subsp. mairei cover crop residues to provide summer weed control in rainfed field conditions. Its use, therefore, can contribute to the reduction of the number of herbicide treatments in olive groves.  相似文献   

5.
Solanum elaeagnifolium Cav. is considered as one of the worst weeds of crop and pasture systems in temperate Australia. Effective long-term control is difficult due to the extensive root system. Field experiments were conducted at two locations in south-eastern Australia between 2006 and 2008 to examine a range of herbicides for control of S. elaeagnifolium on seed production and root regrowth. Herbicide performance was affected by herbicide, weed growth stage and environmental factors. Pyridine herbicides, such as pre-packed mixtures of aminopyralid + fluroxypyr and triclopyr + picloram + aminopyralid were the most effective and consistently reduced within-season aerial growth by 60–90% in both seasons. Overall control using glyphosate-based treatments was generally reduced due to emergence of new stems following herbicide application. Three picloram-based treatments provided the best and most consistent long-term control on root regrowth after two seasons, reducing stem emergence by 45–88%, especially with a late application of herbicides. The efficacy of residual herbicides such as atrazine or imazapic + imazapyr depends on rainfall conditions. Seedset control was best achieved with herbicides applied at the start of flowering stage, with no viable seed produced following treatments of 2,4-D amine + picloram and triclopyr + picloram + aminopyralid. These two treatments also significantly reduced viable seed production when applied at the early berry stage. The results indicate that an application at early flowering followed by a late application in autumn is necessary to effectively control the seedset (seedbank) and the root regrowth (rootbank) of S. elaeagnifolium.  相似文献   

6.
Field experiments were conducted to evaluate cover crop (none, winter wheat, or winter rye) and pre-emergence (PRE) applications of clomazone plus ethalfluralin alone or with halosulfuron [PRE or post-emergence (POST)] for smooth crabgrass [Digitaria ischaemum (Schreb. ex Schweig) Schreb. ex Muhl.] and redroot pigweed (Amaranthus retroflexus L.) control in no-tillage ‘Aspen’ jack-o-lantern pumpkin (Cucurbita pepo L.). At pumpkin harvest, cover crops had reduced smooth crabgrass density, but not redroot pigweed. Although PRE or POST applications of halosulfuron alone were more effective at reducing redroot pigweed density than clomazone plus ethalfluralin PRE, the combination of halosulfuron plus clomazone and ethalfluralin PRE reduced redroot pigweed density to the greatest extent. Pumpkin yields were not affected by cover crop, although average pumpkin sizes were greater with the inclusion of cover crop residues. Pumpkin fruit sizes and yields were the greatest with clomazone and ethalfluralin PRE in combination with halosulfuron applied PRE or POST. Overall, cover crop had relatively little influence on pumpkin yields compared with herbicide treatments. The addition of halosulfuron to clomazone and ethalfluralin provided greater broadleaf weed control resulting in greater jack-o-lantern pumpkin yields.  相似文献   

7.
Cover crops may suppress weeds due to their competitive effects and the release of inhibitory compounds. We examined the inhibitory influence of 11 cover crop mulches on the germination and growth of weed species (Stellaria media (L.) Vill., Chenopodium album L. and Matricaria chamomilla L.) in laboratory, greenhouse and field experiments. In the laboratory, cover crop extracts were tested in germination bioassays at six concentrations (0–500 mg ml−1). The germination rate and root length (i) were measured 10 days after treatment (DAT). Pot experiments were carried out in the greenhouse to investigate the effects of cover crop mulch (ii) incorporated into the soil on weed germination and weed dry mass. Field trials measured the suppressive effects of cover crops and cover crop mixtures on weeds (iii). Correlations were determined between the experiments to quantify the competition and the biochemical effects of cover crops separately. Cover crop extracts at a concentration of 125 mg ml−1 (i) significantly reduced the weed germination rate by 47% and the root length by 32% on average. M. chamomilla showed a lower susceptibility to the extracts of S. alba, R. sativus var. niger and H. annuus compared to C. album and S. media. The mulch-soil mixtures (ii) significantly reduced the germination rate by 50% and the dry mass by 47% on average across all three weed species, while M. chamomilla showed the highest tolerance to the mulches of V. sativa and A. strigosa. The correlation analysis revealed a strong positive correlation between extract toxicity and field weed suppression and, thus, indicated a high impact of the biochemical effects of the tested cover crops on weed suppression, especially for S. media and M. chamomilla.  相似文献   

8.
Several broomrape species including Orobanche crenata, Orobanche foetida and Phelipanche aegyptiaca are reported to infect various grain and forage legumes in the Mediterranean and West Asia. Pea (Pisum sativum) is severely damaged by O. crenata, but there are no reports on O. foetida or P. aegyptiaca infection. We report here that pea can induce high germination of seeds of O. crenata, O. foetida and P. aegyptiaca but only O. crenata success infecting pea roots and developing further. Some differences in levels of infection by O. crenata were observed among pea accessions what can be exploited in pea resistance breeding programmes. On the contrary, all pea accessions studied were highly resistant to infection by both O. foetida and P. aegyptiaca, preventing any tubercle attachment and development. This makes pea a promising candidate as trap crop for O. foetida and P. aegyptiaca seed bank demise in infested soils.  相似文献   

9.
《Field Crops Research》2006,99(1):67-74
An inverse relationship between soybean [Glycine max (L.) Merr.] seed protein and oil concentration is well documented in the literature. A negative correlation between protein and yield is also often reported. The objective of this study was to determine the effect of high rates of N applied at planting on seed protein and oil. Nitrogen was surface-applied at soybean emergence at rates of 290 kg ha−1 in 2002, 310 kg ha−1 in 2003, and 360 kg ha−1 in 2004. Eight cultivars ranging from Maturity Group II–IV were evaluated under the Early Soybean Production System (ESPS). However, not all cultivars were evaluated in all 3 years. Glyphosate herbicide was used in all 3 years and a non-glyphosate herbicide treatment was applied in 2002. Cultivars grown in 2003 were also evaluated under an application of 21.3 kg ha−1 of Mn. All cultivar, herbicide, and Mn treatments were evaluated in irrigated and non-irrigated environments with fertilizer N (PlusN treatment) or without fertilizer N (ZeroN treatment). When analyzed over all management practices (years, cultivars, herbicide, and Mn treatments), the PlusN treatment resulted in a significant decrease in protein concentration (2.7 and 1.9%), an increase in oil concentration (2.2 and 2.7%), and a decrease in the protein/oil ratio (4.7 and 4.6%) for the irrigated and non-irrigated environments, respectively. However, the overall protein and oil yield increased with the application of fertilizer N at planting (protein: 5.0% irrigated, 12.7% non-irrigated and oil: 9.9% irrigated and 18.9% non-irrigated). These increases were due to the increase in seed yield with the application of large amounts of fertilizer at planting. Additionally, a significant correlation (r = 0.45, P = 0.0001) was found between seed protein concentration and seed yield. No significant correlation was found between seed oil concentration and seed yield. The data demonstrate the inverse relationship between protein and oil and indicate that large amounts of N applied at planting do not change this relationship.  相似文献   

10.
In the initial screening, 18 out of 32 Conyza albida and 7 out of 28 Conyza bonariensis populations, sampled from main perennial crop regions of central and southern Greece, were found to be resistant to glyphosate. The level of resistance determined in dose–response experiments with representative populations of the two species was found to range from 7.7 to 37.3 for C. albida and from 3.4 to 7.8 for C. bonariensis. The comparison of the resistant and susceptible C. albida and C. bonariensis EPSPS gene sequences indicated that possess single nucleotide changes compared to Conyza canadensis EPSPS gene, but none of these changes is located at the position 106 that has been reported to confer resistance to glyphosate. Finally, the cpDNA sequence comparison analysis used for the most resistant population of each species and the respective susceptible counterparts was found to be a reliable tool for discrimination of conventionally classified C. albida and C. bonariensis plants that are morphologically similar. This is the first report for molecular identification of Conyza species.  相似文献   

11.
This 6-year study was conducted to determine the effect of three leguminous cover crops on the growth and yield of abaca and measure the contribution of the cover crops in restoring and conserving the inherent fertility of the soil. In the later years of the experiment (2000–2002), cover cropping with Desmodium ovalifolium and Calopogonium muconoides significantly increased the stalk and leaf lengths, and stalk circumferences. Fiber yield also significantly increased in plots with C. muconoides as plant cover. Among the cover crops used, D. ovalifolium showed the highest biomass production of 8.9 and 8.6 tons/ha in the 1999 and 2000 data gathering, respectively. Highest N content in the tissues among the covercrops used was noted in C. muconoides. Accumulation of soil organic matter was observed in plots with D. ovalifolium while higher total N in the soil was found in plots cover cropped with C. mucunoides. Among the cover crops tested, Centrocema pubescens is not an effective companion crop for abaca. However, lower erosion rates were noted in plots planted with cover crops.  相似文献   

12.
The effect of intercropping cover crops was with yam was assessed for nematode management both in pot and field conditions in Nigeria. The cover crops were sown with yams in pots containing sterile soil and inoculated with 5000 eggs of Meloidogyne incognita. In the field, each cover crop was separately intercropped with yams inoculated with 10,000 nematodes. From both pot and field experiments, no nematode damage was observed on yam tubers that were intercropped with Aeschynomene histrix, Crotolaria juncea, and Tagetes erecta. Damage in intercropped tubers was reduced by 72.7% with Mucuna pruriens, Centrosema pubescens, and Pueraria phaseoloides and by 58.3% with Stylosanthes guianensis compared to yams planted without cover crops; they also had lower (p ≤ 0.05) nematode populations. Cajanus cajan, Lablab purpureus and Vigna unguiculata however, supported high nematode populations and led to nematode damage in intercropped yams. Tubers from M. incognita-inoculated plants were more damaged and lost 42% more weight (p ≤ 0.05) following three months of storage than tubers from uninoculated plants. Intercropping yams with selected cover crops can be useful in managing M. incognita without reducing yam yields.  相似文献   

13.
A field experiment was conducted to investigate the spatial distribution of nutsedge (Cyperus spp L.) seed bank in rice growth cycle using geostatistics in 2010–11. The sampling from seed banks were performed prior to rice farm preparation and after rice harvest; also weeds density was determined in three different dates during the growing season. The results showed that the highest amount of weed population was belonging to nutsedge (Cyperus spp. L.) including Cyperus difformis, C. rotundus and C. esculentus species. Nugget/sill ratios for all variogram models ranged from 15.2 to 46.9%, indicated that there was strong and moderate spatial correlation as spherical and exponential variograms models between weed and seedling nutsedge at all stages of sampling. Visual assessments of the weed growth in these field indicated that the weed exist in patches, but mapping results showed that the size and morphology of these patches varied within field. In the present study, seed bank patchy pattern was roughly in accordance with seedling germination pattern. Generally the provided seed bank maps can be used not only as information database of seedling germination, but also for predicting of seed bank dynamics and weed management programs.  相似文献   

14.
A modeling approach based on weed relative leaf area (RLA) was used to describe the maize yield affected by weed competition and herbicide dose. The change of early RLA with herbicide dose was described using standard dose–response model. The dose response of individual weed species was included in a multivariate rectangular hyperbolic relationship between maize yield and weed relative leaf-area. Final model satisfactorily described the change of the weed relative leaf areas with herbicide dose in a multiple species competition with maize to reach a reasonable estimate of crop yield. Parameter estimates indicated that the maize yield could be about 11.23 t/ha in the absence of weeds. Applying herbicide at 0.29 rate of the recommended dose could decrease the Amaranthus retroflexus leaf area by 50%. For Xanthium strumarium, increasing the dose up to 0.58 rate of the recommended dose caused 50% reduction in early relative leaf area. The relative leaf area of the X. strumarium was 4.2-fold larger than that of the A. retroflexus at the time of herbicide application. Model validation indicated significantly better predictive ability of the leaf area model than that of the density model. Leaf area model permits to monitor the canopy (with considering the relative ground cover of neighboring plants) and decide that if a competitive crop allows reducing the dose. Recommending the precise required amount of herbicide is achieved using models that account for the interactions among crop and weed species, which survive and persist in the competition after herbicide application.  相似文献   

15.
Since 2005, the evolution and spread of herbicide-resistant Echinochloa crus-galli biotypes have posed a serious threat to crop production in the Philippines. A comprehensive knowledge of E. crus-galli ecology and fecundity is fundamental in managing different biotypes of this weed. It was hypothesized that (a) high weed plant density produces more biomass and fertile seeds per unit area, (b) rice interference reduces the biomass and fecundity of the weed, and (c) a delay in weed emergence reduces the soil seed bank. In 2013, experiments were conducted in the wet season (WS) and dry season (DS), to understand the effect of E. crus-galli densities (40 and 80 plants m−2) on its growth, survival, and fecundity, with varying emergence times of 2, 15, 30, and 45 d after rice emergence (DARE). Relative to the weed plants grown without rice interference, E. crus-galli growth and seed production was lower in the presence of rice. Percent survival and plant height of E. crus-galli declined in a linear manner in the DS, and declined in a quadratic manner in the WS. Tiller number, inflorescence number, inflorescence biomass, and shoot biomass per plant declined in an exponential manner, with a delay in emergence of each cohort relative to rice. Across rice seeding rate, weed density, and emergence time, there was a linear relationship (y = 110x − 272 in the DS and y = 100x − 220 in the WS) between E. crus-galli shoot biomass and the number of seeds plant−1. Relative to the late-emerging weed cohorts, E. crus-galli seed production (1320–1579 seeds plant−1), 1000-seed weight (2.2–2.9 g), and seed yield (2808–2334 kg ha−1) were higher when seedlings emerged with the crop (2 DARE). None of the seedlings that emerged 45 DARE produced viable seeds. Seed germination of the first two cohorts (2 and 15 DARE) ranged from 84 to 91%. The delay in emergence of E. crus-galli beyond 30 DARE reduced the percentage of germinable and viable seeds, and increased the percentage of non-viable seeds produced plant−1. The results suggest that cultural weed management approaches that delay the emergence of E. crus-galli can reduce weed biomass and seed production, and is thus valuable for preventing seed rain to the seed bank by noxious weed biotypes in the field.  相似文献   

16.
Weeds and diseases are major problems in the tillage-based winter wheat (Triticum aestivum)/summer fallow (WW/SF) cropping system of the low precipitation zone (≤300 mm) of the Pacific Northwest. Computer models have estimated that no-till spring crops may reduce soil erosion susceptibility by 95%. However, these annual cropping systems were not economically viable alternatives to the WW/SF rotation. Late-planted WW, also examined as an alternative, was similarly not viable with 35% lower grain yields than WW planted at the normal seeding date for the area. In 2002, two facultative wheat (FW) rotations were incorporated into a long-term, multidisciplinary field study to compare weed and disease incidence with a WW/reduced tillage summer fallow (WW/RSF) system for 4 years. Facultative wheat, not synonymous with late-planted WW, is often derived from SW by WW crosses and exhibits strong photosensitivity and partial sensitivity to vernalization. The two FW systems compared with WW/RSF were no-till FW/no-till spring wheat (FW/SW) and no-till FW/chemical fallow (FW/ChF). Facultative wheat was planted in early-November compared to WW planted in early-September and SW in the following March. Although 16 weed species were present during the study, Bromus tectorum and Salsola tragus were the most pervasive weeds and were found at the highest densities in FW following SW (FW(SW)). Populations of B. tectorum were often 90% higher in FW(SW) than in either WW or FW following ChF. The FW/ChF, WW/RSF, and SW following FW had similarly low weed populations when averaged over 4 years. Facultative wheat had less root disease than WW throughout the study. Stripe rust (Puccinia striiformis) was severe in SW in 2005, but did not affect either FW. Based on the low weed and disease incidence coupled with the no-till planting of FW, the FW/ChF system showed promise as an alternative sustainable system to WW/SF.  相似文献   

17.
Two common production constraints of dry bean (Phaseolus vulgaris) in Ontario are annual weeds and anthracnose (caused by Colletotrichum lindemuthianum). Dry bean is not considered a competitive crop and weed interference can result in substantial yield losses, while anthracnose is considered one of the most devastating diseases in dry bean production. A study conducted in Ontario Canada, examined the effect of two herbicide programs on weed management, thiamethoxam insecticide treatment on plant enhancement and three fungicide programs on anthracnose development in a navy bean cv. ‘OAC Rex’. The premium herbicide program (s-metolachlor + imazethapyr) reduced percent weed ground cover relative to the economic herbicide program (trifluralin) in five of six locations. Thiamethoxam increased emergence and vigour at only one location, which contradicts reported benefits of thiamethoxam on plant health. The herbicide or thiamethoxam treatments did not affect anthracnose disease severity, visible seed quality, net yield or economic return. The fungicide seed treatment was often superior to the untreated control, for a number of the parameters measured. The application date of the foliar fungicide, relative to the onset of disease, varied between site-years. This dramatically influenced the fungicide’s effectiveness. Foliar fungicides increased seed quality and net economic return compared to the control when applied prior to disease development. The combination of fungicide seed treatment followed by a foliar fungicide provided the largest reduction in anthracnose severity.  相似文献   

18.
Four two-year field trials, arranged in randomised split-plots, were carried out in southern Sweden with the aim of determining whether reduced N fertiliser dose in winter wheat production with spring under-sown clover cover crops, with or without perennial ryegrass in the seed mixture, would increase the clover biomass and hence the benefits of the cover crops in terms of the effect on the wheat crop, on a subsequent barley crop and on the risk of N leaching. Four doses of nitrogen (0, 60, 120 or 180 kg N ha−1) constituted the main plots and six cover crop treatments the sub-plots. The cover crop treatments were red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in pure stands and in mixtures. The winter wheat (Triticum aestivum L.) was harvested in August and the cover crops were ploughed under in November. The risk of N leaching was assessed in November by measuring the content of mineral N in the soil profile (0–30, 30–90 cm). In the following year, the residual effects of the cover crops were investigated in spring barley (Hordeum distichon L.) without additional N. Under-sowing of cover crops did not influence wheat yield, while reduced N fertiliser dose decreased yield and increased the clover content of the cover crops. When N was applied, the mixed cover crops were as effective in depleting soil mineral nitrogen as a pure ryegrass cover crop, while pure clover was less efficient. The clover content at wheat harvest as well as the amount of N incorporated with the cover crops had a positive correlation with barley yield. Spring barley in the unfertilised treatments yielded, on average, 1.9–2.4 Mg DM ha−1 more in treatments with clover cover crops than in the treatment without cover crops. However, this positive effect decreased as the N dose to the preceding wheat crop increased, particularly when the clover was mixed with grass.  相似文献   

19.
The aim of the study was to evaluate non-legume cover crops for growing no-till grain legumes in organic farming systems. Evaluated cover crops should be able to suppress weed growth, reduce plant available nitrogen in the soil and produce large amounts of biomass with slow N mineralisation. Six non-legume species; spring rye (Secale cereale L.), black oat (Avena sativa L.), sunflower (Helianthus annuus L.), white mustard (Sinapis alba L.), buckwheat (Fagopyrum esculentum Moench) and hemp (Cannabis sativa L.) were tested. Plots with organic fertiliser (50 kg N ha?1) and without fertiliser incorporation at three locations in south-east Germany were trialled and the cover crops’ ability to produce biomass and accumulate N in plant compartments was evaluated. The N mineralisation from stem and leaf material was simulated using the STICS model. The biomass production ranged from 0.95 to 7.73 Mg ha?1, with fertiliser increasing the total biomass at locations with low-N status. Sunflower consistently displayed large biomass and N accumulation at all locations and fertiliser variations, although not always significantly more than other species. Most N was stored in sunflower leaf material, which can be easily mineralised making it less suited as cover crop before no-till sown spring grain legumes. Rye, which produced slightly less biomass, but accumulated more N in the stem biomass, would be better suited than sunflower in this type of system. The N mineralisation simulation from rye biomass indicated long N immobilisation periods potentially improving weed suppression within no-till sown legume cash crops.  相似文献   

20.
Wild oat (Avena fatua L.) is the most troublesome weed in cereal crops in Argentina. With the aim of studying the effects of different herbicides, doses, and wild oat growth stage at application on weed control and crop yield, field experiments were conducted in wheat and barley crops during three growing seasons in the south of Buenos Aires Province, Argentina. Treatments were post-emergence applications of new herbicide, pinoxaden + cloquintocet mexyl (5%-1.25%), at doses that ranged from 20 g to 60 g a.i. pinoxaden ha−1, applied at two to three leaves and the beginning of tillering of wild oat. In addition, standard treatments were included and applied at the same wild oat growth stages. Diclofop methyl at 511 g a.i. ha−1 and fenoxaprop-p-ethyl at 55 g a.i. ha−1 were applied in barley. In wheat, diclofop methyl was replaced by clodinafop-propargyl + cloquintocet mexyl (24%-6%) at 36 g a.i. clodinafop-propargyl + 9 g cloquintocet mexyl ha−1 and in 2008/09 wheat experiments, iodosulfuron plus metsulfuron methyl (5%-60%) at 3.75 g a.i. ha−1 + 3 g a.i. ha−1 also was included. In both crops, pinoxaden at 30 g a.i. ha−1 and at higher rates, fenoxaprop-p-ethyl and clodinafop-propargyl gave the best control of wild oat. In 2006/07 wheat crops, treatments applied at tiller initiation provided better control than the early timing averaged across herbicides. However, wheat yield generally was greater with early application. In barley, wild oat control and crop yield were similar regarding time of application. Variations in crop yield were correlated with grain number m−2 both in wheat and barley, but relationships between both grain number and spikes m−2 and with grains per spike were identified only in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号