首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Plant Production Science》2013,16(3):346-356
Abstract

The structural and functional characterization of the blade-sheath boundary region of a rice cultivar T65 and its near-isogenic line T65lg were examined by light and electron microscopy and in situ hybridization. Starch accumulation in bundle sheath cells was compared between the lamina joint of T65 and the corresponding region of T65lg and also between the lamina joint and the leaf blade. In the lamina joint of T65, starch grains were predominantly accumulated in bundle sheath cells, and the starch-containing chloroplasts within these cells were spherical in shape. On the other hand, in the blade-sheath transition region of T65lg, little starch accumulation was observed and the chloroplasts were oval in both mesophyll and bundle sheath cells. Furthermore, photosynthesis-related genes, rbcS and cab, were expressed in mesophyll cells within the blade-sheath transition region of T65lg as in the leaf blade and sheath, while no expression of these genes was found within the lamina joint of T65. These facts indicate that T65lg can not develop the lamina joint from either structural or functional aspect. The present results suggest that the control mechanism of starch accumulation in bundle sheath chloroplasts in the lamina joint differs from that in leaf blade in rice.  相似文献   

2.
以玉米进行C4光合的全展第5位叶片为材料,分析从叶基部到顶部的解剖结构和叶绿素含量变化,研究玉米C4光合叶片"花环"结构随叶片发育的变化规律。结果表明,玉米第5位叶从基部到顶部都具有完整的典型"花环"结构,维管束鞘细胞(BSC)和叶肉细胞(MC)的体积在叶片发育过程中具有渐变性,从叶基部到顶部BSC和MC均呈先增大后变小的趋势,而且叶绿素a、b和a+b含量呈相同的变化趋势,说明BSC和MC细胞体积与叶绿素含量的变化具有相关性。叶绿素a/b总体呈上升趋势,说明玉米第5叶基部到顶部的光合途径存在C3向C4转变的过程。玉米第5叶不同部位C4光合途径发育的渐变性比前3叶更为明显。  相似文献   

3.
ABSTRACT

The successful introduction of the C4 pathway into C3 crops would increase photosynthetic rates and crop productivity. However, our poor understanding of how Kranz leaf anatomy develops poses a great obstacle. In particular, the origin, development, and genetics of bundle sheath (BS) cells in C4 plants are key points to elucidate. Here we report that Elymus tsukushiensis, a common C3 grass of the subfamily Pooideae, contains chloroplasts in the mestome sheath (MS) cells of the leaf, unlike most MS cells of C3 grasses. The chloroplasts are smaller than those of mesophyll cells. Immunogold localization showed that the chloroplasts and mitochondria of MS cells, respectively, accumulate ribulose 1,5-bisphosphate carboxylase/oxygenase and a photorespiratory enzyme, glycine decarboxylase, as in mesophyll cells. Thus, we suggest that the MS cells have weak photosynthetic and photorespiratory functions. This finding provides an insight into the development and evolution of C4-type BS cells in leaves of C3 grasses.  相似文献   

4.
为了解小麦叶片衰老与缺氮诱导及碳氮平衡之间的关系,以两个缺氮衰老响应敏感品种(周麦24和运旱618)和两个缺氮衰老响应不敏感小麦品种(衡观35和西农979)为材料,分析了小麦苗期低氮诱导下表征叶片衰老的叶绿素含量、F_v/F_m、净光合速率,以及表征碳氮平衡的全氮和非结构性碳水化合物(可溶性糖、淀粉)比值。结果表明,低氮胁迫后,4个小麦品种叶片的净光合速率、叶绿素含量和F_v/F_m显著降低,说明低氮诱导和加速了小麦叶片的衰老,而缺氮衰老响应敏感品种的衰老程度显著高于不敏感品种。缺氮衰老响应敏感和不敏感小麦品种叶片氮含量在低氮胁迫后均显著降低,同时碳累积量(可溶性糖和淀粉含量)均显著升高。进一步分析表明,缺氮诱导的小麦叶片衰老可能并非受独立的氮缺乏和碳累积调控,而可能与碳氮平衡(碳氮比例)有关,即碳氮平衡可能参与了低氮诱导的叶片衰老调控,而缺氮下耐衰老品种的叶片维持碳氮代谢平衡的能力较强。  相似文献   

5.
《Plant Production Science》2013,16(2):169-176
Abstract

The effect of NaCl stress on the structure of leaf chloroplasts was investigated in several NAD-Malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) type C4 plant species. Seedlings of the monocot species, except Zoysia japonica, grown in 300 mL pots were subjected to salt stress by adding 50 mL of 3% NaCl solution per day to the soil for 5 d after the fourth leaf blades were fully developed. Z. japonica and the dicot species, Amaranthus tricolor, were also treated with 3% NaCl in a similar manner from 5 wk after germination. Salt stress negatively affected the growth, chlorophyll content and chloroplast structure in all the species. At the ultrastructure level, swelling of thylakoids and disruption of envelopes were more or less observed in mesophyll cell (MC) chloroplasts after salt treatment. The structure of bundle sheath cell (BSC) chloroplasts, on the other hand, was hardly damaged under salt condition although stromal and starch areas were considerably decreased. Furthermore, salinity induced granal development in BSC chloroplasts in most species; the number of thylakoids per granum, granal indices and appressed thylakoid density in salt-treated plants were generally higher than those in control. Since the similar responses have also been reported in all NADP-ME type C4 species investigated in our previous study, the high sensitivity to salt stress in MC chloroplasts and the granal development in BSC chloroplasts by salinity were considered to be common phenomena in all three C4 subtypes.  相似文献   

6.
《Plant Production Science》2013,16(4):419-426
Abstract

Soybean requires more nitrogen (N) than gramineous crops because it accumulates a large amount of N in seeds, and its photosynthetic rate per leaf N is low. The supernodulating genotype Sakukei 4 has a superior symbiotic N2 fixation capability, and thereby is potentially high-yielding. In our previous study, Sakukei 4 was characterized by having a superior ability to maintain high leaf N content and high photosynthetic rate. The objectives of this study were to know photosynthetic characteristics of Sakukei 4 in detail, especially, the responses to CO2 concentration and light intensity, and to elucidate how the photosynthetic characteristics of Sakukei 4 are associated with the amounts of photosynthesis-related N compounds (chlorophyll and Rubisco). The three genotypes (Sakukei 4 - supernodulating cultivar derived from Enrei, Enrei - normally nodulating cultivar, En1282-non-nodulating line derived from Enrei) were grown at various N levels in this study. The CO2 exchange rate (CER) in Sakukei 4 was higher than, or equal to that in Enrei at wide ranges of CO2 concentrations (150-700 μmol mol-1) and light intensities (200-1,500 μmol m-2 s-1 PPFD). Sakukei 4 had higher leaf N (Nl), chlorophyll (ChlL) and Rubisco (RubL) contents per leaf area, but lower chlorophyll and Rubisco contents per leaf N content (ChlL/Nl, RubL/Nl) than Enrei. The specific leaf weight (SLW) and leaf area trended to be lower in Sakukei 4 than in Enrei. These results indicate that the superior photosynthetic rate in Sakukei 4 is attributed to higher total N, chlorophyll and Rubisco contents per leaf area, but not to high rate of allocation of total N to these N compounds.  相似文献   

7.
Nitrogen (N) is one of the major nutrients influencing photosynthesis and productivity of C4 plants as well as C3 plants. C4 photosynthesis operates through close coordination between mesophyll (M) and bundle sheath (BS) cells. However, how the development of structural and physiological traits in leaves of C4 plants is regulated under N limitation remains uncertain. We investigated structural and physiological responses of leaves of the NADP-ME-type C4 grass Sorghum bicolor to N limitation. Plants were grown under four levels of N supply (.05 to .6 g N per 5-L pot). Decreasing N supply resulted in decreases in net photosynthetic rate, stomatal conductance, leaf N and chlorophyll contents, and the activity ratio of phosphoenolpyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase and increases in δ13C values and photosynthetic N use efficiency. Low-N leaves were thinner and had smaller photosynthetic cells, especially in M, resulting in lower M/BS tissue area ratio, and contained smaller and fewer chloroplasts. The BS chloroplasts in the low-N leaves accumulated abundant starch grains. The number of thylakoids per granal stack was reduced in M chloroplasts but not in BS chloroplasts. The low-N leaves had thicker cell walls, especially in the BS cells, which might be associated with less negative δ13C values, and fewer plasmodesmata in the BS cells. These data reveal structural and physiological responses of C4 plants to N limitation, most of which would be related to cellular N allocation, light use, CO2 diffusion and leakiness, and metabolite transport under N limitation.  相似文献   

8.
C4 plants show higher photosynthetic capacity and productivity than C3 plants owing to a CO2-concentrating mechanism in leaves, which reduces photorespiration. However, which traits regulate the photosynthetic capacity of C4 plants remains unclear. We investigated structural, biochemical, and physiological traits associated with photosynthesis and resource use efficiency in 20 accessions of 12 species of Amaranthus, NAD-malic enzyme-type C4 dicots. Net photosynthetic rate (PN) ranged from 19.7 to 40.5 μmol m?2 s?1. PN was positively correlated with stomatal conductance and nitrogen and chlorophyll contents of leaves and was weakly positively correlated with specific leaf weight. PN was also positively correlated with the activity of the C3 enzyme ribulose-1,5-bisphoshate carboxylase/oxygenase, but not with the activities of the C4 enzymes phosphoenolpyruvate carboxylase and NAD-malic enzyme. Structural traits of leaves (stomatal density, guard cell length, leaf thickness, interveinal distance, sizes of mesophyll and bundle sheath cells and the area ratio between these cells) were not significantly correlated with PN. These data suggest that some of the biochemical and physiological traits are involved in interspecific PN variation, whereas structural traits are not directly involved. Photosynthetic nitrogen use efficiency ranged between 260 and 458 μmol mol?1 N s?1. Photosynthetic water use efficiency ranged between 5.6 and 10.4 mmol mol?1. When these data were compared with previously published data of C4 grasses, it is suggested that common mechanisms may determine the variations in resource use efficiency in grasses and this dicot group.  相似文献   

9.
通过甲基磺酸乙酯诱变得到玉米叶早衰突变体les1(leaf early senescence 1),突变体les1从7叶期开始叶片由下往上失绿黄化,生长后期叶片黄化干枯面积逐渐增大,且突变体les1地下部分生物量及子粒变小、子粒千粒重显著降低。与叶片黄化表型一致,研究发现,突变体les1叶片中光合色素含量以及净光合速率显著降低,且突变体les1中活性氧及丙二醛大量积累,可能与叶绿素的降解及叶片早衰相关。遗传分析表明,les1的叶片早衰表型由单基因隐性突变所致,进一步通过混池建库和全基因重测序将les1的突变位点初步定位在2号染色体。  相似文献   

10.
大豆叶片棚栏细胞和海绵细胞中叶绿体数量多、体积大,基质较稠密,叶绿体基粒及片层结构较复杂。维管束鞘细胞和平脉叶肉细胞中叶绿体数目较少、体积小、基质较稀疏,叶绿体基粒及片层结构较简单。维管束薄壁细胞中叶绿体数最少、体积最小,结构最简单。叶绿体在不同细胞中的分布和结构的复杂程度与各类细胞的功能及在叶片中的解剖位置有关。  相似文献   

11.
《Plant Production Science》2013,16(5):567-577
Abstract

The changes in chloroplast ultrastructure and the contents of chlorophyll, Na and K in response to salinity stress were investigated in leaves of maize, an NADP-malic enzyme-type C4 plant species possessing dimorphic chloroplasts. The seedlings were treated with 0, 1, 2 or 3% NaCl for three or five days under a light or dark condition. In both light and dark conditions, the dry weight of salt-treated plants decreased as NaCl concentration increased. Chlorophyll and K contents of the second leaf blade decreased as NaCl concentration increased under the light condition but not under the dark condition. Na content of the second leaf blade was significantly higher at high NaCl concentrations under both light and dark conditions. However, Na content was much lower under the dark condition than light condition. Higher concentrations (2 and 3%) of NaCl significantly increased the size of plastoglobules, decreased the number and size of starch granules and altered the chloroplast ultrastructure. Under the light condition, mesophyll cell (MC) chloroplasts appeared more sensitive to the damaging effect of salinity than the bundle sheath cell (BSC) chloroplasts. MC chloroplasts became more globular in shape and showed swollen and disorganized thylakoids and reduced thickness of grana by salinity. BSC chloroplasts were less affected by salinity than MC chloroplasts. Although chloroplast size and number and size of starch granules were reduced, there was no structural distortion in the thylakoids of BSC chloroplasts. However, the thickness of grana was increased by salinity. Under the dark condition, the chloroplast structure was less affected by salinity. Though the envelope of BSC chloroplasts was occasionally damaged, the thylakoids in both MC and BSC chloroplasts were preserved under salinity stress. The present study suggests that the chloroplast damage caused by salinity is light-dependent and MC chloroplasts are more sensitive to salinity than BSC chloroplasts.  相似文献   

12.
In C3 plants, photosynthetic efficiency is reduced by photorespiration. A part of CO2 fixed during photosynthesis in chloroplasts is lost from mitochondria during photorespiration by decarboxylation of glycine by glycine decarboxylase (GDC). Thus, the intracellular position of mitochondria in photosynthetic cells is critical to the rate of photorespiratory CO2 loss. We investigated the intracellular position of mitochondria in parenchyma sheath (PS) and mesophyll cells of 10 C3 grasses from 3 subfamilies (Ehrhartoideae, Panicoideae, and Pooideae) by immunostaining for GDC and light and electron microscopic observation. Immunostaining suggested that many mitochondria were located in the inner half of PS cells and on the vacuole side of chloroplasts in mesophyll cells. Organelle quantification showed that 62–75% of PS mitochondria were located in the inner half of cells, and 62–78% of PS chloroplasts were in the outer half. In mesophyll cells, 61–92% of mitochondria were positioned on the vacuole side of chloroplasts and stromules. In PS cells, such location would reduce the loss of photorespiratory CO2 by lengthening the path of CO2 diffusion and allow more efficient fixation of CO2 from intercellular spaces. In mesophyll cells, it would facilitate scavenging by chloroplasts of photorespiratory CO2 released from mitochondria. Our data suggest that the PS cells of C3 grasses have already acquired an initial structure leading to proto-Kranz and further C3–C4 intermediate anatomy. We also found that in the Pooideae, organelle positioning in PS cells on the phloem side resembles that in mesophyll cells.  相似文献   

13.
以郑单958为材料,研究高温胁迫对夏玉米产量及叶片超微构造的影响。结果表明,高温处理缩短夏玉米的生育天数,降低夏玉米产量及叶绿素含量。随氮肥增加,高温处理对玉米产量的影响先降低后升高(在310.5 kg/hm^2氮肥下,高温处理玉米产量的降低达到27.2%、31.1%)。高温处理较对照维管束鞘细胞变大,高温处理维管束鞘细胞内的叶绿体出现淀粉粒,对照处理维管束鞘细胞内的叶绿体没有出现淀粉粒。高温线粒体及细胞核(被)膜开始解离,对照处理线粒体及细胞核(被)膜完整,说明高温条件下,玉米对氮的耐受力降低。高温处理叶绿体数、叶绿体基粒数减少及基粒片层数减少,叶绿体面积及叶绿体长/宽比值变小,高温处理较对照线粒体数先增加后减少。高温处理与对照叶肉细胞叶绿体内均未发现淀粉粒。  相似文献   

14.
《Plant Production Science》2013,16(3):285-292
Abstract

Effects of nitrogen (N) deficiency on photosynthetic gas exchange and photosystem II (PSII) photochemistry of flag leaves during grain-filling stage were investigated in six rice cultivars, Kasalath (a conventional indica), IR36 (an improved indica), Shirobeniya (a conventional japonica), Nipponbare (an improved japonica), Akenohoshi (an improved japonica-indica intermediate type) and BSI429 (an improved tropical japonica, a new plant type line) grown hydroponically in N-sufficient (NS) and N-deficient (ND) solution. From 3 to 24 days after heading (DAH), net photosynthetic rate (Pn), maximum quantum yield of photosystem II (PSII) (Fv/Fm), quantum yield of PSII electron transport ( Φpsii), and contents of chlorophyll (Chl) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the flag leaves decreased, particularly under the ND condition in all six cultivars. A substantial difference was observed among the ND plants for the sustainability index (SI, the ratio of the value at 24 DAH to that at 3 DAH) of Pn, Fv/Fm, Φpsii, Chl content and Rubisco content; SIs of those parameters of Akenohoshi, BSI429, Nipponbare and Shirobeniya were higher than those of IR36 and Kasalath. The SI of Pn showed significant positive correlations with those of Fv/Fm, Φpsii, and the contents of Chl and Rubisco under the ND condition. It was concluded that the sustainability of photosynthesis in the flag leaves was mainly due to those of PSII photochemistry and electron transport, which was associated with the maintenance of Chl and Rubisco under the ND condition.  相似文献   

15.
ABSTRACT

Overexpression of Rubisco small subunit (RbcS) of C4 plant, sorghum (sorghum bicolor) was shown to enhance the catalytic turnover rate (k cat) of Rubisco in rice (Oryza sativa). In this study, the effects of other Rubisco small subunits of C4 plants, Napier grass (Pennisetum purpureum) and guinea grass (Megathyrsus maximus) on kinetic properties of Rubisco in rice were studied. The expression levels of Napier grass RbcS (NgRbcS) and guinea grass RbcS (GgRbcS) proteins accounted for 41% and 45% of total RbcS, respectively in homozygous overexpression lines. The k cat and K m for CO2 (Kc) of Rubisco were increased in all transgenic lines. Interestingly, the k cat was markedly higher in NgRbcS homozygous line, whereas K c was notably higher in GgRbcS homozygous line. Although its effects depend on species, these results suggest that the introduction of C4 RbcS are effective approaches to alter the catalytic properties of Rubisco in rice.  相似文献   

16.
《Plant Production Science》2013,16(4):409-419
Abstract

Understanding wheat (Triticum aestivum L.) response to high shoot/root temperature during the early growth stages is important for successful production in tropical and subtropical environments. This study examined the physiological response of wheat cultivars to high shoot and/or root temperatures during early growth stages. Three cultivars; Imam, Fang and Siete Cerros were grown in soil and hydroponically at three shoot/root temperatures (23/23, 23/35 and 35/35ºC for the soil experiment; and 22/22, 22/38 and 38/38ºC for the hydroponic experiment). Leaf dry weight and leaf area plant-1 were significantly decreased by high shoot/ root temperature (HS/HR, 35/35 and 38/38ºC) but was not affected by a normal shoot/high root temperature (NS/HR, 23/35 and 22/38ºC). The NS/HR (22/38ºC) and HS/HR (38/38ºC) treatments in the hydroponic experiment significantly decreased photosystem II quantum yield ( Φpsii), photosynthetic rate (Pn) and specific leaf area (SLA) compared with the normal shoot/normal root (NS/NR, 22/22ºC) temperature treatment. Chlorophyll accumulation was significantly decreased by NS/HR, but increased significantly by HS/HR in most of the measuring dates. The heat-tolerant cultivar, Fang, always had the highest chlorophyll content, Φpsii and Pn under all temperature treatments, while the heat-sensitive cultivar, Siete Cerros, always had the greatest reduction in these traits especially towards the end of the experiment. Imam and Fang responded to HS/HR in the hydroponic experiment by immediate and greater reductions in leaf dry weight, total leaf area and SLA during the first wk of the treatments compared with Siete Cerros. The response changed with the treatments duration such that Imam showed the least reduction and Siete Cerros was the most affected cultivar towards the end of the experiment. Thus, wheat cultivars differentially responded to high shoot/root temperature by reducing the leaf weight and area and hence accumulating more chlorophyll in the diminished leaves. The failure to undergo such changes led to significantly lower chlorophyll accumulation, Φpsii and Pn under high root temperature.  相似文献   

17.
《Plant Production Science》2013,16(3):345-350
Abstract

The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major limitation of photosynthetic CO2 assimilation in C3 plants. In order to find useful Rubisco for improvement of photosynthesis in rice under elevated CO2, we analyzed the catalytic turnover rate (kcat) of Rubisco in Poaceae including C3 alpine plants, C3 cold-resistant plants and C4 plants. Rubisco in these plants showed 1.1- to 2.8-fold higher kcat than that in rice. However, the most of high kcat Rubisco also showed a higher km for CO2 (Kc) than that of rice, indicating that increase in kcat led to decrease in the affinity for CO2. Rubisco in Festuca ovina, Phleum pratense and Sorghum bicolor showed relatively high kcat to Kc. Although the kcat of Rubisco in F. ovina and P. pratense was not so high (1.5-1.6 fold relative to rice), the Kc was comparable to that in rice and the amino acid sequence of RbcL shared higher identity to that in rice than that in S. bicolor. By contrast, Rubisco of S. bicolor showed considerably high kcat (2.5-fold relative to rice), which is considered to be the most important factor for improvement of photosynthesis. In our estimation, the expression of high kcat Rubisco of F. ovina and S. bicolor in rice could significantly enhance CO2 assimilation at Ci of 50 Pa, the level assumed to be reached by the middle of this century.  相似文献   

18.
不同玉米品种叶片衰老动态变化及其化学调控   总被引:2,自引:1,他引:1  
以玉米品种豫单2002和郑单958为材料,研究叶片衰老动态变化及其化学调控效应.结果表明,与郑单958相比,豫单2002叶片在吐丝前期生长较快,中后期下部叶片功能期较短,叶片发生早衰,叶面积下降迅速,衰老速率激增,产量显著低于郑单958.经植物生长复合调节剂拌种能维持较长的叶片功能期和较大的叶面积,豫单2002增产9.8%,达到显著差异水平(P<0.05);郑单958产量与对照差异不显著.植物生长复合调节剂拌种能有效防止叶片早衰,提高玉米产量,尤其对早衰型玉米品种豫单2002.  相似文献   

19.
Abstract

We are maintaining five Moricandia arvensis monosomic addition lines of Raphanus sativus carrying R. sativus cytoplasm (autoplasmic MALs) and twelve M. arvensis MALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic MALs) from BC6 to BC8 generation, and newly produced five M. arvensis disomic addition lines of R. sativus (autoplasmic DALs) and seven M. arvensis DALs of R. sativus carrying M. arvensis cytoplasm (alloplasmic DALs) from selfing and sib-crossing of the MALs and DALs in S3BC5 and S2BC6 generations. The structural, biochemical and physiological characteristics related to photorespiration of these MALs and DALs were compared to study the genetic mechanisms of the C3-C4 intermediate photosynthesis in the individual chromosomes of M. arvensis. The CO2 compensation point of the autoplasmic and alloplasmic DALs (RMa-b and MaR-b DALs) with one pair of M. arvensis ‘b’ chromosome were 29.4 and 30.1 μmol mol-1, respectively, which were significantly lower than that of other DALs and MALs as well as R. sativus (34.5 𰂼mol mol-1). An immunogold electron microscopic study of the P-protein of glycine decarboxylase (GDC) in photosynthetic cells of the RMa-b DAL revealed that the bundle sheath cell (BSC) mitochondria were more intensively labeled for the protein than the mesophyll cell (MC) mitochondria. The ratio of the labeling density of the BSC mitochondria to that of the MC mitochondria was 1.13, which lies between values in M. arvensis (2.66) and R. sativus (0.76). These data suggest that the ‘b’ chromosome of M. arvensis genome controls the expression of C3-C4 intermediate characteristics.  相似文献   

20.
李瑞  周玮  李丽  陆巍 《中国水稻科学》2009,23(5):555-558
 以水稻低叶绿素b突变体及其野生型(镇恢249)为材料,研究了水稻第5叶叶片自然衰老过程中光合放氧、Rubisco大亚基含量变化以及对胰蛋白酶敏感性的变化,并通过喷施不同的抗氧化剂以及氧化剂研究其对Rubisco大亚基含量变化的影响。结果表明,叶片全展后随着衰老进程,突变体与野生型光合放氧速率、Rubisco大亚基相对含量呈下降趋势,抗氧化剂可以不同程度地缓解Rubisco大亚基含量的下降,而氧化剂则加速Rubisco大亚基含量的下降。低叶绿素b突变体的光合放氧速率高于野生型,Rubisco大亚基含量下降慢于野生型,并且衰老进程中突变体Rubisco大亚基对胰蛋白酶的敏感性低于野生型,推测活性氧是Rubisco降解的调节剂之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号