首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Urban green spaces can effectively regulate microclimate and improve air quality. However, the relationship between the structure of an urban green space, meteorological conditions, and the concentration distribution of different sized particles inside and outside of green spaces is unclear. In this study, a field survey was conducted on the structures of 188 green spaces in Beijing. The temperature and relative humidity were also monitored, and the concentrations of different sized particles were measured both inside and outside of the selected green spaces to comprehensively analyse the relationships between these variables and the structure of a green space. The results of structural equation modelling showed that the structure of a green space indirectly affected the concentration distribution of particulate matter (PM) through the effects of cooling and humidification, while the direct effect was not obvious. In addition, the impact mechanisms of the structure of a green space on the concentration distribution of particles differed between PM1, PM1–5, and PM5–25, primarily due to the influence of particle size and meteorological factors on the movement of PM. This study deepens the understanding of the influencing mechanisms of the structure of a green space on the concentration distribution of PM, thus providing an important reference for subsequent related field and numerical simulation research.  相似文献   

2.
3.
Exploring the relationships between plant morphological structures and PM2.5 (particulate matter < 2.5 µm in diameter) retention on leaf surfaces and determining the key factors will help to screen tree species with high-efficiency PM reduction and improve the air purification function of green spaces. PM2.5 retention experiments were conducted in a wind tunnel using 1800 branches from 30 species with different morphological structures under wind speeds of 1, 3.5, and 8 m/s. Eight comprehensive variables (PC1–PC8) of plant morphological structure were extracted by principal component analysis, and their relationships with PM2.5 retention and the main influencing factors were explored by stepwise regression models. Under all of the wind speeds, the totality characteristic (PC1) (composite variable of factors including volume and total surface area) and surface area/weight density (PC2) of plant branches and leaves were the two most significant influencing factors, and they had negative effects. In addition to the aforementioned two common key factors, the leaf size (PC5) and surface roughness (PC7) were the two key positive factors at wind speeds of 1 and 3.5 m/s, while the number of branches and leaves (PC3 and PC4, respectively) were the two key positive factors at a wind speed of 8 m/s. Generally speaking, with the increase of wind speed, the effect of leaf morphological characteristics on PM2.5 retention decreased, while the crown structure characteristics became more significant. Compared with leaf morphological characteristics, the crown morphological structure variables had greater variability and a greater impact on PM2.5 retention. Crown morphological structure should be given more importance in screening high-efficiency PM retention tree species.  相似文献   

4.
We selected 6 species of landscape plants growing under different pollution levels and performed quantitative determination of PM2.5 adsorption. We compared the measured adsorption to the leaf morphology and the water-soluble ion content. The results indicated that the pollution level and plant leaf surface PM2.5 adsorption capacity were positively correlated. There was variation in the leaf area PM2.5 adsorption capacity for plants in different locations, allowing us to determine species-specific effects and effects of different pollution levels. The results of the study have important significance to design strategies to reduce urban air particulate matter pollution and improve air quality.  相似文献   

5.
Atmospheric Particulate Matter (PM) constitutes a considerable fraction of urban air pollution, and urban greening is a potential method of mitigating this pollution. The value of living wall systems has received scant attention in this respect. This study examined the inter-species variation of particulate capture by leaves of seventeen plant species present in a living wall at New Street railway station, Birmingham, UK. The densities of different size fractions of particulate pollutants (PM1, PM2.5 and PM10) on 20 leaves per species were quantified using an Environmental Scanning Electron Microscope (ESEM) and ImageJ image-analysis software. The overall ability of plant leaves to remove PM from air was quantified using PM density and LAI (Leaf Area Index); any inter-species variations were identified using one-way Anova followed by Tukey’s pairwise comparison. This study demonstrates a considerable potential for living wall plants to remove particulate pollutants from the atmosphere. PM capture levels on leaves of different plant species were significantly different for all particle size fractions (P < 0.001). Smaller-leaved Buxus sempervirens L., Hebe albicans Cockayne, Thymus vulgaris L. and Hebe x youngii Metcalf showed significantly higher capture levels for all PM size fractions. PM densities on adaxial surfaces of the leaves were significantly higher compared to abaxial surfaces in the majority of the species studied (t-test, P < 0.05). According to EDX (Energy Dispersive X-ray) analysis, a wide spectrum of elements were captured by the leaves of the living wall plants, which were mainly typical railway exhaust particles and soil dust. Smaller leaves, and hairy and waxy leaf surfaces, appear to be leaf traits facilitating removal of PM from the air, and hence a collection of species which share these characters would probably optimize the benefit of living wall systems as atmospheric PM filters.  相似文献   

6.
Of interest to researchers and urban planners is the effect of urban forests on concentrations of ambient air pollution. Although estimates of the attenuation effect of urban vegetation on levels of air pollution have been put forward, there have been few monitored data on small-scale changes within forests, especially in urban forest patches. This study explores the spatial attenuation of particulate matter air pollution less than 10 μ in diameter (PM10) within the confines of an evergreen broadleaved urban forest patch in Christchurch, New Zealand, a city with high levels of PM10 winter air pollution. The monitoring network consisted of eight monitoring sites at various distances from the edge of the canopy and was operated on 13 winter nights when conditions were conducive for high pollution events. A negative gradient of particulate concentration was found, moving from higher mean PM10 concentrations outside the forest (mean=31.5 μg m?3) to lower concentrations deep within the forest (mean=22.4 μg m?3). A mixed-effects model applied to monitor meteorological, spatial and pollution data indicated temperature and an interaction between wind speed and temperature were also significant (P?0.05) predictors of particulate concentration. These results provide evidence of the potential role that urban forest patches may play in mitigating particulate matter air pollution and should be considered in plans for improving urban air quality.  相似文献   

7.
Apart from influencing the amount of leaf-deposited particles, tree crown morphology will influence the local distribution of atmospheric particles. Nevertheless, tree crowns are often represented very rudimentary in three-dimensional air quality models. Therefore, the influence of tree crown representation on the local ambient PM10 concentration and resulting leaf-deposited PM10 mass was evaluated, using the three-dimensional computational fluid dynamics (CFD) model ENVI-met® and ground-based LiDAR imaging. The modelled leaf-deposited PM10 mass was compared to gravimetric results within three different particle size fractions (0.2–3, 3–10 and >10 μm), obtained at 20 locations within the tree crown. Modelling of the LiDAR-derived tree crown resulted in altered atmospheric PM10 concentrations in the vicinity of the tree crown. Although this model study was limited to a single tree and model configuration, our results demonstrate that improving tree crown characteristics (shape, dimensions and LAD) affects the resulting local PM10 distribution in ENVI-met. An accurate tree crown representation seems, therefore, of great importance when aiming at modelling the local PM distribution.  相似文献   

8.
Urban greenery plays an important role in reducing air pollution, being one of the often-used, nature-based measures in sustainable and climate-resilient urban development. However, when modelling its effect on air pollution removal by dry deposition, coarse and time-limited data on vegetation properties are often included, disregarding the high spatial and temporal heterogeneity in urban forest canopies. Here, we present a detailed, physics-based approach for modelling particulate matter (PM10) and tropospheric ozone (O3) removal by urban greenery on a small scale that eliminates these constraints. Our procedure combines a dense network of low-cost optical and electrochemical air pollution sensors, and a remote sensing method for greenery structure monitoring derived from Unmanned aerial systems (UAS) imagery processed by the Structure from Motion (SfM) algorithm. This approach enabled the quantification of species- and individual-specific air pollution removal rates by woody plants throughout the growing season, exploring the high spatial and temporal variability of modelled removal rates within an urban forest. The total PM10 and O3 removal rates ranged from 7.6 g m-2 (PM10) and 12.6 g m-2 (O3) for mature trees of Acer pseudoplatanus to 0.1 g m-2 and 0.1 g m-2 for newly planted tree saplings of Salix daphnoides. The present study demonstrates that UAS-SfM can detect differences in structures among and within canopies and by involving these characteristics, they can shift the modelling of air pollution removal towards a level of individual woody plants and beyond, enabling more realistic and accurate quantification of air pollution removal. Moreover, this approach can be similarly applied when modelling other ecosystem services provided by urban greenery.  相似文献   

9.
Urban street canyon morphology plays an important role in outdoor air quality and should be considered in tree planting schemes. However, the air pollutant reduction rate by street trees in different types of street canyon has rarely been analyzed for real urban environments. Therefore, this study conducted field investigation of 15 street canyons in residential areas to assess the reduction rate of particulate matter (PM) by trees in canyons with varying aspect ratio (AR) and orientation. The species of trees planted in these streets were Sophora japonica, Populus alba 'Berolinensis' L., Salix babylonica, Fraxinus chinensis, Pinus tabulaeformis, and Ulmus pumila. In the presence of trees, the mass concentration of fine PM (PM1) decreased most in narrow canyons (AR = 1.37–3.02), while the concentration of coarse PM (PM10) decreased most in wide canyons (AR = 0.45–0.69). The PM concentration increased most with tree planting in medium canyons (AR = 0.79–1.08). Additionally, street trees reduced fine PM concentration more in canyons with a 45° angle to the prevailing wind than in canyons aligned parallel to the prevailing wind. But they reduced coarse PM more in canyons aligned parallel to the prevailing wind than in canyons with a 45° angle to the prevailing wind. In comparison with tree-free cases, tree planting weakened the correlation between AR and coarse PM concentration, whereas no difference in correlation was found between AR and fine PM concentration. Overall, street canyon morphology should be considered seriously in developing tree planting guidelines for built-up environments.  相似文献   

10.
Road and vehicle use in urban environments are key contributors to urban air pollution and increase concentrations of carbon monoxide, polyaromatic hydrocarbons and particulate matter (particles <100 μm diameter). Plants, which can intercept these pollutants, are increasingly recognised as practical mitigation methods to reduce ambient pollution, especially adjacent roadsides. We quantified particulate matter loads in 16 common native species along Sydney roadsides and linked findings to leaf traits. For each species, we tagged individuals within the first 2 m of road edges and recorded leaf area, shape and arrangement, also noting the presence of leaf hairs. We then quantified particulate matter loads deposited in each sample over three months and, for two morphologically distinct species, Acacia parramattensis and A. longifolia, the composition and concentration of metals in deposited particulate matter. We found particulate deposition varied according to species and leaf shapes but not sample months and, those species with leaf hairs accumulated significantly more particulate matter. Furthermore, we found metals associated with vehicle use including copper, chromium and manganese in collected particulate matter. Ultimately, our results highlight the importance leaf trait combinations can have in affecting particulate matter deposition.  相似文献   

11.
Fine particulate matter (PM2.5) is emerging as a serious environmental problem worldwide with the increase in anthropogenic emission sources, such as fossil fuels, transportation, and industries. In urban areas, where industrial complexes and human activities are concentrated, PM2.5 poses a threat to human health. Recently, because of their ability to reduce PM2.5, the introduction of landscaping trees as an environment-friendly solution has become popular; however, there remains a lack of research on the selection of species and their management. In this study, we quantified and compared the PM2.5 reduction capacities of 13 major landscaping tree species and analyzed their relationship with the morphological and physiological characteristics of each species. The results showed that the amount of PM2.5 reduction per leaf area differed among species and was the highest in Ginkgo biloba (28 165 ± 5353 # cm−2 min−1) and the lowest in Pinus strobus (1602 ± 186 # cm−2 min−1). Moreover, PM2.5 reduction by the broadleaf species (18 802 ± 1638 # cm−2 min−1) was approximately 8.6-fold higher than that of the needleleaf species (2194 ± 307 # cm−2 min−1). Correlation analysis revealed that differences in PM2.5 reduction were explained by differences in specific leaf area between species (P = 0.004) and by the length of margin per leaf area among individual trees (P < 0.05). Additionally, reduction in PM2.5 correlated with photosynthetic properties such as maximum assimilation and carboxylation rates (P < 0.001), indicating that PM2.5 is reduced not only by physical adsorption but also by physiological processes. These findings emphasize that for effective reduction in PM2.5 using landscaping trees, comprehensive consideration of the morphological and physiological characteristics of the species is essential during species selection, and that continuous management is also necessary to maintain the active physiological conditions of the trees.  相似文献   

12.
Activities in urban parks contribute to greater socialization and a more active lifestyle, yet such health benefits could be mingled with health concerns – e.g., extreme thermal events or hazardous air quality, which received much less attention than the benefits. Particularly, there is a lack of empirical studies on behavioral changes under different thermal and air-quality conditions. To address the research gap, this study quantitatively measured the impact of thermal environmental parameters (air temperature, humidity, wind scale) and air quality parameters (PM2.5, PM10, NO2, SO2, O3, integrated air quality index (AQI)) on the daily attendance at Haidian Park – a neighborhood park – and Chaoyang Park – an urban recreational park – in Beijing covering consecutive days from April 1, 2020 to March 31, 2021. The analysis revealed the degrees to which urban park visits were influenced by temperature and air quality. Temperature had the greatest impact on the attendance, while the impact was asymmetric: The effect of low temperature showed more elasticity than that of high temperature. The influence of air quality was not as significant as that of the air temperature. The analysis also showed that such impacts of thermal and air-quality conditions on park visits were mediated by type of activities (the everyday-recreational continuum), days (weekday/weekend), and seasons. The findings provide useful implications for tackling the wicked problem of promoting outdoor activities in parks while controlling adverse effects of thermal and air-quality conditions.  相似文献   

13.
Urban nature is of vital importance for human well-being in an increasingly urbanized world. Despite the wide variety of urban greenspaces, previous research has mostly focussed on parks and in particular presence of trees. Although streets are fundamental urban structures and offer an array of green elements beyond trees, the perception and valuation of other kinds of roadside vegetation by urban residents is understudied so far. This study explores the range of roadside vegetation and associated ecosystem services perceived by city dwellers in densely populated inner city districts of two German cities. Further, we explored how wild-grown roadside vegetation is valued by interviewees. Results confirmed the important role of trees but also demonstrated that city dwellers perceive a variety of cultivated and “wild” green components other than trees. Respondents attached a wide range of meanings and values to roadside greenery and showed a surprisingly high awareness of associated ecosystem services. Wild urban roadside vegetation met with high approval, although planted and maintained vegetation was preferred. Our study illustrated that trees and other elements of roadside vegetation fulfil important functions in the view of the public. For many respondents, ecological and economical functions of roadside vegetation were more important than orderliness. This indicates opportunities for enhancing the biodiversity of urban streetscapes. As public green spaces are in short supply in many cities, enhancing cultivated and wild roadside vegetation could help to deliver ecosystem services in the areas near where people move and live.  相似文献   

14.
This study reports, for the first time, the profiles and source analysis of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) associated with PM10 (particulate matter with aerodynamic diameter ≤10 μm) at a protected and ecologically sensitive area – the Yamuna Biodiversity Park – located in the megacity Delhi, India. Weekly PM10 sampling was carried out at this location for 1 year (2009–2010) and the annual mean PM10 level was found to be ~9 times the World Health Organization limit. Seasonal variation of PAHs (range 37.2–74.0 ng m?3) was significant with winter values being 72% and 68% higher than summer and monsoon respectively. Principal component analysis coupled with multiple linear regression identified diesel, natural gas and lubricating oil combustion (49.5%), wood combustion (25.4%), gasoline (15.5%) and coal combustion (9.6%) sources for the observed PAHs. Heavy traffic on the national highway and arterial roads and domestic emissions from suburban households in the vicinity of the park appeared to have significantly affected its air quality. A substantial portion (~55%) of the aerosol PAH load was comprised of carcinogenic species, which yielded a considerably high lifetime inhalation cancer risk estimate (8.7E?04). If considered as a conservative lower-bound estimate, this risk translates into ~211 excess cancer cases for lifetime inhalation exposure to the observed PAH concentrations in Delhi.  相似文献   

15.
Vertical greenery systems (VGSs) have been adopted in city planning operations to mitigate excess heat in hot and humid subtropical cities. This study focused on the influence of different arrangements of vertical greening on pedestrian thermal comfort and particulate matter with a diameter of 10 µm (PM10) in street canyons. In this paper, the ENVI-met computational fluid dynamics (CFD) method was used to investigate the effects of different façade greenery arrangements with the same amount of greenery in the Nan Hai Yi Ku (NHYK) industrial district. On-site measurements were used to validate the simulation results in a transition season. The results showed that greening façades could improve pedestrians' thermal comfort with physiological equivalent temperature (PET) value reductions varying from 0.17 °C to 1.4 °C. Under a certain amount of greenery, the critical factor determining pedestrians' thermal comfort was the coverage rate of the greening façade near the pedestrian level. Specifically, increasing the greening façade coverage near the lower parts of street canyons could enhance the pedestrian-level cooling effect. In addition, the VGSs positively affected the pedestrian-level air quality in the street canyons. Nevertheless, the changes in pedestrian-level PM10 concentration induced by the presence of VGSs were not very obvious under the building-parallel wind direction.  相似文献   

16.
Urban forests (UF) provide a range of important ecosystem services (ES) for human well-being. Relevant ES delivered by UF include urban temperature regulation, runoff mitigation, noise reduction, recreation, and air purification. In this study the potential of air pollution removal by UF in the city of Florence (Italy) was investigated. Two main air pollutants were considered – particulate matter (PM10) and tropospheric ozone (O3) – with the aim of providing a methodological framework for mapping air pollutant removal by UF and assessing the percent removal of air pollutant.The distribution of UF was mapped by high spatial resolution remote sensing data and classified into seven forest categories. The Leaf Area Index (LAI) was estimated spatially using a regression model between in-field LAI survey and Airborne Laser Scanning data and it was found to be in good linear agreement with estimates from ground-based measurements (R2 = 0.88 and RMSE% = 11%). We applied pollution deposition equations by using pollution concentrations measured at urban monitoring stations and then estimated the pollutant removal potential of the UF: annual O3 and PM10 removal accounted for 77.9 t and 171.3 t, respectively. O3 and PM10 removal rates by evergreen broadleaves (16.1 and 27.3 g/m2), conifers (10.9 and 28.5 g/m2), and mixed evergreen species (15.8 and 31.7 g/m2) were higher than by deciduous broadleaf stands (4.1 and 10 g/m2). However, deciduous forests exhibited the largest total removal due to the high percentage of tree cover within the city. The present study confirms that UF play an important role in air purification in Mediterranean cities as they can remove monthly up to 5% of O3 and 13% of PM10.  相似文献   

17.
The coronavirus disease (COVID-19) has had a great global impact on human health, the life of people, and economies all over the world. However, in general, COVID-19´s effect on air quality has been positive due to the restrictions on social and economic activity. This study aimed to assess the impact on air quality and metal deposition of actions taken to reduce mobility in 2020 in two different urban locations. For this purpose, we analysed air pollution (NO2, NO, NOx, SO2, CO, PM10, O3) and metal accumulation in leaves of Tilia cordata collected from April to September 2020 in two cities in northern Spain (Pamplona-PA and San Sebastián-SS). We compared their values with data from the previous year (2019) (in which there were no mobility restrictions) obtained under an identical experimental design. We found that metal accumulation was mostly lower during 2020 (compared with 2019), and lockdown caused significant reductions in urban air pollution. Nitrogen oxides decreased by 33%−44%, CO by 24%−38%, and PM10 by 16%−24%. The contents of traffic-related metals were significantly reduced in both studied cities. More specifically, significant decreases in metals related to tyre and brake wear (Zn, Fe, and Cu) and road dust resuspension (Al, Ti, Fe, Mn, and Ca) were observed. With these results, we conclude that the main reason for the improvement in urban air pollutants and metals was the reduction in the use of cars due to COVID-19 lockdown. In addition, we offer some evidence indicating the suitability of T. cordata leaves as a tool for biomonitoring metal accumulation. This information is relevant for future use by the scientific community and policy makers to implement measures to reduce traffic air pollution in urban areas and to improve environmental and human health.  相似文献   

18.
Atmospheric pollution is a threatening problem around the world, with tropospheric ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10) among the most harmful pollutants for citizens’ health. Nature-based solutions such as urban trees can cut down air concentrations of these pollutants thanks to stomatal uptake and dry deposition on their canopies and, in addition, uptake carbon dioxide (CO2) and store carbon in their tissues. Unfortunately, some species emit biogenic Volatile Organic Compounds (bVOCs) that are O3-precursors leading to air quality deterioration. As a proper selection of species is essential for urban greening, we developed an innovative single-tree model (FlorTree) to estimate the maximum flux of air pollutants. FlorTree considered species-specific parameters, such as tree morphology (height and crown leaf area), leaf/shoot structure, leaf habit (deciduous/evergreen) and eco-physiological responses to environmental factors, for 221 urban tree and shrub species. We applied the FlorTree model to examine i) which are the best species for air pollution removal in the case study of Florence (Italy) and ii) whether the species-specific removal performance is affected by different climate and air pollution conditions in other cities, namely Bucharest (Romania) and Tokyo (Japan). Results suggested that 24 tall trees (mainly broadleaves belonging to Tilia, Acer and Fraxinus genus) may be recommended for Florence due to their large crowns at maturity (50 years old), relatively high stomatal conductance and no bVOCs release. These general characteristics, however, were affected by climatic and pollutant conditions, suggesting that FlorTree must be applied to the local conditions. Therefore, our results demonstrated that FlorTree can be applied in any city for maximizing the air quality improvement by urban trees.  相似文献   

19.
The application of de-icing salts for winter road maintenance is recognized as a major contributor to the decline of urban trees. We conducted a long-term monitoring program across several locations in the City of Edmonton (Alberta, Canada) to evaluate the impact of roadway salt application on tree species widely planted in boulevards and right-of-ways: Ulmus americana, Fraxinus pennsylvanica, Pinus contorta, and Picea glauca. Soil and leaf samples were collected from a total of 16 sites over six years. There were four sites selected for each tree species: three mid- to high- traffic roadside sites that received regular winter maintenance and one non-serviced site (control). Sampling was performed three times per year from late spring to late summer. Airborne salinity was assessed in four locations at different distances from the road. In 50% of the roadside sites, soil electrical conductivity (EC) values exceeded 2 dS m−1. Soil pH in all of the roadside sites was also significantly higher than in the control sites, with values ranging from 7.6 to 8.5. In all four species, trees growing in sites with high soil EC had increased leaf Na concentrations and reduced leaf chlorophyll concentrations. Among the airborne monitoring sites, Na deposition in high traffic locations was over four-fold higher than those measured in the control location. Furthermore, Na levels remained relatively high at 20–50 m from the main road. Our data suggest that while soil salinity is among the main stressors affecting roadside trees in Edmonton, salt spray deposition may also have a significant impact on trees located close to high vehicle traffic areas and dense road networks. Our study highlights the importance of collecting data over several years and from multiple locations to account for the spatial and temporal heterogeneity of the urban environments in order to better evaluate the impact of road salt application on urban trees.  相似文献   

20.
The purpose of this study was to determine the types and structures of small green spaces (SGs) that effectively reduce air temperature in urban blocks. Six highly developed blocks in Seoul, South Korea served as the research sites for this study. Air temperature was measured at the street level with mobile loggers on clear summer days from August to September in 2012. The measurements were repeated three times a day for three days. By analyzing the spatial characteristics, SGs within the six blocks were categorized into the four major types: polygonal, linear, single, and mixed. The result revealed that the polygonal and mixed types of SGs showed simple linear regression at a significant level (p < 0.01). It indicated that the blocks’ urban heat island (UHI) mitigation (ΔTRmn) increased in a linear fashion when the area and volume of these two types of green spaces increased. The area and volume of a polygonal SG with mixed vegetation, over 300 m2 and 2300 m3, respectively, lowered the ΔTRmn by 1 °C; SG with an area and volume of larger than 650 m2 and 5000 m3, respectively, lowered the ΔTRmn by 2 °C. The results of this study will be useful to urban planners and designers for determine the types and structures of urban green spaces to optimize the cooling effect, as well as how such green spaces should be designed and distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号