首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Habitat area and isolation have been useful predictors of species occupancy and turnover in highly fragmented systems. However, habitat quality also can influence occupancy dynamics, especially in patchy systems where habitat selection can be as important as stochastic demographic processes. We studied the spatial population dynamics of Chrysemys picta (painted turtle) in a network of 90 wetlands in Illinois, USA from 2007 to 2009. We first evaluated the relative influence of metapopulation factors (area, isolation) and habitat quality of focal patches on occupancy and turnover. Next, we tested the effect of habitat quality of source patches on occupancy and turnover at focal patches. Turnover was common with colonizations (n = 16) outnumbering extinctions (n = 10) between the first 2 years, and extinctions (n = 16) outnumbering colonizations (n = 3) between the second 2 years. Both metapopulation and habitat quality factors influenced C. picta occupancy dynamics. Colonization probability was related positively to spatial connectivity, wetland area, and habitat quality (wetland inundation, emergent vegetation cover). Extinction probability was related negatively to wetland area and emergent vegetation cover. Habitat quality of source patches strongly influenced initial occupancy but not turnover patterns. Because habitat quality for freshwater turtles is related to wetland hydrology, a change from drought to wet conditions during our study likely influenced distributional shifts. Thus, effects of habitat quality of source and focal patches on occupancy can vary in space and time. Both metapopulation and habitat quality factors may be needed to understand occupancy dynamics, even for species exhibiting patchy population structures.  相似文献   

2.
Conservation strategies should be based on a solid understanding of processes underlying species response to landscape change. In forests fragmented by agriculture, elevated nest predation rates have been reported in many forest bird species, especially near edges. In intensively-managed forest landscapes, timber harvesting might also be associated with negative edge effects or broader “context” effects on some species when the matrix provides additional resources to their major nest predators. In this study, we hypothesized that proximity to a forest edge and proportion of cone-producing plantations will increase nest predation risk in fragments of relatively undisturbed forest. We focused on the Brown Creeper (Certhia americana), an indicator species of late-seral forests. We compared habitat configuration and composition at four spatial scales (0.14, 0.5, 1 and 2 km) around 54 nests and related daily nest survival rate to the distance to the nearest forest edge, mean patch size of late-seral forest (r = 141 m), proportion of non-forested lands (r = 141 m), density of maintained roads (r = 1 km), proportion of cone-producing spruce plantations (r = 2 km), and year. The best model included distance to the nearest edge and proportion of cone-producing plantations. Distance of nests to the nearest edge was the best individual predictor of daily nest survival. A larger sample of nests showed a significant threshold in distance to the nearest forest edge; nests located at least 100 m away were more likely to fledge young. These results suggest that even in managed forest landscapes, matrix effects can be important and some bird species may exhibit negative edge effects.  相似文献   

3.
There are sporadic reports on urban forests in Indian cities. Nagpur is one of the greenest cities of India with 18 per cent of its area under forests and plantations, 17 per cent under cultivation and 2 per cent under water bodies. The present study showed that natural vegetation of the city is very well diversified with a representation of 59 per cent vegetation including 124 trees species belonging to 38 families as compared with the overall district vegetation statistics. Air quality in the city is relatively better with lower SO2 (6 μg/m3), NO2 (18 μg/m3) and Respirable Suspended Particulate Matters (RSPM, 53 μg/m3) as against National Ambient Air Quality Standards (2009) for cities in India of 80, 80 and 100 μg/m3, respectively. It was also noted that the diversity in natural forests which are being protected is greater than the plantations undertaken by the civic authorities and private sector efforts. The study thus demonstrated the positive relationship of the city with diversified vegetation cover for cleaner environment. The analysis is expected to guide formulation of strategies for maintaining green space in the city.  相似文献   

4.
《Scientia Horticulturae》2005,107(1):90-96
Somatic embryogenic cell suspension cultures of four ginger cultivars were established. Somatic embryogenic calli were induced from ginger shoot tips on MS agar medium supplemented with 1.0 mg l−1 2,4-D and 0.2 mg l−1 Kn, which contained only half concentration of NH4NO3. Rapid-growing and well-dispersed suspension cultures were established by subculturing this kind of callus in the same liquid MSN medium. The suspension cultures (about 1–2 mm in diameter) were placed on the MSN agar medium for callus proliferation. Thereafter embryogenic callus (1.5 cm2) was transferred to solid media (MS + 0.2 mg l−1 2,4-D + 5.0 mg l−1 BA + 3% sucrose + 0.7% agar). Somatic embryos produced shoots and roots, and shoots developed into complete plantlets on solid MS medium supplemented with 3.0 mg l−1 BA and 0.1 mg l−1 NAA. The relationship between the DW of suspension cultures and pH changes in medium is also discussed. The suspension cultures still kept their vitalities after subculture for 8 months.  相似文献   

5.
The aim of this study was to examine predictors of beliefs about urban fringe forests among urban residents in Sweden (n = 586). Based on a cognitive hierarchical model, the study investigated how socio-demographic variables, as well as different values and beliefs, were related to the more specific beliefs urban residents have about urban fringe forests. Results demonstrated that the urban fringe forest was perceived to be essential for personal wellbeing, but preservation and accessibility to the forest were also important. Certain differences between socio-demographic groups were identified; for example, the importance of urban fringe forests for personal wellbeing was emphasized more by women, older people and those with a university degree. However, the importance of socio-demographic variables was modest compared with the influence of people's values and beliefs. More specifically, results showed that urban residents’ basic values and ecological worldview, as well as forest values and beliefs (i.e., concerning forest qualities and forest requirements), were important in explaining their beliefs about urban fringe forests. Overall, the study revealed that urban residents are characterized by a heterogeneous set of beliefs concerning urban fringe forests. Recognizing these multiple beliefs in urban fringe forest development processes may help mitigate future conflicts between forest visitors, urban planners, forest owners and forest managers, thus enhancing our way toward good urban living environments.  相似文献   

6.
Urbanization introduces uncertainties to the biodiversity of plant communities. The perception of biodiversity can be associated with positive mental health and well-being, but direct evidence is still insufficient. In this study, we collected data about plant biodiversity assessments from studies on urban forests in the literature of China’s national knowledge infrastructure. Records of the species amount, Shannon index, and Simpson index were extracted from 49 urban forest parks in 13 cities across mainland China from 2018 to 2021. A total of 1938 facial photos were obtained from microblogs with check-in locations at these parks in the Sina Microblog in 2020. Happy, sad, and neutral emotions and positive response index (PRI; happy minus sad) were rated and mapped for spatial distributions. The amount of species was distributed as a heterogeneous pattern for all plant types, and biodiversity was higher in the northern regions (e.g., ~55% in Qingdao and over 50% in Taiyuan) than in southern cities along the Yangtze River (e.g., ~35% in Huaihua and Changsha). Trees did not account for the association of biodiversity with emotional expressions. Smiles were elicited mostly in parks with more diverse shrubs (Shannon index: R=0.4335; P = 0.0029) and herbs (R=0.6162; P = 0.0008). Females showed more smiles than males (47% vs. 32%, respectively; F=39.15, P < 0.0001), and happy emotions tended to be higher in older visitors (senior vs. younger: 58% vs. 43%, respectively; F=2.72, P = 0.0280). Overall, we recommend visiting parks in northern cities of China for the benefit of evoking positive emotions through experiencing abundant undergrowth species. Female visitors would benefit more than males in the promotion of mental well-being by perceiving diverse shrubs and herbs in urban forest parks.  相似文献   

7.
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

8.
Leaf area of urban vegetation is an important ecological characteristic, influencing urban climate through shading and transpiration cooling and air quality through air pollutant deposition. Accurate estimates of leaf area over large areas are fundamental to model such processes. The aim of this study was to explore if an aerial LiDAR dataset acquired to create a high resolution digital terrain model could be used to map effective leaf area index (Le) and to assess the Le variation in a high latitude urban area, here represented by the city of Gothenburg, Sweden. Le was estimated from LiDAR data using a Beer-Lambert law based approach and compared to ground-based measurements with hemispherical photography and the Plant Canopy Analyser LAI-2200. Even though the LiDAR dataset was not optimized for Le mapping, the comparison with hemispherical photography showed good agreement (r2 = 0.72, RMSE = 0.97) for urban parks and woodlands. Leaf area density of single trees, estimated from LiDAR and LAI-2200, did not show as good agreement (r2 = 0.53, RMSE = 0.49). Le in 10 m resolution covering most of Gothenburg municipality ranged from 0 to 14 (0.3% of the values >7) with an average Le of 3.5 in deciduous forests and 1.2 in urban built-up areas. When Le was averaged over larger scales there was a high correlation with canopy cover (r2 = 0.97 in 1 × 1 km2 scale) implying that at this scale Le is rather homogenous. However, when Le was averaged only over the vegetated parts, differences in Le became clear. Detailed study of Le in seven urban green areas with different amount and type of greenery showed a large variation in Le, ranging from average Le of 0.9 in a residential area to 4.1 in an urban woodland. The use of LiDAR data has the potential to considerably increase information of forest structure in the urban environment.  相似文献   

9.
Fine particulate matter (PM2.5) is emerging as a serious environmental problem worldwide with the increase in anthropogenic emission sources, such as fossil fuels, transportation, and industries. In urban areas, where industrial complexes and human activities are concentrated, PM2.5 poses a threat to human health. Recently, because of their ability to reduce PM2.5, the introduction of landscaping trees as an environment-friendly solution has become popular; however, there remains a lack of research on the selection of species and their management. In this study, we quantified and compared the PM2.5 reduction capacities of 13 major landscaping tree species and analyzed their relationship with the morphological and physiological characteristics of each species. The results showed that the amount of PM2.5 reduction per leaf area differed among species and was the highest in Ginkgo biloba (28 165 ± 5353 # cm−2 min−1) and the lowest in Pinus strobus (1602 ± 186 # cm−2 min−1). Moreover, PM2.5 reduction by the broadleaf species (18 802 ± 1638 # cm−2 min−1) was approximately 8.6-fold higher than that of the needleleaf species (2194 ± 307 # cm−2 min−1). Correlation analysis revealed that differences in PM2.5 reduction were explained by differences in specific leaf area between species (P = 0.004) and by the length of margin per leaf area among individual trees (P < 0.05). Additionally, reduction in PM2.5 correlated with photosynthetic properties such as maximum assimilation and carboxylation rates (P < 0.001), indicating that PM2.5 is reduced not only by physical adsorption but also by physiological processes. These findings emphasize that for effective reduction in PM2.5 using landscaping trees, comprehensive consideration of the morphological and physiological characteristics of the species is essential during species selection, and that continuous management is also necessary to maintain the active physiological conditions of the trees.  相似文献   

10.
Urban structural units (USUs) are work (or similar) units in urbanized areas. In this study, USUs based on urban land use and land cover were used to explain and compare urban ecological conditions within Beijing. This study focused on the spatial pattern of land use for different USUs in urban areas. The results showed that 453 USUs belong to 12 primary USUs and to 38 different secondary USUs. The percentage of built-up area was highest in those regions with hotels, and lowest in areas with cemeteries. The percentage of woodland area was highest in primary and middle schools, and the lowest in entertainment plazas. The percentage of grassland area was highest in farmland or orchards, and lowest in Siheyuan (courtyards). The percentage of green space is highest in lands dedicated to middle and primary schools, and lowest in areas with museums. There is no significant linear relationship between construction period and green space percentage in Colleges/Universities (R = 0.045, p = 0.806 > 0.05) and Parks (R = 0.13, p = 0.43 > 0.05). However, there was an inverted-U curve relationship with the relevant housing price in the residential area, a relationship that can be described by the equation: f = 17736.45 + 348.21x ? 4.15 x2, p = 0.0022 < 0.05. This relationship implied that the socio-economic factors like housing prices may be a factor in determining the green space pattern of urban ecosystems in Beijing.  相似文献   

11.
Huston’s Dynamic Equilibrium Hypothesis predicts that the response of biodiversity to disturbance varies with productivity. Because disturbance is thought to break competitive advantage of dominant species in productive ecosystems, species richness is predicted to increase with disturbance frequency in productive systems. Recovery of plant biomass following disturbance is also predicted to be faster in productive systems. Here we provide the first test of Huston’s hypothesis in the context of setting harvest rates in managed forests for achieving biodiversity objectives. We examined predictions relating to vegetation and bird response to disturbance and succession in productive and less productive forests in western Oregon and Washington, USA. We found that measurements of understory cover and shrub diversity were higher in young, productive stands than less productive stands of similar age. Later-seral forests in productive environments (mean age = 67 years) had less variable and more complete canopy closure than similar-age forests in less favorable settings. At the stand scale, bird abundance and richness decreased with canopy closure in highly productive forests whereas bird abundance and richness increased with canopy closure in less productive forests. At the landscape scale, bird abundance and richness within stands increased with increasing levels of disturbance in the surrounding landscape within highly productive forests, whereas bird abundance and richness decreased with increasing disturbance in the surrounding landscape within less productive forests. Our results indicate that bird response to disturbance varies across levels of productivity and suggest that bird species abundance and associated species richness will be maximized through relatively more frequent disturbance in highly productive systems.  相似文献   

12.
Green roofs are promoted as an effective nature-based urban heat island mitigation strategy. Green roof cooling and energy-saving benefits have been simulated for various climatic zones, but mainly at the building scale. Due to a lack of fact-based information on neighborhood cooling benefits, green roof construction lags and has rarely been incorporated into urban planning actions. This study investigated the thermal benefits and energy savings of green roofs for the central area of the Xianlin Campus of Nanjing University at the neighborhood scale. Three scenarios were simulated for a hot summer day using a validated ENVI-met model: a base case (S0), extensive green roofs (EGRs) (S1), and intensive green roofs (IGRs) (S2). The air temperature cooling benefit from green roofs extended downwards to the pedestrian level. The EGR scenario achieved a maximum 0.29 °C air temperature reduction at the pedestrian level and 0.37 °C at the rooftop level. The IGR scenario achieved a maximum 0.35 °C air temperature reduction at the pedestrian level and 0.45 °C at the rooftop level. EGRs and IGRs reduced energy demands for air-conditioning by 0.39 kWh·m−2·d−1 and 0.56 kWh·m−2·d−1 and CO2 emissions by 31,997 kg·d−1 and 45,967 kg·d−1, respectively. These results confirm that green roofs yield substantial cooling and carbon mitigation benefits. Our study provides essential data to establish green roofs as mainstream cooling technology in subtropical cities. The results also imply that urban planners and policymakers may need to embrace the implementation of green roofs in long-term planning and building design practices to improve urban thermal environments, reduce building energy demand, and curb carbon emissions.  相似文献   

13.
Urbanisation is increasing tremendously in some parts of the world. Consequently, many rural forests may become depleted, although many opportunities exist for urban forests to increase. However, few studies have quantified the carbon (C) sequestration capacities of urban and rural forests in specific climatic zones. The present study compared carbon sequestration in two temperate deciduous forests located in Nagoya and Toyota, central Japan. The Nagoya University forest represented an urban forest, and a site in Toyota represented a rural forest. The urban forest at Nagoya University had comparatively smaller areas of green space and larger areas of buildings and roads. Land uses for building and road, which are typical of urban areas, result in smaller diurnal temperature ranges but higher air temperature, vapour pressure deficit, and atmospheric carbon dioxide (CO2) concentration. The urban forest in this study exhibited higher gross ecosystem exchange (GEE), especially in the active growing season from May to September, suggesting the possible effect of CO2 fertilisation. However, higher air temperatures caused comparatively smaller net ecosystem exchange (NEE) because of higher ecosystem respiration (RE). Although both forests functioned as CO2 sinks at annual time scales, the rural Toyota forest site (5.43 t C ha–1 yr–1) had 36% higher net ecosystem production (NEP=–NEE; the negative sign indicates uptake by the forest ecosystem from the atmosphere) than that at the urban forest. The higher normalised respiration (i.e., RE/GPP ratio; GPP=–GEE where GPP represents gross primary production) at the Nagoya University forest might be attributable to factors associated with the degree of urbanisation. Thus, in temperate forests, factors associated with urbanisation may reduce the atmospheric carbon sink function by accelerating respiration. This is an issue of global interest, as many countries are experiencing rapid urbanisation.  相似文献   

14.
Human modification of forest habitats is a major component of global environmental change. Even areas that remain predominantly forested may be changed considerably by human alteration of historical disturbance regimes. To better understand human influences on the abundance and pattern of forest habitats, we studied forest land cover change from 1936 to 1996 in a 25000 km2 landscape in the Oregon (USA) Coast Range. We integrated historical forest survey data and maps from 1936 with satellite imagery and GIS data from 1996 to quantify changes in major forest cover types. Change in the total area of closed-canopy forests was relatively minor, decreasing from 68% of the landscape in 1936 to 65% in 1996. In contrast, large-conifer forests decreased from 42% in 1936 to 17% in 1996, whereas small-conifer forests increased from 21% of the landscape in 1936 to 39% in 1996. Linear regression models were used to predict changes in the proportion of large conifer forest as a function of socioeconomic and environmental variables at scales of subbasins (mean size = 1964 km2, n=13), watersheds (mean size = 302 km2, n=83), and subwatersheds (mean size = 18 km2, n=1325). The proportion of land in private ownership was the strongest predictor at all three spatial scales (partial R2 values 0.57–0.76). The amounts of variation explained by other independent variables were comparatively minor. Results corroborate the hypothesis that differing management regimes on private and public ownerships have led to different pathways of landscape change. Furthermore, these distinctive trajectories are consistent over a broad domain of spatial scales.  相似文献   

15.
Predator stimuli created by humans in the urban environment may alter animals’ anti-predator behaviors. I hypothesized that habituation would cause anti-predator behaviors to decrease in urban settings in response to humans. Additionally, I hypothesized that populations habituated to humans would show reduced responses to other predator stimuli. I observed three populations of squirrels (urban, suburban and rural) responses to human approaches, red-tailed hawk vocalizations (Buteo jamaicensis) and coyote (Canis latrans) vocalizations. Mahalanobis distances of anti-predator behaviors in response to human approaches were consistent with the urban–rural gradient. Flight initiation distances (X 2 = 26.33, df = 2, P < 0.001) and amount of time dedicated to anti-predator behavior (X 2 = 10.94, df = 2, P = 0.004) in response to human approaches were also consistent with the urban–rural gradient. Supporting the habituation hypothesis, naive juvenile squirrels increased flight initiation distances (X 2 = 35.89, df = 1, P < 0.001) and time dedicated to anti-predator behaviors (X 2 = 9.46, df = 1, P = 0.002) relative to adult squirrels in the same urban environment. Time dedicated to anti-predator behaviors differed among all three sites in response to both coyote (X 2 = 9.83, df = 2, P = 0.007) and hawk (X 2 = 6.50, df = 2, P = 0.035) vocalizations. Responses to both vocalizations on rural sites (coyote = 45%, hawk = 55%) greater than twice that found on the urban sites (coyote = 11%, hawk = 20%). This is possibly the first case of a transfer of habituation demonstrated under field conditions.  相似文献   

16.
Accurately mapping carbon stocks of urban trees is necessary for urban managers to design strategies to mitigate climate change. However, the aboveground carbon stocks of urban trees are usually underestimated by passive remote sensing data because of the signal saturation problem. The research is the first attempt to develop a framework to map aboveground carbon density of trees in urban areas by synergizing Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) LiDAR data with Gaofen-2 (GF-2) imagery. The framework consists of three key steps. First, we used a support vector machine classifier to classify GF-2 images and extracted urban tree regions. Second, we estimated the tree carbon density of ICESat-2 strips by developing a ICESat-2 photon feature-based aboveground carbon density estimation model. Third, we mapped the carbon density of urban trees by developing a synergistic model between ICESat-2 and GF-2 data based on an object-oriented method. We tested the approach for the areas within the fifth ring road of Beijing, China. The results showed that the 50th percentile height (PH50) of nighttime photons was a good predictor for estimating carbon density of urban trees, with a R2 of 0.69 and a Root Mean Square Error (RMSE) of 2.81 kg C m−2. Using the spectral features generated by GF-2 imagery, we could further extrapolate the carbon density estimated by ICESat-2 strip data to a full coverage of accurate mapping carbon density by urban trees, resulting in a R2 of 0.64 and a RMSE of 2.32 kg C m−2. The carbon stocks within the fifth ring road of Beijing were 8.28 × 108 kg in total, with the mean carbon density of 3.52 kg C m−2. Such estimations were larger than that of previous study using passive remote sensing data only, suggesting the integration of spaceborne LiDAR and spectral data could greatly reduce the underestimation of carbon stocks of urban trees. Our approach can more accurately estimate carbon stocks of urban trees and has the potential to be applicable in other cities.  相似文献   

17.
Urban parks form the largest proportion of public green spaces contributing to both physical and mental well-being of people living in urban areas. CO2 sequestration capability of the vegetation developing in parks of four historical residences (Villa Pamphjli, Villa Ada Savoia, Villa Borghese and Villa Torlonia) in Rome and its economic value were analyzed. Villa Pamphjli and Villa Ada Savoia having a larger vegetation extension (165.04 ha and 134.33 ha, respectively), also had a larger total yearly CO2 sequestration per hectare (CS) (780 MgCO2 ha−1 year−1 and 998 MgCO2 ha−1 year−1, respectively) than Villa Borghese (664 MgCO2 ha−1 year−1) and Villa Torlonia (755 MgCO2 ha−1 year−1), which had a lower vegetation extension (56.72 ha and 9.70 ha, respectively). CS was significantly correlated with leaf area index (LAI). The calculated CS for the four parks (3197 MgCO2 ha−1 year−1), corresponding to 3.6% of the total greenhouse gas emissions of Rome for 2010, resulted in an annual economic value of $ 23537 /ha.  相似文献   

18.
Urban forests can play an important role in mitigating the impacts of climate change by reducing atmospheric carbon dioxide (CO2). Quantification of carbon (C) storage and sequestration by urban forests is critical for the assessment of the actual and potential role of urban forests in reducing atmospheric CO2. This paper provides a case study of the quantification of C storage and sequestration by urban forests in Shenyang, a heavily industrialized city in northeastern China. The C storage and sequestration were estimated by biomass equations, using field survey data and urban forests data derived from high-resolution QuickBird images. The benefits of C storage and sequestration were estimated by monetary values, as well as the role of urban forests on offsetting C emissions from fossil fuel combustion. The results showed that the urban forests in areas within the third-ring road of Shenyang stored 337,000 t C (RMB92.02 million, or $ 13.88 million), with a C sequestration rate of 29,000 t/yr (RMB7.88 million, or $ 1.19 million). The C stored by urban forests equaled to 3.02% of the annual C emissions from fossil fuel combustion, and C sequestration could offset 0.26% of the annual C emissions in Shenyang. In addition, our results indicated that the C storage and sequestration rate varied among urban forest types with different species composition and age structure. These results can be used to help assess the actual and potential role of urban forests in reducing atmospheric CO2 in Shenyang. In addition, they provide insights for decision-makers and the public to better understand the role of urban forests, and make better management plans for urban forests.  相似文献   

19.
The influence of forest edge on Pinus sylvestris bark pH was evaluated in urban and suburban pine forests in Yekaterinburg (South Taiga subzone, Central Urals, Russia). The measurements was conducted in 18 transects (rows of 6–10 sample plots arranged in pairs along a 100–260 m line perpendicular to the forest boundary); 12 transects (110 plots) were located in the urban forest and 6 transects (58 plots) in the suburban forest. All the characteristics studied (degree of urbanization, distance from forest boundary, and type and age of boundary), were found to have a significant effect on the pH of P. sylvestris bark. Bark alkalinization increased on average by 0.2 to 0.5 pH units above background along a gradient from the forest interior to the forest edge. In urban forests, the edge influence was about twice greater (0.6–0.8 pH units) than in suburban forests (0.2–0.3 pH units), while the depth ranged between 70 and 160 m. Little variation in the depth of the edge influence observed due to transect characteristics, and no differences were noted due to degree of urbanization. The range of the edge influence was cumulative over the time that had elapsed since forest fragmentation and highway construction. The results show that urban airborne dust pollution affects southern taiga pine forests to a depth of about 100 to 150 meters from forest boundary. This circumstance is important to take into account when planning the locations of the borders of forests, roads, residential and social areas.  相似文献   

20.
In this paper the results of the first comprehensive study on perception of and satisfaction with urban forests and green space in seven Southeast European cities are presented. The aims of the paper are to analyse 1) citizen perceptions of the current state of urban forests and green space in their cities, 2) to what extent current urban forests and green space meet their needs and how this can be improved. A cross-sectional study was conducted by using a common face-to-face survey questionnaire. Respondents were selected based on census data though a stratified sampling procedure by taking into account age, gender and city district (n = 384 in each city). The results showed that citizens genuinely care for urban forests and green space in their cities, but are not satisfied with their current state. The respondents found issues related to misbehaviour of other users, the presence and quality of facilities, as well as the presence and quality of management or maintenance the most pressing. There were more statistically significant differences than similarities between cities. Socioeconomic variables explained perceptions only to some extent. Citizens were very supportive of educational campaigns about the importance of urban forests and green space as well as of better enforcement of the existing regulations though having more community wardens that were expected to tackle current unsatisfactory situations. Urban planning and urban forest and green space management in these cities are facing many problems characteristic for post-socialist countries. Study findings are expected to contribute to decision making in urban planning and natural resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号