首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
Twelve Alstroemeria species, two hybrids, one cv. ‘Jubilee’, an anther-cultured plant from cultivar ‘Jubilee,’ and Bomarea salsilla and Leontochir ovallei (the latter two were chosen as outgroup) were evaluated using the AFLP marker technique in order to identify putative parental genotypes of the Alstroemeria cv. ‘Jubilee’ and of known interspecific hybrids, and to estimate their genetic relationships within the genus Alstroemeria. A total of 297 AFLP markers were scored by using the primer combination (E + ACCA/M + CTAG). In order to discriminate all Alstroemeria genotypes, cluster analysis (UPGMA) and principal coordinates analysis were performed. The Alstroemeria cv. ‘Jubilee’, of which the parents are unknown, had genetic distance (GD) 0.54 from Alstroemeria exserens, GD 0.57 from Alstroemeria garaventae, GD 0.62 from Alstroemeria gayana, and GD 0.66 from Alstroemeria hookeri cumminghiana. Thus, these four species are considered as putative parental genotypes. An interspecific hybrid (Alstroemeria aurea × Alstroemeria inodora), showed the smallest genetic distance from A. aurea (GD 0.56) and A. inodora (GD 0.45). The Alstroemeria ligtu group was distantly allocated from other Chilean species. We conclude that the AFLP marker technique appears to be a satisfactory tool for identifying the parental genotypes of interspecific hybrids in Alstroemeria.  相似文献   

2.
The Alternaria Brown Spot, caused by Alternaria alternata, is a major fungal disease in some kinds of tangerines, tangor, mandarins and pomelos. In Brazil as well as worldwide, A. alternata can cause necrosis in fruits, branches and leaves, causing substantial profit loss. In the present research, in laboratory conditions and in the field, we evaluated the resistance to the fungus, in leaves and fruits, for 22 varieties and hybrids of tangerines. To this end, we evaluated genotypes belonging to the Germplasm Bank of the Estação Experimental de Citricultura de Bebedouro. The resistant genetic materials (found in leaves and fruits) represented four varieties of clementines (Citrus clementina); six varieties of mandarins (two belonging to C. reticulata, two to C. tangerina, one to C. deliciosa and one to C. nobilis); one tangelo (C. tangerina × C. paradisi); two mandarin hybrids (one resulting from crossing C. nobilis × C. deliciosa and the other from crossing C. clementina × C. reticulata); one tangor hybrid (C. clementina) and two satsuma hybrids (C. unshiu × C. deliciosa). We also determined a relation between the inoculation of leaves and fruits. The resistance and susceptibility following inoculation in leaves and fruits supports a relationship between these organs and the physiological responses observed for the evaluated genotypes.  相似文献   

3.
We propose the utilization of eggplant (Solanum melongena L.) interspecific hybrids derived from crosses with closely related species as an approach for developing new improved rootstocks for eggplant. Here we investigate rootstock effects on fruit yield, apparent quality and proximate and mineral composition of S. melongena ‘Black Beauty’ (BB) scions grafted on interspecific hybrid rootstocks developed from crosses of S. melongena with Solanum incanum L. (SI × SM) and Solanum aethiopicum L. (SM × SA). The results are compared with non-grafted (BB control) and self-grafted (BB/BB) controls and with S. melongena ‘Black Beauty’ scions grafted onto Solanum torvum Sw. (STO) and Solanum macrocarpon L. (SMA) rootstocks. All treatments were grown in a soil naturally infested with root-knot nematodes (mostly Meloidogyne incognita (Kofoid and White) Chitwood). SI × SM and SM × SA interspecific hybrids had high germination (≥90%) and total graft success (100%). Contrary to what occurred with all other treatments, no plants from scions grafted onto these hybrid rootstocks died during the experiment. In particular, the SI × SM hybrid rootstock conferred the highest vigour to the scion, which resulted in the highest values for fruit earliness and early and total yield. Little difference was observed among treatments for apparent fruit quality traits, except for a greater fruit calyx length and prickliness of fruit grafted onto SMA rootstocks. A similar result was obtained for fruit composition where phenolics content was higher in fruit from plants grafted onto SMA rootstocks. Grafting eggplant onto interspecific eggplant hybrids, especially on the SI × SM hybrid, has proved advantageous for eggplant production, as the high vigour and good compatibility of the rootstock with scion results in improved early and total yield without negative effects on apparent fruit quality or composition. Interspecific hybrids represent an alternative to the commonly used STO rootstock, which is a wild species with irregular germination.  相似文献   

4.
In order to screen almond genotypes for drought tolerance, three different irrigation levels including moderate and severe stress (Ψs = −1.2 and −1.8 MPa respectively) and a control treatment (Ψs = −0.33 MPa) were applied for five weeks to six different cultivated almond seedlings. A factorial experiment was conducted with a RCBD which included 3 irrigations factors, 6 genotype factors and 3 replications. Seeds were prepared from controlled pollination of the bagged trees (after emasculation and flower isolation using isolator packets in the previous year). Genotypes included: homozygote sweet (Butte), heterozygote sweet (SH12, SH18, SH21 and White) and homozygote Bitter (Bitter Genotype). Leaf and root morphological and physiological traits including; midday relative water content, midday leaf (xylem) water potential, shoot dry weight and growth, total leaf area, leaf size, total leaf dry weight, specific leaf area, leaf greenness (SPAD), stomatal size and density, root and leaf nitrogen content and chlorophyll fluorescence were measured throughout the study. Results showed the six genotypes had different reactions to water stress but all genotypes showed an ability to tolerate the moderate and severe stresses and they showed different degrees of response time to drought stress. Almond seedling leaves could tolerate Ψw between −3 and −4 MPa in short periods. Water availability did not significantly affect stomatal density and size of young almond plants. The analysis of leaf anatomical traits and water relations showed the different strategies for almond genotypes under water stress conditions. Although almond seedlings even in severe stress kept their leaves, they showed a reduction in size to compensate for the stress effects. All genotypes managed to recover from moderate stress so Ψw = −1.2 could be tolerated well by almond seedlings but Ψw = −1.8 limited young plant growth. Leaf greenness, leaf size, shoot growth, shoot DW, TLDW and stomatal density were not good markers for drought resistance in almond seedlings. Root DW/LA, lower stomatal size and lower SLA might be related to drought resistance in cultivated almonds. Butte had the least resistance and White showed better performance during water stress while other genotypes were intermediate. Bitter seedlings showed no superiority in comparison with other genotypes under water stress conditions except for better germination and greater root DW which might make them suitable as rootstocks under irrigation conditions.  相似文献   

5.
Despite its outstanding position, the Brazilian citriculture is established on a very limited pool of varieties that limits its expansion and restricts the fruit availability throughout the year. This situation determines the urgent necessity of developing alternative scion and rootstock cultivars, with good performance under local conditions. ‘Folha Murcha’ sweet orange (Citrus sinensis (L.) Osbeck) is a late-harvest cultivar, suitable both for the juice processing industry and the fresh fruit market, being described as tolerant to citrus canker (Xanthomonas citri subsp. citri Schaad et al.), and less affected by citrus variegated chlorosis (Xylella fastidiosa Wells et al.). A study was conducted in Bebedouro, São Paulo State, Brazil, to evaluate the horticultural performance of ‘Folha Murcha’ sweet orange budded onto 12 rootstocks: the citrandarin ‘Changsha’ mandarin (Citrus reticulata Blanco) × Poncirus trifoliata ‘English Small’; the hybrid ‘Rangpur’ lime (Citrus limonia Osbeck) × ‘Swingle’ citrumelo (P. trifoliata (L.) Raf. × Citrus paradisi Macfad.); the trifoliates (P. trifoliata (L.) Raf.) ‘Rubidoux’, ‘FCAV’, and ‘Flying Dragon’ (P. trifoliata var. monstrosa); the ‘Sun Chu Sha Kat’ mandarin (C. reticulata Blanco); the ‘Sunki’ mandarin (Citrus sunki (Hayata) Hort. ex. Tanaka); the ‘Rangpur’ limes (C. limonia Osbeck) ‘Cravo Limeira’ and ‘Cravo FCAV’; ‘Carrizo’ citrange (C. sinensis × P. trifoliata), ‘Swingle’ citrumelo (P. trifoliata × C. paradisi), and ‘Orlando’ tangelo (C. paradisi × Citrus tangerina cv. ‘Dancy’). The experimental grove was planted in 2001, using a 7 m × 4 m spacing, in a randomized block design, with five replications and two plants per plot. No supplementary irrigation was applied. Fruit yield, canopy volume, tree tolerance to drought and to citrus variegated chlorosis, and fruit quality were assessed for each rootstock. Trees grafted onto the ‘Flying Dragon’ trifoliate were smaller in size, but had largest yield efficiency when compared to those grafted onto other rootstocks. Lower alternate bearing index was observed on trees budded onto ‘Cravo FCAV’ ‘Rangpur’ lime. Both ‘Rangpur’ lime rootstocks and the ‘Sunki’ mandarin induced higher tree tolerance to drought. The ‘Flying Dragon’ trifoliate induced better fruit quality and higher tolerance to citrus variegated chlorosis (CVC) to ‘Folha Murcha’ trees. A cluster multivariate analysis identified three groups of rootstocks with similar effects on ‘Folha Murcha’ tree performance. Among the 12 evaluated rootstocks, the ‘Flying Dragon’ trifoliate has a unique effect on plant growth, tolerance to drought and CVC, fruit yield and fruit quality of ‘Folha Murcha’ trees, and may be better suited for high-density plantings.  相似文献   

6.
Unreduced gamete formation is significant in the evolutionary development of complex polyploidy series found in wild strawberry, genus Fragaria (Rosaceae). Also, it is important for genetics and breeding in strawberry plants to elucidate the mechanism of unreduced gamete formation. The objective of this study was to search for ploidy anomalies resulting from artificial diploid × octoploid crosses, and examine the mechanism through which these unreduced gametes were produced. Five everbearing cultivars of Fragaria vesca L. diploid (2n = 2x = 14) were crossed with pollen from six June-bearing cultivars of Fragaria × ananassa Duch., octoploid (2n = 8x = 56). A total of 3000 mature seeds, 100 from each of the 30 parental combinations were sown at 23 °C/20 °C (day/night) under artificial lighting with a 16 h day. The seedlings were transplanted to pots and grown in a greenhouse. Reproductive and morphological observations, flow cytometry analyses, chromosome counts and DNA analyses using CAPS markers were performed to identify the genetic background of the offspring. Most of the seed (79%) did not germinate or died soon after germination. Of the seedlings produced, 7% seemed to be pure F. vesca based on morphological characteristics, flow cytometry analyses and chromosome counts; 14% were pentaploids (2n = 5x = 35), 0.1% were hexaploids (2n = 6x = 42), and 0.03% (one individual) was aneuploid (2n = 8x + 2 = 58). Electrophoresis banding patterns obtained by CAPS marker analysis were heterozygotic in the 8x pollen parent but homozygotic in the aneuploid progeny. Judging from the chromosome counts and the CAPS marker analysis, the aneuploid was the result of a homozygous unreduced pollen grain (8x) crossed with an incomplete chromosome compliment from the egg. Because of the homozygosity, the unreduced male gamete must have been derived from second division restitution (SDR) in the octoploid pollen parent.  相似文献   

7.
Asiatic citrus canker (ACC), caused by Xanthomonas axonopodis Starr & Garces pv. citri (Hasse) Vauterin et al., and citrus variegated chlorosis (CVC), caused by Xylella fastidiosa Wells et al., are considered the main diseases affecting sweet orange scion varieties in Brazil. Among commercial varieties, mandarins and tangerines are recognized as tolerant to these pathogens. We report herein the production of ‘Hamlin’ sweet orange (Citrus sinensis L. Osbeck) + ‘Montenegrina’ mandarin (Citrus deliciosa Ten.) allotetraploid somatic hybrid plants by protoplast fusion with improved disease tolerance that could be used as a donor of resistance genes in interploid hybridisation. Somatic hybridisation was confirmed by leaf morphology, flow cytometry and RAPD analyses. The somatic hybrid was propagated by grafting and cultivated in a screenhouse for tolerance assays. For X. axonopodis pv. citri assays, buds were collected from both ‘Hamlin’ sweet orange and the somatic hybrid and grafted onto ‘Cleopatra’ mandarin (Citrus reshni hort. ex Tanaka). As a negative control, buds from ‘Mexerica Tardia’ mandarin (C. deliciosa) were collected and grafted onto ‘Cleopatra’ mandarin. Two-month old plants with at least one young vegetative flush were individually spray-inoculated with a 106 CFU mL−1X. axonopodis pv. citri suspension and incubated in a growth chamber, at 27 °C, under 16-h photoperiod. The somatic hybrid showed a statistically significant reduction in susceptibility to ACC 30 days after inoculation. Compared to ‘Hamlin’ sweet orange, disease severity was reduced by 70%, with similar tolerance to that of the mandarin negative control. For X. fastidiosa assays, buds were collected from the somatic hybrid and its parental plants and grafted onto ‘Rangpur’ lime (Citrus limonia Osbeck). The developed plants were needle-inoculated with a X. fastidiosa suspension (8.7 × 1010 CFU mL−1) into the new growth flush stem. Bacterial population was quantified both at 4 (at the inoculation point) and 8 months (50 cm above the inoculation point) after inoculation. The first evaluation detected X. fastidiosa in 63% of ‘Hamlin’ sweet orange and ‘Hamlin’ + ‘Montenegrina’ mandarin samples. In the second evaluation, X. fastidiosa was detected in 47.4% of ‘Hamlin’ sweet orange and 10.5% of ‘Hamlin’ + ‘Montenegrina’ somatic hybrid samples, suggesting that bacterial movement was restricted in the somatic hybrid. X. fastidiosa was not detected in both evaluations in samples collected from leaves of ‘Montenegrina’ mandarin. These results indicate that the ‘Hamlin’ sweet orange + ‘Montenegrina’ mandarin somatic hybrid has potential for improved disease tolerance that should enhance its value regarding future use in citrus breeding programs.  相似文献   

8.
A protocol is developed for Agrobacterium-mediated genetic transformation of Amaranthus tricolor via explant co-cultivation with Agrobacterium rhizogenes. Bacteria-plant specific factors which influenced transformation were optimized. Of the two Agrobacterium strains employed, LBA9402 was more infectious compared to A4. Bacterial suspensions grown overnight with 100 μM acetosyringone and experiencing O.D.660 = 0.6 followed by dilution to a density of 109 cells ml−1 were the most effective. Explants from garden-grown plants were more responsive than those from in vitro cultures; stem internodes being better than leaves. Immersion of the pre-pricked explants in bacterial suspension resulted in a markedly higher transformation frequency compared to the direct injection method. The infection of internode explants with the LBA9402 strain followed by co-cultivation on growth regulator-free MS medium (MS0) for 5 days resulted in emergence of hairy roots up to a maximum frequency of 97.22%. Roots were individually cultured in MS0, but fortified with bactericidal antibiotic (500 μg ml−1 cefotaxime). Rhizoclones showing prolific growth were renewed through successive subcultures in MS0. Opine gene expression was revealed by positive agropine and mannopine synthesis in all selected transformed rhizoclones. Shoot regeneration from root clones, capable of auxin-independent growth and opine proficiency, was stimulated in MS augmented with 2.0 mg l−1 zeatin. pRi TL–DNA rolB and pRi TR–DNA man2 ORF were detected in leaf tissues of regenerated plants from selected hairy root clones through PCR amplification. The implication of such findings is discussed on the possibility of conferring protection to crop amaranths against biotic stress challenges, particularly due to insects, viruses or fungal pathogens.  相似文献   

9.
Since 1926, the University of Minnesota herbaceous perennial breeding program has released N = 84 garden chrysanthemum cultivars (Dendranthema × grandiflora) with important traits for northern temperate climates, such as winter hardiness. Recent breeding objectives have identified the need for development of non-destructive phenotypic markers and destructive laboratory freezing tests for co-selection of cold tolerance in Dendranthema, Gaura, and other herbaceous perennial flower crops. Such methods have become critical to flower breeding programs in northern temperate regions during periods of above-average winter temperatures and minimal snow cover due to the ‘el Niño’ effect. Two different, destructive laboratory freezing tests were evaluated for their effectiveness in determining cold tolerance. Acclimated crowns of n = 6 garden chrysanthemum genotypes, ranging from hardy to non-hardy in USDA Z3-4, were used in Omega Block (using detached, emergent rhizomes) and chamber (using entire, intact crowns with emergent, non-emergent rhizomes) freezing test methods. Comparative winter survival in the field was monitored over locations and years. Cold tolerance was assessed at 0 to −12 °C with varying ramp and soak time periods. LT50 temperatures and number of living emergent rhizomes were also determined. Rhizome quality at 1, 3, and 5 cm depths was rated for regrowth on a 0 (dead) to 5 (undamaged) scale. The chamber freezing method was the most powerful to discern accurate LT50 values. Cold tolerant genotypes included ‘Duluth’ and Mn. Selection 98-89-7 (LT50 = −12 °C). Four genotypes were rated as non-hardy (LT50 = ≤−10 °C). Cold-tolerant genotypes also had significantly higher regrowth ratings for rhizomes at 1 and 3 cm depths. Future research will implement the chamber freezing method to assay the inheritance of winter hardiness in intact crowns of segregating populations.  相似文献   

10.
As a precondition for lilac mass propagation, the optimal shoot-multiplication medium for Syringa × hyacinthiflora ‘Luo Lan Zi’ was ascertained mainly based on clustered microshoot inducement and large leaf area establishment in 6-benzyladenine (BAP) (1.00 mg L−1) and zeatin (Z) (0.10 mg L−1) combination. Medium supplied with lower level of BAP (0.50 mg L−1) and auxin (IAA) (0.25 mg L−1) was not suitable for lilac shoot proliferation, but it could be competent for long-term preservation of the un-rooted shoots so that subsequent proliferation culture could be carried out at anytime. In addition, excess height growth which resulted in low transplanting survival rate was effectively controlled by decrease in node number when paclobutrazol (PBZ) was applied in rooting medium at a concentration of 1.00 mg L−1 after taking into account the effects on shoot height, rooting, persistent leaf area and PBZ carry-over. An important overwintering treatment was to use a plastic chamber covering for plants in the greenhouse prior to field planting to ensure adequate biomass of stem and underground parts not only in the current growing season but also in the subsequent years.  相似文献   

11.
The genetic relationships among 63 melon (Cucumis melo L.) genotypes collected from various regions of Turkey were determined by comparing their molecular ISSR, SRAP, and RAPD markers with those of 19 foreign melon genotypes to investigate the taxonomic relationships and genetic variation of Turkish melon germplasm. Total 162 polymorphic markers (69, 18, and 75 obtained from ISSR, SRAP, and RAPD primers, respectively) were used to define the genetic similarity among the melon genotypes by dendrogram or two and three dimensional scalings. The average similarity (SM coefficient) between any two pairs of accessions examined as estimated by molecular variation was 0.73 ± 0.48. Within-group genetic similarities ranged between 0.46 and 0.96. Related genotypes or genotypes collected from similar regions were partitioned to similar clusters. Southeastern Anatolian genotypes were distinctly apart from group inodorus and group cantalupensis (sweet) genotypes. This reinforced the position of Turkey in the secondary genetic diversity center of melon. The genetic diversity among Turkish genotypes (H = 0.28 and I = 0.42) was only a little less than that of the world accessions (H = 0.30 and I = 0.45). On the other hand, the percentage of polymorphic loci among Turkish melon genotypes (90.7%) was even higher than that of the world accessions (87.6%).  相似文献   

12.
Somatic hybridization is a biotechnology tool that can be used in citrus breeding programs to produce somatic hybrids with the complete genetic combination of both parents. The goal of this work was to test the reaction of citrus somatic hybrids that may be useful as rootstocks to trunk and root infections caused by Phytophthora nicotianae van Breda de Haan (P. parasitica Dastur) and to citrus tristeza virus (CTV). The somatic hybrids evaluated were ‘Caipira’ sweet orange (Citrus sinensis L. Osbeck) + ‘Rangpur’ lime (C. limonia Osbeck), ‘Caipira’ sweet orange + ‘Cleopatra’ mandarin (C. reshni hort. ex Tanaka), ‘Caipira’ sweet orange + ‘Volkamer’ lemon (C. volkameriana V. Ten. & Pasq.), ‘Caipira’ sweet orange + rough lemon (C. jambhiri Lush.), ‘Cleopatra’ mandarin + ‘Volkamer’ lemon, ‘Cleopatra’ mandarin + sour orange (C. aurantium L.), ‘Rangpur’ lime + ‘Sunki’ mandarin (C. sunki (Hayata) hort. ex Tanaka), ‘Ruby Blood’ sweet orange (C. sinensis L. Osbeck) + ‘Volkamer’ lemon, ‘Rohde Red’ sweet orange (C. sinensis L. Osbeck) + ‘Volkamer’ lemon, and ‘Valencia’ sweet orange + Fortunella obovata hort. ex Tanaka. For P. nicotianae trunk and root infection assays, plants of the somatic hybrids, obtained from 9-month semi-hardwood cuttings, were evaluated and compared with diploid citrus rootstock cultivars after mycelia inoculation in the trunk or spore infestation in the substrate, respectively. ‘Cleopatra’ mandarin + sour orange, ‘Rangpur’ lime + ‘Sunki’ mandarin, ‘Cleopatra’ mandarin + ‘Volkamer’ lemon, ‘Ruby Blood’ sweet orange + ‘Volkamer’ lemon, ‘Rohde Red’ sweet orange + ‘Volkamer’ lemon, and ‘Caipira’ sweet orange + ‘Volkamer’ lemon had less trunk rot occurrence, whereas the somatic hybrids ‘Cleopatra’ mandarin + ‘Volkamer’ lemon, ‘Cleopatra’ mandarin + sour orange, ‘Caipira’ sweet orange + ‘Volkamer’ lemon, and ‘Caipira’ sweet orange + ‘Rangpur’ lime were tolerant to root rot. For CTV assays, plants of the somatic hybrids along with tolerant and intolerant rootstocks were budded with a mild strain CTV-infected or healthy ‘Valencia’ sweet orange budwood. Differences in average scion shoot length indicated that the hybrids ‘Cleopatra’ mandarin + sour orange and ‘Valencia’ sweet orange + Fortunella obovata were intolerant to CTV.  相似文献   

13.
Sting nematode (Belonolaimus longicaudatus Rau) has become a primary factor limiting citrus production in localized regions of the central Florida sandridge citrus production area, making the development of resistant rootstocks a new breeding objective. In efforts to develop a replacement rootstock for the widely adapted sour orange, our focus has been on somatic hybridization of selected mandarin + pummelo combinations [Grosser, J.W., Gmitter, Jr., F.G., 1990. Protoplast fusion and citrus improvement. Plant Breed. Rev. 8, 339–374; Ananthakrishnan, G., Calovic, M., Serrano, P., Grosser, J.W., 2006. Production of additional allotetraploid somatic hybrids combining mandarins and sweet oranges with pre-selected pummelos as potential candidates to replace sour orange rootstock. In Vitro Cell. Dev.: Plant 42, 367–371], since sour orange is probably an introgression hybrid of mandarin and pummelo as suggested by molecular marker analyses [Nicolosi, E., Deng, Z.N., Gentile, A., La Malfa, S., Tribulato, E., 2000. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor. Appl. Genet. 100, 1155–1166; Gulsen, O., Roose, M.L., 2001. Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J. Am. Soc. Hort. Sci. 126, 309–317]. Somatic hybrid plants were produced from four new mandarin (C. reticulata Blanco) + pummelo (C. grandis L. Osbeck) parental combinations by fusing embryogenic suspension culture-derived protoplasts isolated from selected mandarins with leaf protoplasts of pummelo seedlings previously selected for tolerance/resistance to the sting nematode (B. longicaudatus Rau) as follows: Amblycarpa mandarin + ‘Liang Ping Yau’ (seedling) pummelo seedling SN7; Amblycarpa mandarin + ‘Hirado Buntan Pink’ (HBP) pummelo seedling SN3; Murcott tangor + pummelo seedling SN3; and Shekwasha mandarin + pummelo seedling SN3. Somatic hybridization was verified by ploidy analysis (via flow cytometry) and RAPD analyses. Mandarin parents were selected for wide soil-adaptation and ability to produce friable embryogenic callus lines. Pummelo seedlings used as leaf parents were identified from a previous screen of large seed populations (200 each) from four pummelos for resistance to sting nematode as follows: ‘Hirado Buntan Pink‘; ‘Red Shaddock‘; ‘Large Pink Pummelo’ and a seedling pummelo of ‘Liang Ping Yau‘. Ten resistant/tolerant pummelo seedlings were selected from the 800 pummelo seeds planted in the screen for further study. The four new somatic hybrids have been propagated to evaluate their horticultural performance and resistance to the sting nematode. These potential somatic hybrid rootstocks should also have potential to control tree size due to polyploidy.  相似文献   

14.
The objective of this study was to produce interspecific hybrids between an Ogura-cytoplasmic male sterile (CMS) line of zicaitai (Brassica campestris var. purupurea, 2n = 20) and cultivars of ornamental kale (Brassica oleracea var. acephala, 2n = 18) to develop a CMS system for hybrid seed production. Pollination with pollen grains of ornamental kales irradiated at a power output of 9.0 mW with a He–Ne laser for 3 min could overcome the cross-incompatibility between the species concerned. Intact hybrids could be efficiently produced from ovules cultured on Murashige and Skoog media supplemented by 0.2 mg l−1 6-benzyladenine. Chromosome number of hybrids was confirmed to be 2n = 19. Hybrids resembled ornamental kales in leaf morphology and in vernalization response. Pollens of hybrids had a sterile appearance. Moreover the hybridity of the putative hybrids was confirmed by RAPD data on a DNA fragment of 820 bp.  相似文献   

15.
Cabbage (Brassica oleracea var. capitata L.), a cross-pollinated crop, was observed to exhibit strong heterosis for high yield; better plant stand; early maturity; larger and more uniform heads; uniformity in head compactness; and disease tolerance in F1 hybrids. However, information on the heterosis for mineral elements such as Fe, Zn, Cu, Mn, K and Ca although is not available to the best of our knowledge but it is important as it is likely to influence the plant and subsequently the human nutrition. Therefore, an attempt was made to estimate the heterosis for mineral elements in cabbage. Significant mean square for parents and hybrids was observed for all minerals under study which indicated the prevalence of sufficient variation. The parents 83-2, Pride of Asia, Red Cabbage, AC-204 and MR-1 were found to have the potential for use in cabbage quality breeding programme as they exhibited higher hybrid effects for Fe, Zn, Cu and Mn content. The single cross-hybrids, i.e. 83-2 × AC-204; Pride of Asia × C-2 and Pride of Asia × Red Cabbage; Pride of Asia × MR-1; 83-2 × Red Cabbage; and Pride of Asia × AC-204 and 83-2 × MR-1 were the best for Fe and Zn; Fe and Cu; Zn and Mn; Cu and Zn; and Cu, respectively. This study revealed clearly that none of the hybrids excelled for all the minerals suggesting the significance and need for multiple crossing breeding approaches, i.e. three way cross-hybrid, double cross-hybrid, population improvement, synthetics, composites, etc., for increasing the mineral concentration in cabbage head, i.e. “Breeding Cabbage for Higher Mineral” (Biofortification) without losing the vigour advantage for yield and other traits of economic importance to combat mineral deficiencies in human beings and plant systems.  相似文献   

16.
Somatic hybridization provides an alternative for transferring mitochondria-encoded cytoplasmic male sterility (CMS). Herein, symmetric protoplast electrofusion was conducted between embryogenic callus protoplasts of Citrus unshiu Marc. cv. Guoqing No. 1 (G1), a CMS cultivar, and mesophyll-derived protoplasts of seedy ‘Page’ tangelo [C. reticulata Blanco × (C. reticulata Blanco × C. paradisi Macf.)] or ‘Nova’ tangelo [C. reticulata Blanco × (C. reticulata Blanco × C. paradisi Macf.)], to transfer CMS trait. Flow cytometry analysis showed that 14 plants recovered from G1 + ‘Page’ tangelo that displayed typical morphological character of ‘Page’ were diploid, and 6 plants regenerated from G1 + ‘Nova’ tangelo were tetraploid. Genetic compositions of regenerated plants from the two fusions were determined by SSR, CAPS and chloroplast-SSR analysis. Cybrid nature of diploids from G1 + ‘Page’ tangelo with nuclear DNA from ‘Page’, mitochondrial DNA (mtDNA) from the G1 and chloroplast DNA (cpDNA) derived from either parent was confirmed. Tetraploid plants from G1 + ‘Nova’ tangelo were identified as somatic hybrids with random cpDNA inheritance. The regenerated cybrid and hybrid plants hold great potential for Citrus seedless breeding at diploid or triploid levels.  相似文献   

17.
Fruit cracking after rain limits the production of a number of crops, including some Ribes species. To gain a better understanding of the factors involved in cracking, fruit growth, deposition of the cuticular membrane (CM), water uptake and fruit cracking were studied in black currant (Ribes nigrum L. cv. Zema), gooseberry (Ribes uva-crispa L. cv. Rote Triumph), and jostaberry (Ribes nidigrolaria B. cv. Jostine). Fruit surface area and fresh mass increased continuously throughout development, whereas deposition of the CM was biphasic. CM mass per fruit increased rapidly up to 42, 41, and 49 days after full bloom (DAFB) in black currant, gooseberry, and jostaberry, respectively. Thereafter, CM mass per fruit remained constant in gooseberry and jostaberry or increased at a lower rate in black currant. The cessation of or reduced rate of CM deposition resulted in a decrease in CM mass per unit area in all berries. Elastic strain of the CM at maturity averaged 23.8% and 19.5% in gooseberry and jostaberry, respectively, and only 8.2% in black currant. Microcracks in the CM were observed first in gooseberry and jostaberry 64 DAFB, whereas there were no microcracks in black currant. Water uptake into mature detached berries was linear over 2 h of incubation. Rates of uptake were highest in gooseberry followed by black currant and jostaberry. Relative uptake was similar via the cut end of the pedicel (32.1%), the apex of the fruit (34.7%) and the fruit surface (33.2%). Rates of water uptake through the fruit surface were positively related to surface area. Average fruit water potential for black currant, gooseberry, and jostaberry was −2.14 ± 0.17, −1.24 ± 0.03, and −1.89 ± 0.20 MPa, while the permeability for osmotic water uptake was 7.7 ± 0.4 × 10−8, 5.2 ± 0.1 × 10−8, and 3.3 ± 0.3 × 10−8 m s−1. Incubating whole fruit in deionized water for 72 h resulted in more cracked jostaberries (94%) than black currants (74%) or gooseberries (50%). A comparison of our findings in Ribes berries with published data for the sweet cherry drupe revealed that the berries fitted the relationships established in sweet cherry among fruit growth, cuticle deposition, strain of the cuticle, microcracking, permeability for osmotic water uptake, frequency of stomata and cracking. The Ribes berries were less susceptible to cracking than sweet cherry.  相似文献   

18.
The efficiency of chromomycin A3 (CMA) staining was examined for parental chromosome differentiation in citrange [Citrus sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf.] and citrangequat (Fortunella sp. × citrange). All of the accessions analyzed had the same chromosome number of 2n = 18. CMA staining revealed six characteristic banding patterns on the basis of the number and position of CMA positive bands (CMA+) as follows; A: two terminal and one proximal band, B: one terminal and one proximal band, C: two terminal bands, D: one terminal band, E: no band, and F: one proximal band. Chromosome CMA banding patterns of the accessions were 1A + 1B + 2C + 13D + 1F in Fortunella margarita, 2B + 2C + 7D + 7E in ‘Fukuhara’ orange, 2B + 10D + 6E in Poncirus trifoliata, 1B + 1C + 10D + 6E in citrange and 1A + 1C + 11D + 4E + 1F in citrangequat. The results of this study confirmed the intergeneric and tri-generic hybridity of citrange and citrangequat, respectively.  相似文献   

19.
Haploid production using in vitro ovule cultures has long been recognized as an important tool to produce haploid and homozygous double-haploid plants for genetic studies and plant breeding programs. In the present study, four experiments were carried out to study the influence of genotype, position of female flowers on plant stem, temperature and sucrose concentration on the in vitro gynogenesis induction of squash. (1) Ovules of 12 genotypes were excised from female flowers, 1 day before anthesis, and cultured onto MS medium containing 3% sucrose and 1 mg l−1 from each of kinetin and 2,4-D (2,4- dichlorophenoxy acetic acid). Differences in response among genotypes were demonstrated. Raad F1 showed the highest percentage of responding ovules and number of plantlets per dish with 48.8% and 15 plants, respectively. The results revealed that genotype is a key factor influencing the in vitro gynogenesis in squash. (2) Ovules were excised from first, second and third female flower of two hybrids (Giad and Raad) and cultured onto the mentioned above medium. The highest percentage of responding ovules and number of plantlets per dish were obtained from ovules excised from the second female flower on the plant stem. (3) Effect of temperature (4 and 32 °C) for 0, 4, 7 and 12 days on the ovule culture of Queen F1 was studied. Ovules incubated at 4 or 32 °C for 4 days produced a better embryogenic response. (4) Three sucrose concentrations (30, 60 and 90 g l−1) were tested with the ovule cultures of the local cultivar (Eskandrani). Differences among sucrose concentrations were statistically significant and ovules cultured on the MS medium containing 30 g l−1 produced the best result. MS medium containing 90 g l−1 did not produce gynogenic ovules.  相似文献   

20.
The flower yield stability of Damask rose as an important medicinal and aromatic plant at different environments has not been well documented. In order to evaluate flower yield and stability, 35 landraces of Damask rose were studied at 8 locations in Iran during 2007–2008. Analysis of variance revealed significant differences (p ≤ 0.01) among landraces (G), environments (E), locations (L) and for landrace × environment (GE) and landrace × location (GL) interactions. Both GE and GL interactions were mainly crossover, a large portion of which was accounted for by non-linear (unpredictable) component. The landraces of IS9, YZ2, WA1, IS7 and IS1 with 3120.63, 2941.63, 2894.62, 2769.15 and 2716.92 kg/ha respectively produced the highest flower yield among studied landraces. Kerman with average flower yield of 3635.46 kg/ha produced the highest yield among studied locations. According to the results, most of landraces that originated from temperate, warm temperate and arid regions produced higher flower yield than those from cool, cool temperate, semi-arid and humid regions. The landraces of YZ2, IS5, IS8, IS4, KZ1, AR1, IS3 and BA1 were stable and YZ2, IS5, IS8, IS4, KZ1, AR1 IS6, IS3, BA1, IS10 and YZ1 were adaptable landraces for flower yield according to Eberhart and Russell (1966) model. The presence of some high flower yield and stable landraces such as YZ2 and IS5 suggests that a genotype can demonstrate high flower yield and stability for yield simultaneously. Thus, simultaneous selection for flower yield and stability using nonparametric methods could be possible. In addition, taking into consideration flower yield and stability potential, the landraces of YZ2, IS5, IS8, IS4 and KZ1 as general stable, adaptable, and high flower yield are recommended. Furthermore, the landraces of IS9 and WA1 as high flower yield and specific adaptable landraces can be recommended for temperate and arid areas and the landraces of IS7 and IS1 for semitemperate and cool areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号