首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
AIM:To explore the molecular effects of Astragalus polysaccharide(AP) on improving nervous functions and preventing neuronal apoptosis in rat cerebral cortex with cerebral ischemia and reperfusion. METHODS:One hundred and twenty male Wister rats were randomly divided into sham operation group(SOG), model groups(MG-1 d, 3 d and 7 d), low-dose AP treatment groups(L-APTG-1 d, 3 d and 7 d), and high-dose AP treatment groups(H-APTG-1 d, 3 d and 7 d). The right middle cerebral artery of the rats in MG and AGTG was intercepted by operation to induce ischemic brain injury. The rats in L-APTG and H-APTG were treated with AP at the doses of 5 mg/kg and 15 mg/kg by intraperitoneal injection, respectively. On the 1st day, 3rd day and 7th day after operation, those animals were sacrificed to collect the brain specimens for the study after cerebral blood flow reperfusion and determination of neurological deficit scores. The structural changes of the neurons were observed under electron microscope. Apoptosis was analyzed by flow cytometry. The protein levels of heat-shock protein 70(HSP70), protein kinase B(PKB) and P53 in cerebral corical neurons were determined by immunohistochemical staining and Western blotting. RESULTS:The neurological deficit scores and the apoptotic rate of cerebral cortical neurons in H-APTG were significantly lower than those in MG and L-APTG(P<0.05). The structures of the neurons in H-APTG, such as ribosome endoplasmic reticulum, nucleolus, Golgi complex, mitochondria, etc, were better than those in MG and L-APTG. On the 1st day, 3rd day and 7th day, the protein levels of HSP70 and PKB in cerebral cortical neurons in H-APTG were significantly higher than those in L-APTG, which were significantly higher than those in MG(P<0.05). However, the P53 protein level in H-APTG was significantly lower than that in L-APTG, which was significantly lower than that in MG(P<0.05). CONCLUSION:AP improves nervous functions and inhibits neuronal apoptosis during ischemia and reperfusion. The molecular mechanisms are associated with variations of protein expression in cerebral cortical neurons, such as promotion of HSP70 and PKB and inhibition of P53.  相似文献   

2.
AIM: To observe the effects of adrenal gland on the hippocampus responses to cerebral ischemia. METHODS: 36 Wistar rats were randomly divided into three groups: sham-operated control group (sham), unilateral adrenalectomy were performed in ADX and GC group, and GC group were injected with 5 mg/per rat of dexamethasone before cerebral ischemia. Fourteen days after the first operation, all animals were performed occlusion of bilateral carotid artery for 15 min, and then reperfusion. 3 rats of each group were sacrificed at 1 h, 4 h, 8 h and 24 h after reperfusion and hippocampus were dissected. The total RNA was rapidly extracted from hippocampus tissue. The expressions of c-fos, bcl-2 and bax gene were quantified with the method of semiquantitive RT-PCR. RESULTS: The expressions of c-fos and bax in three groups showed no statistical differences (P>0.05). The expression of bcl-2 in sham group was significantly higher than that in GC and ADX groups (P<0.05). However, no differences of bcl-2 expression between GC and ADX group (P>0.05) was observed. The ratio of bax to bcl-2 in sham group was significantly lower than that in GC and ADX groups (P<0.05), no significant differences of the ratio displayed between ADX and GC group. CONCLUSION: The expression of c-fos and bax in hippocampus after cerebral ischemia is not affected by adrenal gland. The excision of unilateral adrenal gland downregulates bcl-2 expression and raises the ratio of bax to bcl-2 in rat hippocampus after cerebral ischemia. Dexamethasone treatment does not alter the expression of bcl-2 in ADX and GC groups. The results indicate that the adrenal gland can counteract cell apoptosis in hippocampus tissue induced by cerebral ischemia. Adrenal steroids are not sufficient to enable the compensatory increase in bcl-2 expression in steroid-deficient animal, some other mechanism may exist.  相似文献   

3.
AIM:To investigate the effects of Astragalus injection on neuronal apoptosis and expression of c-Jun N-terminal kinase 3(JNK3) in the rat hippocampus after cerebral ischemia reperfusion. METHODS:The rat model of cerebral ischemia reperfusion was set up by a four-vessel occlusion method. The SD rats were randomly divided into 4 groups:sham operation group, cerebral ischemia reperfusion group(model group), cerebral ischemia reperfusion+Astragalus injection group(Astragalus injection group) and cerebral ischemia reperfusion+vehicle group(vehicle group). The rats in model group, Astragalus injection group and vehicle group after transient global cerebral ischemia(30 min) were then divided into 7 subgroups according to the reperfusion time of 0 h, 0.5 h, 2 h, 6 h, 24 h, 72 h and 120 h. The apoptosis of the neuron in the hippocampus was measured by the method of TUNEL staining. The expression of JNK3 at mRNA and protein levels was determined by real-time PCR and Western blotting,respectively. RESULTS:Compared with sham operation group, the number of apoptotic neurons increased in model group(P<0.05). Compared with model group, the number of apoptotic neurons decreased obviously in Astragalus injection group(P<0.05). Compared with sham operation group, the expression of JNK3 at mRNA and protein levels in the hippocampus increased obviously in model group at all time points except 120 h(P<0.05). Compared with model group, the expression of JNK3 at mRNA and protein levels in the hippocampus decreased obviously in Astragalus injection group at all time points except 120 h(P<0.05). CONCLUSION:Astragalus injection decreases neuronal apoptosis in rat hippocampus after cerebral ischemia reperfusion by inhibiting the expression of JNK3 at mRNA and protein levels.  相似文献   

4.
AIM: To investigate the effets of naoluo xintong on the expression of Fas, FasL protein in hippocampus CA1 area and Fas mRNA in the cortex of frontal or parietal lobe after local cerebral ischemia/reperfusion in MCAO rats. METHODS: The local cerebral ischemia /reperfusion model was established by intraluminal thread occlusion of the middle cerebral arteries (MCAO), the middle cerebral arteries of rats were occluded for 2 hours and reperfused for 1, 3 and 7 days. The animals were divided into pseudo surgery group(sham group), model group, Yiqi group, Huoxue group and naoluo xintong group. Using the techniques of immuno-histochemical staining and in situ hybridization, the expression of Fas and FasL was observed in hippocampus CA1 area, the expression of Fas mRNA was also observed in the cortex of frontal and parietal lobe. RESULTS: A value of Fas and FasL protein expression or A value and positive unit of Fas mRNA expression in control group were higher than those in sham in hippocampus CA1 area, the cortex of frontal or parietal lobe after local cerebral ischemia/reperfusion in MCAO rats (P<0.01). A value and/or positive unit of their expression in naoluo xintong group were lower than those in control group (P<0.05 or P<0.01). A value and/or positive unit of their expression in Yiqi and Huoxue groups were higher than those in naoluo xintong group for 3 and/or 7 days (P<0.05 or P<0.01). CONCLUSION: naoluo xintong could resist neuron apoptosis, alleviate pathologic injury after local cerebral ischemia/reperfusion in MCAO rats by inhibiting the expression of Fas, FasL protein and Fas mRNA.  相似文献   

5.
AIM: To investigate the behavior of depression in chronic alcoholism and withdrawal model of mice, and to explore the co-mechanism of alcoholism and depression. METHODS: A novel model of chronic alcoholism was constructed in this study. The animals were divided into normal control group, and alcohol 7 d, 14 d, 21 d and 28 d groups. The mice were given alcohol preference test on the 6th, 13th, 20th and 27th days. After the test, alcohol were withdrawn for 1 d, then the next day the mice were given behavior test of depression. After the test, the mice were sacrificed. The contents of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) were detected by HPLC. The expression of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) was detected by Western blot. RESULTS: The mice showed an obvious drinking phenomenon, and the immobility time of forced swimming test and tail suspension test was significantly increased, with increasing drinking days and withdrawal times. 5-HT level in 7 d group mice only increased in frontal cortex (P < 0.05). However, compared with control group, 5-HT levels in hippocampus and cortex were decreased on the 21th and 28th days (P < 0.01). NE levels in 21 d and 28 d groups were decreased in hippocampus and frontal cortex (P < 0.05), and no significant change was observed in 7 d and 14 d groups. The protein levels of p-CREB and BDNF were significantly decreased in hippocampus and frontal cortex of 12 d and 28 d groups (P < 0.05), and no significant change was observed in 7 d group and 14 d group. CONCLUSION: The co-mechanism of alcoholism, withdrawal and depression is related to 5-HT. 5-HT-cAMP-CREB-BDNF signaling pathway may be a common mechanism for alcoholism and depression.  相似文献   

6.
AIM: To investigate the influence of Ginkgo biloba extract (GBE) on the expression of c-fos, heat shock protein 70 (HSP70) during focal cerebral ischemic reperfusion in rats. METHODS: The middle cerebral artery occlusion (MCAO) model described by Zea longa was used. Healthy Wistar rats were randomized to 4 groups. Immunohistochemistry, in situ hybridization and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) were used to detect the expression of c-fos gene, HSP70 and cell apoptosis at different reperfusion time points: 1, 6, 12, 24 hours and 3, 7 days after recirculation. RESULTS: The positive reactions of both c-fos and HSP70 were significantly increased at different reperfusion time in GBE-pretreated ischemia/reperfusion (IR) group than those in ischemia/reperfusion group (P<0.01) and the number of TUNEL-positive cells was reduced in GBE-pretreated IR group. CONCLUSION: The GBE induced the expression of c-fos, HSP70 and contributes to neuroprotective activities after cerebral ischemia.  相似文献   

7.
8.
FENG Rui  LI Shu-qing 《园艺学报》2011,27(6):1048-1052
AIM: To observe the effects of thrombotic cerebral ischemia and postconditioning on the expression of toll-like receptor 4 (TLR4) in hippocampus of tree shrews.METHODS: The model of thrombotic focal cerebral ischemia was established by photochemical reaction.Four hours after the onset of photochemical reaction, ischemic postconditioning was induced by 3 repeated cycles of carotid artery occlusion for 5 min and reperfusion for 5 min. The histological changes of hippocampus (by HE staining), TLR4 protein level (by Western blotting) and TLR4 mRNA expression (by semiquantitative RT-PCR) were observed.RESULTS: The extensive neuronal degeneration in hippocampus was observed from 4 h to 72 h and peaked at 24 h after cerebral ischemia, but was significantly attenuated after postconditioning. Cerebral ischemia caused a progressive increase in the expression of TLR4 protein at 4 h and 24 h (P<0.05), and decreased at 72 h (P<0.05). In contrast to ischemia groups, postconditioning decreased the expression of TLR4 protein at 4 h and 24 h (P<0.05), but an increase in the expression of TLR4 at 72 h (P<0.05) was observed. Simultaneously, the level of TLR4 mRNA in hippocampus showed the tendency of approximate variation in accordance with the protein expression.CONCLUSION: The expression of TLR4 increases by cerebral ischemia. The protection mechanisms of postconditioning may be associated with modulating TLR4 expression.  相似文献   

9.
AIM: To observe the dynamic alteration of myristoylated alanine-rich C kinase substrate (MARCKS) mRNA expression in rat hippocampus with acute multi-cerebral infarction, and discuss the relationship between the alteration of hippocampus MARCKS gene and ischemia damage. METHODS: The acute multi-cerebral infarction model was established by method of Kaneko. Neurological function deficits were evaluated in the behavior test. The consequences of cerebral ischemic damage were examined by histopathological analyses. The MARCKS mRNA expression was measured by semi-quantitative PCR. RESULTS: The rats in acute multi-cerebral infarction group showed different level changes of neurological function deficits. The hippocampus damage of histopathology became significant 24h after ischemia. At the same time, the MARCKS mRNA expression was upregulated at the area of rats hippocampus during ischemia, and its overexpression started 1h after ischemia, and reached maximum7d after ischemia. CONCLUSION: MARCKS mRNA of rat hippocampus overexpresses during acute cerebral ischemia. This MARCKS mRNA overexpression is related with hippocampus ischemia damage.  相似文献   

10.
AIM:To observe the expression and tissue localization of matrix metalloproteinase 9 (MMP-9) and transforming growth factor beta 1 (TGF-β1) in the rat acute cerebral ischemia model. METHODS:Male Wistar rats were used to establish acute cerebral ischemia model by a suturing method. The rats were divided into normal control group, sham group and ischemia 6 h, 12 h, 1 d, 2 d, 6 d and 14 d groups. The rat cerebral cortex and hippocampus of the brain were collected at different time points.The mRNA and protein levels of MMP-9 and TGF-β1 in the brain tissues were detected by real-time PCR and in situhistochemistry staining, respectively. The levels of MMP-9 and TGF-β1 in the plasma were also measured by ELISA. RESULTS:The results of real-time PCR showed that the mRNA levels of MMP-9 began to increase 6 h after acute ischemia and reached to a peak 2 d after acute ischemia. Similarly, the mRNA level of TGF-β1began to rise 12 h after acute ischemia and reached to the highest level 6 d after acute ischemia. Compared with the sham rats, the mRNA levels of MMP-9 and TGF-β1 in the rat brains that collected at ischemic time of 12 h, 1 d, 2 d, 6 d and 14 d were significantly increased. Moreover, results of in situhistochemical staining showed that the expression of MMP-9 was detected at cerebral cortex and hippocampus 1 d after acute cerebral ischemia.Further studies showed that MMP-9 dyeing of the rat cerebral cortex was most obvious 2 d after the acute cerebral ischemia. Similarly, the rat cortex and hippocampus began to express TGF-β1 2 d after acute ischemia and TGF-β1 staining at rat cerebral cortex was most obvious 6 d after the acute cerebral ischemia. In addition, ELISA showed that the increase in MMP-9 and TGF-β1 was detected in the plasma 12 h after ischemia. Compared with the sham rats, the level of these 2 factors significantly upregulated since 1 d after ischemia. CONCLUSION: The brain tissue itself contributes to the upregulation of MMP-9 and TGF-β1 post acute cerebral ischemia, which shed light on the related research in the field.  相似文献   

11.
AIM: To study the effects of flavonoids isolated from Scutellaria stem and leaf (SSF) on the expression of N-methyl-D-aspartate receptor (NMDAR) and vascular endothelial growth factor (VEGF) in chronic cerebral ischemia rats. METHODS: The model of chronic cerebral ischemia was established by bilateral carotid artery occlusion for 2 months in female SD rats. The effects of SSF on mRNA expression of NMDAR in hippocampus and VEGF in cerebral cortex were evaluated by the method of RT-PCR. RESULTS: Compared with the sham group, the expression of NMDAR1, NMDAR2A and NMDAR2B in hippocampus and VEGF in cerebral cortex were significantly increased (P<0.01). However, the cerebral ischemia rats daily and orally administered with SSF at doses of 17.5 mg·kg-1·d-1, 35 mg·kg-1·d-1 and 70 mg·kg-1·d-1 for 38 days appeared that the mRNA expression of NMDAR1, NMDAR2A and NMDAR2B in hippocampus was obviously reduced (P<0.05), and the mRNA content of VEGF in the cortex (P<0.05) was increased. CONCLUSION: SSF decreases the expression of NMDAR in hippocampus, increases the expression of VEGF in cerebral cortex of cerebral ischemia rats, suggesting that the neuroprotective effect of SSF may be exerted by influencing the production of NMDAR and VEGF in the brain.  相似文献   

12.
AIM: This study is to determine changes of hippocampal norepinephrine (NE) and serotonin (5-HT) in long term physical exercise and chronic psychological stress, and to study the roles of the two monoamine transmitters in the effect of exercise counteracting stress-induced hippocampal damages in brain. METHODS: Levels of hippocampal NE and 5-HT in rats undergoing 4-week voluntary wheel running exercise (exercise group) or 3-week restraint stress (stress group) or 4-week exercise and 3-week stress (exercise-stress group) were detected by high-performance liquid chromatography using electrochemical detection. RESULTS: It is showed that levels of hippocampal NE and 5-HT increased significantly (P<0.01) in the exercised rats, and in the stressed rats,hippocampal 5-HT levels significantly decreased(P<0.05). Additionally, the NE levels maintained significant high (P<0.01) in exercise-stressed rats compared to the pure stressed ones. On the other hand, no obvious difference was observed in hippocampal 5-HT levels between stress group and exercise-stress group, which were all significant lower (P<0.05) than that in exercise group. CONCLUSION: It is suggested that both the NE and 5-HT may play important roles in mediating the exercise-induced positive effects and the 5-HT may play an important role in stress-induced negative effects on the hippocampus. Moreover, NE may take more action in the exercise attenuating stress-induced hippocampal damages. The hippocampal NE may be more susceptible to exercise, and the hippocampal 5-HT may be more susceptible to stress.  相似文献   

13.
AIM: To investigate the effects of cerebral ischemia and postconditioning on protein kinase R-like endoplasmic reticulum kinase (PERK) and glucose-regulated protein 78 (GRP78) in the hippocampus tissue of tree shrew during endoplasmic reticulum stress and the mechanism of post-conditioning protecting the brain from damage. METHODS: The focal cerebral ischemic model was duplicated by photochemical reaction in tree shrew and the postconditioning was induced by alternatively occluding and opening the carotid artery of ischemic side for 3 cycles (5 min each cycle) at 3.5 h after ischemia. The damage and ultrastructural changes of the hippocampal neurons were observed by HE staining. The expression of PERK and GRP78 at mRNA and protein levels in the hippocampal tissue at different time points after cerebral ischemia and postconditioning was determined by RT-PCR, immunohistochemistry and Western blot. RESULTS: The injuries of hippocampal neurons were aggravated with prolonged cerebral ischemia, which was most severe at 24 h after ischemia while the postconditioning alleviated these damages correspondingly. The expression of PERK at mRNA and protein levels was upregulated at 4 h, 24 h and 72 h after ischemia (P<0.05), while postconditioning downregulated the expressions of PERK at ischemia and postconditioning 4 h (IP4 h) gruop and IP24 h group (P<0.05). The expression of GRP78 at mRNA and protein levels was not changed at 4 h, 24 h and 72 h after ischemia, while postconditioning upregulated the expressions of GRP78 at IP24 h group (P<0.05). CONCLUSION: The focal thrombotic cerebral ischemia activates the endoplasmic reticulum stress in ischemic hippocampus of tree shrews, leading to the changes in mRNA and protein expression of PERK in the PERK/eIF2α signal transduction pathway. The postconditioning treatment alleviates endoplasmic reticulum stress and neuronal damages by downregulating PERK and upregulating GRP78, thereby protecting the brain from injury.  相似文献   

14.
AIM: To investigate the regulatory effect of HIF-1α/iNOS signaling pathway on the neuroprotection of ischemic postconditioning (PC) in tree shrews, and to explore the mechanisms of deteriorated cerebral injury after inhibiting astrocyte (AS) metabolism. METHODS: Thrombotic cerebral ischemia was induced by photochemical reaction in tree shrews. Fluorocitrate (FC) was used to inhibit AS metabolism and the ischemic PC was established at 4 h after ischemia followed by clipped ipsilateral common carotid artery on the ischemia side for 3 times, 5 min/time. A total of 67 male tree shrews were randomly divided into 7 groups:control (n=9), ischemia (4 h and 24 h, n=9 for each group), ischemia with PC (4 h and 24 h, n=9 for each group), and FC pretreatment (4 h and 24 h, n=11 for each group). The cerebral infarction size was detected by TTC staining, and the histological changes of hippocampal neurons were observed under light microscope. The regional cerebral blood flow (rCBF) in ischemic cortex was monitored by laser Doppler brain flowmetry. The protein expression of iNOS in hippocampus was detected both by immunohistochemistry and Western blot. The production of NO detected by spectrophotometer. The level of HIF-1α in hippocampus analyzed by ELISA. RESULTS: The cerebral infarct volume was increased with prolonged duration of ischemia, and the changes of ischemia at 24 h were significant (P<0.05). The cortical rCBF was progressively decreased, and it was decreased at 4 h and 24 h after ischemia (P<0.05). The expression of HIF-1α and iNOS in hippocampus was enhanced, and the production of NO was increased significantly (P<0.05). Ischemic PC restored the cortical rCBF (P<0.05), reduced cerebral infarction volume (P<0.05), down-regulated iNOS expression and reduced NO production in the hippocampus (P<0.05). However, the cortical rCBF in FC pretreatment group was significantly lower than that in ischemic group (P<0.05), the neuronal damage was aggravated, and the infarction volume was increased after pretreatment with FC (P<0.05). CONCLUSION: Ischemic PC may reduce cerebral injury by regulating the expression of HIF-1α and iNOS. Inhibition of AS function may attenuate the protective effect mediated by ischemic PC and aggravate brain injury.  相似文献   

15.
ATM: To investigate the effects of tetramethylpyrazine (TMP) combined with bone marrow mesenchymal stem cells (BMSCs) on neuronal apoptosis, and Bcl-2 and Bax expression in rats with cerebral ischemia. METHODS: The BMSCs were isolated by the whole bone marrow adherent method and cultured, and those in the 3rd passage were used for tail-vein transplantation. The rats were subjected to right middle cerebral artery occlusion (MCAO) using suture method, and the rats except sham group were randomly divided into model group, BMSCs (1×109 cells/L) group, TMP (40 mg/kg) group and combination (TMP+BMSCs) group with 12 rats in each group. Neurological function was evaluated by modified neurological severity scoring (mNSS) on 1 d, 7 d and 14 d after cerebral ischemia. Toluidine blue staining was performed to detect cerebral infarct volume, HE staining was used to observe brain histopathological change, neuronal apoptosis was observed by TUNEL staining, and the mRNA and protein expression of Bcl-2 and Bax was detected by real-time fluorescence quantitative PCR and Western blot at 14 d after cerebral ischemia. RESULTS: Compared with BMSCs group and TMP group, TMP combined with BMSCs significantly reduced the score of mNSS (P<0.01) and the infarct volume (P<0.01), alleviated the pathological damage in the peripheral area of cerebral ischemia, decreased the number of TUNEL positive cells (P<0.01), increased the expression of Bcl-2 and decreased the expression of Bax at mRNA and protein levels (P<0.01).CONCLUSION: Tetramethylpyrazine combined with transplantation of BMSCs improves the functional recovery, reduces the infarct volume, relieves the ischemic injury of the brain tissue, and attenuates neuronal apoptosis in the rats with cerebral ischemia. The mechanism may be related to regulating the expression of Bcl-2 and Bax.  相似文献   

16.
LI Xue-mei  NIU Wen-ze  CHEN Xiang 《园艺学报》2010,26(12):2473-2477
AIM: To investigate the effect of apigenin on the expression of vascular endothelial growth factor (VEGF) in the rats under the condition of cerebral ischemia and reperfusion. METHODS: Ninety-one male SD rats were randomly divided into 13 groups: sham operation group (S), model groups (group M6 h, group M24 h, group M72 h, group M7 d), apigenin treatment groups (group A6 h, group A24 h, group A72 h, group A7 d) and dexamethasone treatment groups (group D6 h, group D24 h, group D72 h, group D7 d). The acute transient focal cerebral ischemia reperfusion model was established by modified method of inserting the nylon thread into middle cerebral artery, staying for 2 h and then withdrawing from the artery. In the experiment groups, the TTC staining of brain slices were performed and the neurological behavior scores were determined. The expression of VEGF by immunohistochemistry (ICH) was semi-quantitatively analyzed by measuring the integrated absorbance(IA). RESULTS: Abnormal neurological behaviors were observed in the animals of M groups, A groups and D groups, but the neurological behaviors of the rats in A7 d group were better than that in the other groups (P<0.05). Typical cortical infarct lesions in M groups, A groups and D groups were found by TTC staining, mainly in cerebral cortex and striatum. The immunnohistochemical results showed that the expression of VEGF was significantly higher in M, A and D groups than that in S group (P<0.05). Moreover,the expression of VEGF in A groups(A24 h and A72 h)was higher than that in M groups (M 24 h and M72 h,respectively)(P<0.01).The expression of VEGF in D72 h group was higher than that in M72 h group (P<0.05), and that in A7 d group was obviously higher than that in D7 d group (P<0.01).CONCLUSION: Apigenin promotes the expression of VEGF in the model of acute transient focal cerebral ischemia-reperfusion injury, improves the process of brain injury and recovers the brain functions in rats.  相似文献   

17.
AIM: To investigate the effect of Astragalus injection on the expression of apoptotic protease-activating factor 1 (Apaf-1) in the hippocampus of global cerebral ische-mia-reperfusion rats. METHODS: Male SD rats were randomly divided into 4 groups with 30 each: sham operation group, cerebral ischemia-reperfusion group, cerebral ischemia-reperfusion+Astragalus injection group, and cerebral ischemia-reperfusion+vehicle group. The global cerebral ischemia-reperfusion model of the rats was established by 4-vessel occlusion. The rats in cerebral ischemia-reperfusion group, cerebral ischemia-reperfusion+Astragalus injection group and cerebral ischemia-reperfusion+vehicle group were further divided into 7 subsets, according to the reperfusion time of 0 h, 0.5 h, 2 h, 6 h, 24 h, 72 h and 120 h. After reperfusion, the brains were removed at the corresponding time points. The protein expression of Apaf-1 in hippocampal neurons was detected by immunohistochemistry and Western blotting. The mRNA expression of Apaf-1 was observed by RT-PCR. RESULTS: Compared with sham operation group, the expression of Apaf-1 at mRNA and protein levels at all time points except 0 h and 120 h increased obviously in cerebral ischemia-reperfusion group (P<0.05). Compared with cerebral ischemia-reperfusion group, the expression of Apaf-1 at mRNA and protein levels at all time points except 0 h and 120 h decreased obviously in cerebral ischemia-reperfusion+Astragalus injection group (P<0.05). However, those in cerebral ischemia-reperfusion+vehicle group had no obvious change (P>0.05). CONCLUSION: Astragalus injection inhibits the expression of Apaf-1 at mRNA and protein levels in hippocampus of global cerebral ischemia-reperfusion rats, thus inhibiting the apoptosis of hippocampal neurons.  相似文献   

18.
AIM: To investigate the effects and mechanism of Le Er Mai (LEM) on the apoptosis of hippocampus neuronal cells in the anaphase of cerebral ischemic reperfusion injury in rats.METHODS: A rat model of middle cerebral artery occlusion reperfusion (MCAO) was produced with the intraluminal filament. During reperfusion for 30 d after 2 h of ischemia, the TUNEL staining methods were used to detect apoptosis of hippocampus neuronal cells, and immunohistochemical technique were employed to examine the protein expression of Fas, Bax, caspase-3 and caspase-9 in the hippocampial. The gene expressions of fas, bax, caspase-3 and caspase-9 in hippocampial were examined by RT-PCR. RESULTS: After 2 h ischemia and 30 d reperfusion, compared with sham-operated group, TUNEL-positive staining cells and expression levels of Fas, Bax as well as caspase-3 and caspase-9 obviously increased, and the mRNA expressions of fas, bax, caspase-3 and caspase-9 in hippocampial markedly up-regulated in model group. Compared with model group, LEM at dose of 2.00 g/kg or 0.87 g/kg, and flunarizinum significantly reduced apoptosis and decreased the protein expressions of Fas, Bax, caspase-3 and caspase-9 in hippocampial, and down-regulated the mRNA expressions of fas, bax, caspase-3 and caspase-9 (P<0.05), those action of LEM in 0.87 g/kg dosage group was lower than those in 2.00 g/kg dosage group.CONCLUSION: LEM obviously lower the injury of hippocampial in the anaphase of cerebral ischemia reperfusion through inhibiting the apoptosis of hippocampus neuronal cells. The mechanism of LEM may be related to regulate the expression of signal transduction pathway correlated gene of apoptosis in neuronal cells.  相似文献   

19.
AIM: To study the effects of soybean isoflavones on mitochondrial ultrastructure, neuronal apoptosis and expression of cytochrome C, caspase-9 and caspase-3 in the rats with cerebral ischemia/reperfusion.METHODS: Adult healthy SD rats (n=60) were randomly divided into 3 groups: sham group, ischemia/reperfusion injury (I/R) group and soybean isoflavone (SI) pretreatment group. Soybean isoflavones (120 mg·kg-1·d-1) were fed by gastric lavage for 21 d. The global ischemia/reperfusion model of the rats was established by blocking 3 vessels, and then reperfused for 1 h after 1 h of ischemia. The morphological change of the cerebral cortex cells was observed under light microscope. The mitochondrial ultrastructure of the cerebral cortex cells was determined by transmission electron microscope. The apoptotic rate of the cerebral cortex cells was detected by flow cytometry. The expression of cytochrome C, caspase-9 and caspase-3 in the cerebral cortex cells was determined by semi-quantitative RT-PCR and immunohistochemical techniques.RESULTS: Disintegration of mitochondria membrane and disappearance of the mitochondrial cristae were seen in I/R group. Compared with I/R group, the change of ultrastructure of mitochondria was significantly improved by soybean isoflavone pretreatment, and the neuronal apoptotic rate was also significantly decreased (P<0.01). The mRNA expression and protein content of cytochrome C, caspase-9 and caspase-3 in I/R group were obviously higher than those in sham group (P<0.01). Compared with I/R group, the mRNA expression and protein content of cytochrome C, caspase-9 and caspase-3 in SI group were significantly decreased (P<0.01).CONCLUSION: Soybean isoflavones attenuate cerebral ischemia/reperfusion injury by stabilizing the structure of mitochondria, preventing cytochrome C release to the cytoplasm, inhibiting the activation of caspase-9 and caspase-3 and decreasing cell apoptosis.  相似文献   

20.
AIM: To observe the effect of acupotome and electro-acupuncture on pain threshold and neurotransmitters of central nervous system in rats with knee osteoarthritis. METHODS: Eighty SD rats were divided randomly into 4 groups: control group, model group, acupotome group and electro-acupuncture group. The caroid (4%) and cysteine (0.3 mol/L) were mixed at 1∶1 for 0.5 h and 20 μL mixture was administered by injection to the left knee joint ca vity of the rats on the 1 d, 4 d and 7 d respectively before the models were created. Four weeks later the rats in acupotome group and electro-acupuncture group were subject to apply the therapy of acupotome or electro-acupuncture for successive 3 weeks. Photoradiation was adopted to detect the pain tolerance threshold in the animals. The knee joints were stained with HE method. The contents of 5-HT, NE and DA were detected in different sites of the midbrain, hypothalamus, medulla oblongata, hippocampus and spinal cord with ELISA. RESULTS: The pain tolerance threshold of the rats with knee osteoarthritis significantly decreased as compared to that of the animals in control group (P< 0.01). The pain tolerance threshold of the rats in acupotome group and electro-acupuncture group markedly increased after the first three week therapy as compared to that in model groups (P<0.05, P<0.01). The results showed that the therapy of acupotome or electro-acupuncture greatly alleviated the pathological tissue injury caused by knee osteoarthritis. The therapy of acupotome or electro-acupuncture also regulated the synthesis and metabolism of 5-HT in the mid-brain, hypothalamus, hippocampus and spinal cord, the synthesis and metabolism of NA in the spinal cord, hypothalamus, and medulla oblongata, and regulated the synthesis and metabolism of DA in the mid-brain. CONCLUSION: The therapy of acupotome or electro-acupuncture can regulate the pain threshold, histomorphology and the content of monoamine- neurotransmitters in rats with knee osteoarthritis, indicating that the two methods relieve the injury of the articular cartilage, and extenuate pain triggered by knee osteoarthritis cartilage by regulation of the synthesis and metabolism of 5-HT and catecholamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号