首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of experiments were conducted with greenhouse cucumber and pepper plants to determine the effects of oxygen enrichment of the irrigation water on yield and fruit shelf-life. The experiments were carried out in soilless culture in research greenhouses. Depending on the experiment, treatments included sub-ambient (2 mg L−1), ambient (5–6 mg L−1), medium (16 mg L−1) and high (30–40 mg L−1) levels of oxygen in the supply tank. Cucumber plants were grown in yellow cedar sawdust and pepper plants in either sawdust or perlite. Oxygen enrichment resulted in a promotion of cucumber yield in only one experiment; in two other experiments, none of the oxygen treatments, including those at sub-ambient levels, had an effect. There were no effects of oxygen enrichment on pepper yield. However, in both cucumber and pepper, fruit shelf-life was extended in oxygen-enriched treatments. In terms of system efficacy, oxygen levels in the irrigation water were measured at the dripper and found to decrease by 20–67% of initial values compared to the supply tank values, depending on the initial oxygen concentration and on the experiment. Oxygen concentrations decreased even further to virtually ambient levels when measured in the drain water or in the substrate reservoir. Cucumber plant growth was promoted under conditions which facilitated consistently high oxygen in the root zone, achieved through heavy irrigation (1 min in two) with oxygen-enriched nutrient solution of plants grown in saturated substrate (pumice). However, those extreme irrigation rates would not be practical for commercial cucumber or pepper production. Overall, this study demonstrates that oxygen enrichment of porous substrates under typical hydroponic conditions is difficult and possibly because of this, effects on yield are infrequent. However, fruit shelf-life may be improved.  相似文献   

2.
Current year shoot cuttings were collected in October and August from three growth habits of peach (Compact, Pillar, and Standard) and treated with one of four concentrations of indole butyric acid (0, 250, 1250, and 2500 mg L−1 IBA). Rooting response was measured after 5 weeks in the greenhouse. Little or no rooting occurred with cuttings from any growth habit that was collected in October or in August when treated with 0 and 2500 mg L−1 IBA. In August, the number of shoots that rooted was greater in cuttings from Pillar (79 and 45%) than Compact (13 and 3%) treated with 250 and 1250 mg L−1 IBA, respectively. Cuttings from Standard trees had intermediate rooting of 56 and 6% at 250 and 1250 mg L−1 IBA, respectively. Pillar trees consistently grew more roots with greater root length per cutting than the other growth habits. It is proposed that differences in rooting response among the growth habits may be associated with differences in endogenous auxin concentration that had been found in previous studies. Within peach and possibly other fruit trees, the capacity of shoot cuttings to develop adventitious roots can vary by cultivar and successful root induction with exogenous plant growth regulators may depend, in part, on endogenous hormone levels.  相似文献   

3.
Phillyrea angustifolia is a native Mediterranean species, which has recently been considered suitable for landscaping purposes. We hypothesize that hardening plants in the nursery could increase their tolerance of drought after transplanting. The effects of paclobutrazol (PBZ) and different irrigation regimes applied to seedlings planted in 4.5-L plastic pots were investigated. PBZ was applied as a substrate drench at 0 mL L−1 (untreated control), 30 mL L−1 and 40 mL L−1 per plant and three drip irrigation treatments were used: I100, plants watered at water-holding capacity, I60, plants watered to 60% of I100, and I40, plants watered to 40% of I100. Plants were pot-grown in an unheated greenhouse near the Mediterranean coast of SE Spain. A reduction in plant height and stem diameter was observed one month after being drenched by PBZ. The irrigation regime significantly affected plant height after three months of cultivation and did not affect stem diameter during the nursery period. Significant interaction between the irrigation regime and PBZ dose was evident for plant height during the nursery period. I100 and untreated PBZ plants had the lowest stomata density. PBZ doses significantly reduced canopy weight and leaf area compared with the control. I60 plants showed the greatest leaf area and canopy dry weight, and the highest root length, dry weight, volume and number of forks. Both I60 and I40 treatments showed an equally high water use efficiency (WUE) (calculated as the total plant dry matter divided by the total amount of water supplied by the irrigation treatments). In general, PBZ induced a suite of morphological adaptations (increased root-to-shoot ratio and stomata density, decreased leaf area reduction, fine roots, etc.) that might allow the plants to tolerate drought after transplanting.  相似文献   

4.
Two field experiments were carried out in Egypt during two successive seasons (2007/2008 and 2008/2009). This study aimed to investigate the response of growth, yield quality and some metabolic constituents of onion (Allium cepa L. cv. ‘Giza 20’) to foliar application of putrescine (Put; 25, 50 and 100 mg L−1) and glutamine (Glut; 50, 100 and 200 mg L−1), the former a diamine and the latter an amino acid, either alone, or in combination. Foliar application of Put and Glut, either alone or in combination, significantly increased plant height, number of leaves, fresh weight of leaves/plant, fresh and dry weight/plant, leaf area, leaf area/plant, bulb length, bulb diameter and weight, as well as yield of onion and quality of bulbs. Total soluble sugars, sulfur compounds, total soluble phenols, total free amino acids and total photosynthetic pigment content in leaves were increased by increasing Put and/or Glut concentrations up to 100 and 200 mg L−1, respectively. Generally, foliar application of Put at 100 mg L−1 and Glut at 200 mg L−1 singly, or combined, effectively increased bulb yield and quality. In conclusion, the yield-contributing characters and quality of onion could be improved by application of Put and/or Glut.  相似文献   

5.
Methods to regenerate whole plants from mature leaf explants of Pelargonium rapaceum (L.) L’Hérit were established. To optimize shoot induction, leaf explants were cultured on media containing different types and combinations of plant growth regulators. Growth was initiated within 17–24 days culture, and included callus formation, and root or shoot organogenesis ranging from 20 to 100% regeneration. Shoots were induced only when explants were cultivated on MS medium containing a combination of NAA and kinetin, NAA and BAP, IAA and Kinetin, or IAA and BAP. On media containing NAA and BAP, dark incubation was critical for efficient direct shoot regeneration from explants. Direct shoot formation and the highest number of shoots per explant (17.6) were obtained from leaf explants cultured in the dark for 30 days on MS medium containing 0.1 mg l−1 NAA and 0.1 mg l−1 BAP. Shoots cultured on MS medium containing 0.1 mg l−1 NAA formed tuberous roots with microtubers within 42 days. Healthy regenerated plants were acclimated and transferred to a greenhouse.  相似文献   

6.
Difficulties to develop an easy and reproducible protocol to get healthy and well formed plants from somatic embryos of papaya (Carica papaya L.) had included low germination, callus production at the base of the embryo radicle and the occurrence of hyperhydric plantlets among others, and by consequence unsuccessful transfer to the field. With the aim of improving a propagation method, the effects of light quality, gelling agent and phloridzin concentration on the germination of somatic embryos of hermaphrodite C. papaya L. var. Maradol were studied. Somatic embryos were grown on half strength MS medium, with the addition of Chen vitamins [Chen, M.H., Wang, P.J., Maeda, E., 1987. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants. Plant Cell Rep. 6, 348–351], solidified with three distinct gelling agents: Sigma® Agar–Agar, Difco® Bacto agar and Phytagel®; supplemented with phloridzin and exposed to different light qualities: blue (54 μmol m−2 s−1), red (65 μmol m−2 s−1), gro-lux (68 μmol m−2 s−1), red + blue, white (32 μmol m−2 s−1) and wide spectrum (49 μmol m−2 s−1) during a period of 4 weeks. Results show that light quality and gelling agent had important effects on germination and plant growth, while 3.0 mg L−1 phloridzin had an important role on germination as well as in root development. Somatic embryos exposed to white light, culture medium solidified with 3.0 mg L−1 phytagel and 3.0 mg L−1 phloridzin showed longer roots. Meanwhile, germination and plant length were promoted on an improved culture medium solidified with 7.5 g L−1 Difco® Bacto agar, 3.0 mg L−1 phloridzin and exposed to gro-lux lamps. Under these conditions, 70% of somatic embryos germinated and developed normal roots without hyperhydricity. The regenerated plantlets with well developed roots and shoots were successfully transferred to a greenhouse with a survival rate of 95%.  相似文献   

7.
The effects of application method and concentration of gibberellic acid (GA3), paclobutrazol and chlormequat on black iris performance were assessed. Plants (10 cm high, 4 ± 1 leaves) were sprayed with 125, 250, 375 or 500 mg L−1 or drenched with 0.25, 0.5, 1 or 2 mg L−1 GA3. In a second experiment, the plants were sprayed with 100, 250, 500 or 1000 mg L−1 or drenched with 0.25, 0.5, 1 or 2 mg L−1 paclobutrazol. Other plants were sprayed with 250, 500, 1000 or 1500 mg L−1 or drenched with 100, 250, 375 or 550 mg L−1 chlormequat. In each experiment, the control treatment consisted of untreated plants. Results indicated that the tallest plants (37.3 cm) in the GA3 experiment were those sprayed with 250 mg L−1. The most rapid flowering (160 days after planting) occurred when a 375 mg L−1 GA3 spray was used, whereas flowering was delayed to 200 days using 1 mg L−1 GA3 drench. Drenching with 1 mg L−1 GA3 increased height of the flower stalk by 7 cm compared to the control. Though relatively slow to flower, plants drenched with 1 mg L−1 GA3 had long and rigid stalks, which were suitable as cut flowers. Number and characteristics of the sprouts were not affected by GA3. All paclobutrazol sprays resulted in leaf falcation. A 500 or 1000 mg L−1 paclobutrazol spray resulted in severe and undesirable control of plant height, drastic reduction in stalk height and weight, and delayed flowering. Plants drenched with 0.25 or 1 mg L−1 paclobutrazol were suitable as pot plants. Chlormequat reduced plant height only at the highest drench concentration, which also reduced flowering to 70%. No leaf falcation was observed with GA3 or chlormequat. Chemical names: ( ± )-(R*,R*)-beta-((4-chlorophenyl)methyl)-alpha-(1,1,-dimethylethyl)-1H-1,2,4,-triazol-1-ethanol (paclobutrazol); (2-chloroethyl) trimethylammonium chloride (chlormequat).  相似文献   

8.
As a precondition for lilac mass propagation, the optimal shoot-multiplication medium for Syringa × hyacinthiflora ‘Luo Lan Zi’ was ascertained mainly based on clustered microshoot inducement and large leaf area establishment in 6-benzyladenine (BAP) (1.00 mg L−1) and zeatin (Z) (0.10 mg L−1) combination. Medium supplied with lower level of BAP (0.50 mg L−1) and auxin (IAA) (0.25 mg L−1) was not suitable for lilac shoot proliferation, but it could be competent for long-term preservation of the un-rooted shoots so that subsequent proliferation culture could be carried out at anytime. In addition, excess height growth which resulted in low transplanting survival rate was effectively controlled by decrease in node number when paclobutrazol (PBZ) was applied in rooting medium at a concentration of 1.00 mg L−1 after taking into account the effects on shoot height, rooting, persistent leaf area and PBZ carry-over. An important overwintering treatment was to use a plastic chamber covering for plants in the greenhouse prior to field planting to ensure adequate biomass of stem and underground parts not only in the current growing season but also in the subsequent years.  相似文献   

9.
Lychnis (Caryophyllaceae) consists of about 30 species distributed throughout the temperate regions of the Northern Hemisphere, from East Asia to Europe. Many Lychnis spp. have high ornamental value and cultivated as pot or garden plants. In the present study, in vitro chromosome doubling of several Lychnis spp. was examined in order to widen their variability in horticultural traits. Initially effect of various spindle toxin treatments [100, 500 or 1000 mg l−1 colchicine (COL), 10, 20 or 50 mg l−1 oryzalin (ORY), or 1, 5, 10 mg l−1 amiprophos-methyl (APM)] of nodal segments of a triploid genotype of L. senno (3x) was investigated on survival of nodal segments and chromosome doubling in nodal segment-derived plantlets. Significantly higher percentage (75.0%) of surviving segments after spindle toxin treatment was obtained in 10 mg l−1 ORY treatment. Flow cytometry (FCM) analysis of leaf tissues showed that 9.4–13.8% of plantlets, which were derived from 10 to 20 mg l−1 ORY, or 5 mg l−1 APM treatments, were hexaploid (6x) or ploidy chimera (3x + 6x, 4x + 6x, 5x + 6x, 3x + 4x + 6x). The results obtained by FCM analysis were confirmed by chromosome observation in root tip cells. Thus 10 mg l−1 ORY treatment of nodal segments is suitable for in vitro chromosome doubling of triploid L. senno. Efficient chromosome doubling was also achieved in diploid L. fulgens (2x) and L. sieboldii (2x) by treating nodal segments with 10 mg l−1 ORY: 68.9–88.7% of nodal segments survived after ORY treatment, and 24.7–26.5% of plantlets derived from ORY-treated nodal segments were tetraploid (4x) or ploidy chimera (2x + 4x) in both species. These results indicate that the in vitro chromosome doubling method established for triploid L. senno may be applicable to a wide range of Lychnis spp. Tetraploid L. fulgens and L. sieboldii showed a compact plant form, and had thick stems and deep green leaves compared with the diploid mother plants. On the other hand, hexaploid L. senno showed very poor growth and died before flowering.  相似文献   

10.
The effect of exogenous silicon (Si) on the growth, boron (B) uptake, stomatal conductance, lipid peroxidation (MDA), membrane permeability, lipoxygenase activity (LOX), proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) of spinach were investigated under greenhouse conditions. Spinach plants were grown with 0 or 30 mg kg−1 B combined with 0 and 150 mg kg−1 Si. The severity of leaf symptoms of B toxicity was lower when the plants were grown with 150 mg kg−1 Si. Silicon supplied to the soil with high B counteracted the deleterious effects of B on root and shoot growth. Application of B significantly increased B concentration in shoot and in root tissues. However, Si decreased B concentration in the shoots but increased it in the roots. Shoot tissues of spinach contained higher B than the roots in all treatments. Applied Si increased the Si concentration of the root and shoot. Stomatal conductance of the plants was decreased by B, but was increased by Si. The concentrations of H2O2 and proline were increased by B toxicity but were decreased by Si applied to plants. Boron toxicity increased the membrane permeability, MDA content and LOX activity of excised leaves of spinach. Applied Si ameliorated the membrane deterioration significantly. Compared with control plants, the activities of AA, SOD, CAT and APX in B-stressed plants without Si applied increased, and application of Si decreased their activities under toxic B conditions. Based on the present work, it can be concluded that Si alleviates B toxicity by preventing oxidative membrane damage and also translocation of B from root to shoots. To our knowledge, this is the first report on the effect of Si in improving B tolerance in spinach.  相似文献   

11.
Kosteletzkya virginica, a perennial dicot halophytic species of the Malvaceae, is native to American salt marsh. It was introduced into China as a potential species to improve coastal wetlands and to develop ecologically sound saline agriculture. K. virginica adapts excellently to the tidal-flat habitats in China's east coast, with multiple eco-benefits; in particular, its seed oil could be used to produce biodiesel. The purpose of this study was thus to develop a standardized protocol to induce a high frequency of callus and subsequent plantlet regeneration system for a K. virginica breeding program with the final objective of applying transgenic techniques to improve seed oil yield. The embryonic axes of K. virginica were used as explants for callus induction, shoot induction from the callus and then adventitious root induction from the shoots on nine culture media with different hormone combinations. The best results were achieved on the following media: (1) 93.94% callus induction on MS medium supplemented with 1.0 mg L−1 indole-3-acetic acid (IAA), 0.3 mg L−1 kinetin, 30 g L−1 sucrose and 8 g L−1 agar; (2) 65.83% shoot induction on 1/2MS medium supplemented with 0.1 mg L−1 IAA, 0.5 mg L−1 zeatin, 30 g L−1 sucrose and 8 g L−1 agar; (3) 96.67% rooting on MS medium containing 30 g L−1 sucrose and 8 g L−1 agar. The survival rate of plantlets by organogenic regeneration was 85% after being transplanted into potting soil in flowerpots and placed in the greenhouse. This experiment indicates that we established successful callus induction and plant regeneration protocols for K. virginica.  相似文献   

12.
Inadequate watering of potted ornamental plants during retail can cause a decline in quality as well as plant death. Abscisic acid (ABA) is the main phytohormone controlling plant responses to drought stress, including regulation of stomatal opening and closure. ABA may become available for the greenhouse industry in 2010. The objective of this study was to determine whether exogenous ABA applications can be used to induce stomatal closure and reduce water loss from the substrate. We drenched salvia (Salvia splendens F. Sellow. ex Roem & Shult.) ‘Bonfire Red’ with 50 mL of ABA solutions at concentrations of 0, 250, 500, 1000, and 2000 mg L−1, after which plants were no longer irrigated. ABA drenches slowed down substrate water loss by reducing transpiration in a dose-dependent manner. Stomata closed within 3 h after ABA treatment, decreasing transpirational water loss. However, ABA drenches also caused abscission of lower leaves, resulting in approximately 60% leaf loss with 2000 mg L−1 ABA. ABA drenches with 250 mg L−1 and 500 mg L−1 increased the shelf life of salvia ‘Bonfire Red’ by 3 days, without excessive leaf abscission. ABA can be used to increase the shelf life of salvia, but the lowest effective concentration should be used to minimize leaf abscission.  相似文献   

13.
The major factors influencing protoplast isolation and culture of mango (Mangifera indica L.) cv. Kensington Pride were investigated. The resultant protocol was used to compare plating efficiency among 4 mango cultivars. Most responses differed between proembryonic masses (PEMs) and leaf sources. Protoplast yields of 15.22 × 106 g−1 from PEMs and 8.68 × 106 g−1 from greenhouse-derived leaves were obtained in a solution of 0.7 M mannitol CPW plus 1.5% cellulase, 1% hemicellulase and 0.75% macerozyme for PEMs or 0.5 M mannitol CPW plus 1.5% cellulose, 1% hemicellulase and 1.5% macerozyme for leaves. Culture in Ca-alginate beads with initial plating densities (IPD) of 2.5 × 104 Pp mL−1 for PEMs and 2.5 × 105 for leaves gave the highest plating efficiencies (FPE). For PEMs 1 mg L−1 2,4-d and 3.5 mg L−1 kinetin gave an FPE of 2.85% whereas lower kinetin (2 mg L−1) plus 0.5 mg L−1 6-BAP was most effective for leaves (FPE of 2.12%). Most protoplast mortality occurred during the first week of culture and was more severe in liquid culture. In Ca-alginate beads, protoplast survival at 14 days was higher for PEMs (30%) than leaf (21%) as was the frequency of cell division (17.6% compared to 13.6%). PEMs protoplasts continued development through embryogenesis to in vitro plantlet regeneration whereas leaf protoplasts underwent cell division up to 40-cell colonies but failed to proceed further. For PEMs, polyembryonic cvs. Kensington Pride and Keow Savoey produced higher FPE (1.95%) than monoembryonic cvs. Tommy Atkins and Keitt (1.75%). There was no effect of cultivar for leaf protoplasts.  相似文献   

14.
Although of considerable agronomic importance, our understanding of B toxicity mechanism in plants is still not completely understood, and remains an open question. Therefore, we investigated the effect of increasing levels of B (0, 10, 20 and 30 mg kg−1) on the growth, boron (B) concentrations, stomatal resistance, lipid peroxidation (MDA), membrane permeability (MP), lypoxygenase activity (LOX), proline (PRO) and H2O2 accumulation, and the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) of grapevine (Vitis vinifera L. cv. Kalecik Karasi) grafted on 5BB rootstock (V. berlandieri × V. riparia) was investigated. Applied toxic levels of B significantly reduced leaf and root growth and increased the B concentration of the leaf, and stem, bark and root of rootstock. In the all B levels leaf tissues of grapevine accumulated more B than that of the other plant parts. In order to restrict excessive uptake of B, stomatal resistance of the leaves increased especially at high B treatments (20 and 30 mg kg−1). The concentrations of H2O2, MDA and membrane permeability were increased as the result of B toxicity while proline and the activity of lypoxygenase were decreased. Compared with control plants, the activities of SOD and CAT were increased by B treatments while the activity of APX was decreased. To our knowledge, this is the first report that B toxicity elevated the antioxidant enzymes to protect the membrane functions from reactive oxygen species (ROS) injury in grapevine and it was hoped that this study would provide a basis for developing strategies for reducing the risks associated with B toxicity.  相似文献   

15.
Clumps of statice (Limonium latifolium) plantlets grown photomixotrophically were used as explants and cultured for 25 days on a sugar-free modified Murashige and Skoog (MS) medium in Magenta-type vessels with the number of air exchanges of the vessel (NAE) being 3.8 h−1, at a photosynthetic photon flux (PPF) of 100 μmol m−2 s−1 and a CO2 concentration of 1500 μmol mol−1 in the culture room. A factorial experiment was conducted with three levels of 6-benzylaminopurine (BA) concentration, namely 0, 0.25 and 0.5 mg L−1, and two types of supporting material, agar and Florialite (a porous material). The control treatment was a photomixotrophic culture using a sugar- and BA (0.25 mg L−1) containing agar medium in the vessel with NAE of 0.2 h−1, at a PPF of 50 μmol m−2 s−1 and a CO2 concentration of 400 μmol mol−1 in the culture room. Leaf area, chlorophyll concentration and net photosynthetic rate were greater in the sugar-free medium treatment with a BA concentration of 0.25 mg L−1 and Florialite than those in the control treatment. The number of shoots and dry weight per clump in the sugar-free medium treatment were comparable to those in the control treatment. Among the sugar-free medium treatments, the number of shoots increased with increasing BA concentration, however, the leaf area, dry weight, chlorophyll concentration and net photosynthetic rate decreased with increasing BA concentration. The use of Florialite significantly enhanced the growth and root induction as well as net photosynthetic rate, compared with the treatments that use agar. These results indicated that sugar-free medium micropropagation could be commercially applied to the multiplication of statice plantlets.  相似文献   

16.
The present work evaluated the development of different Curcuma longa L. explants (leaves basis, root tips and ancillary buds from rhizome) stimulated by exogenous polyamines, combined with naphtalen-acetic acid (NAA) or with 6-benzyl-aminopurine (BAP), to produce callus and its subsequent differentiation. The explants, isolated from field plants, were previously subjected to a basic cleaning method and were inoculated onto Murashige and Skoog culture medium (MS) [Murashige, T.S., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 473–497] supplemented with NAA (2.0 mg L−1). Buds were subjected to different treatments, with or without 5.0 and 10.0 mmol L−1 exogenous polyamines (mixture of putrescine:spermine:spermidine, 1:1:1) combined with NAA. The calluses obtained were transferred into the same medium, supplemented with the mixture of polyamines combined with BAP, in order to induce plant differentiation. For C. longa, buds were the most efficient explants for callus induction (p < 0.05). The application of exogenous polyamines (5.0 and 10.0 mmol L−1) produced the most developed callus, with numerous roots. The medium supplemented with 10 mmol L−1 polyamine mixture, combined with BAP, induced good regeneration, producing vigorous plants and excellent shoot formation.Polyamines addition promoted the formation of callus, roots and leaves, representing an important factor in the determination of indirect organogenesis in C. longa L., and putrescine content may be considered a valuable marker of the differentiation process in this specie, as well as the enzyme peroxidase.  相似文献   

17.
The primary objective of this study was to evaluate the effects of foliar boron and calcium application after harvest on the quantity and activity of pollen in the ‘Housui’ and ‘Wonwhang’ pears on a subsequent year. Pollen grains of the ‘Housui’ pear were cultured on germination medium, to which had been added boric acid (0, 25, 75, 100, 200, 300, 400, and 500 mg L−1) and calcium nitrate (0, 10, 25, 50, 100, 150, 200, 250, 300, 400, and 500 mg L−1). Boric acid, which was added to the germination media, exerted a significant stimulatory effect on both pollen germination and pollen tube growth, although pollen tube growth was inhibited at higher concentrations than 300 mg L−1. Calcium nitrate addition stimulated pollen germination, except at concentration of 500 mg L−1. However, pollen tube growth was significantly inhibited with increasing concentrations of calcium nitrate. In the orchard experiment, boron and calcium were sprayed at concentrations of 0, 100, 200, 500 or 1000 mg L−1 onto leaves after harvest, respectively. Boron and calcium content in the tissues as well as pollen production and growth were determined after these treatments. The foliar application of boron mainly resulted in an increase of boron concentration in buds. It also induced an increase in the weight of the anther and pollen in the following year. On the other hand, the foliar application of calcium resulted in an increase of calcium concentration mainly in the leaves, but pollen weight was decreased at high concentration treatment in the following year. The germination rate and tube growth of collected pollen were highest in the trees which had received boron treatment at a concentration of 200 mg L−1. In contrast, the germination rate and tube growth of collected pollen were decreased by calcium application at concentrations of 500 and 1000 mg L−1 without significant increase at lower concentrations. Consequently, the accumulation of boron in the developed buds of pear trees subjected to post-harvest foliar boron application generated positive effects on both the quantity and quality of pollen in the following year.  相似文献   

18.
Continuous and rapidly proliferating axillary shoots were raised from axillary buds in secondary branches of adult field culms and nursery grown 1-year-old tissue culture-raised plants of Bambusa vulgaris ‘Striata’. Shoots continuously proliferated in a MS medium containing 4 mg L−1 6-benzyladenine (BA). The effects of indole butyric acid (IBA) levels, a pretreatment with thidiazuron (TDZ) (1-phenyl-1-([1,2,3-thidiazol-5-yl])urea) and illumination on rooting, were investigated after 6 months of shoot proliferation. A rooting medium with IBA at 3 mg L−1 was optimum for root induction. Shoots of adult field culms that were proliferated in the presence of BA when induced to root in this medium resulted in 40% rooting in 27 days. In vitro shoots raised from 1-year-old tissue cultured plants showed 92% rooting under the same conditions. Rooting was enhanced when the relatively difficult-to-root in vitro shoots from adult field culms were pretreated with 0.5 mg L−1 TDZ for two to three subcultures before placing in the root induction medium. Continuously illuminated shoots pretreated with TDZ for three subcultures showed 100% rooting compared to 83% rooting of shoots that were exposed to a 12 h photoperiod. These findings have been applied in the large-scale propagation of this species.  相似文献   

19.
The effect of five levels of nitrogen fertilization on the growth and nutritional quality of Cos lettuce (Lactuca sativa L. cv. Parris Island) at harvest and after storage was studied during autumn and winter in South-West Greece. Plants were cultivated hydroponically in a greenhouse and the nitrate, chlorophyll and ascorbic acid (vitamin C) concentrations within the plant tissues were measured at harvest and following storage at 5 or 10 °C for 10 days. Nitrate accumulated in the leaves with increasing amounts of N within the nutrient solution and was higher in the winter than in the autumn. At the lowest N level (20 mg L−1), the inner leaves accumulated more nitrate than the outer leaves, whereas at higher N levels (140, 200 or 260 mg L−1) nitrate accumulation was higher in the outer leaves. Overall, the highest nitrate concentrations were detected in the petiole and the proximal end of the leaf, but at the lowest N application rate (20 mg L−1) nitrate accumulated in the distal region of the leaf too. Although the nitrate concentrations within the leaves did not change significantly during 10 days storage at 5 or 10 °C, the chlorophyll and vitamin C concentrations decreased. Chlorophyll loss was higher in lettuce that was grown under low N levels and was higher at 10 °C than at 5 °C, but was reduced by enclosure of the lettuce in polyethylene film. It is concluded that the optimum N application rate for Cos lettuce grown hydroponically under cover during autumn and winter in South-West Greece, and in other areas with a similar climate, is 200 mg N L−1 because at this N rate yield is satisfactory and leaf nitrate concentrations are below the maximum acceptable level for human consumption. Nutritional value (vitamin C concentration) and market quality (chlorophyll content) are highest at harvest and decrease during storage, but quality in terms of nitrate concentration does not change.  相似文献   

20.
The in vitro formation of newly formed adventitious buds and shoots from internodal branch segments was studied on 12-month-old plants of Citrus aurantium L. cv. Brazilian. The effects of 6-Benzyladenine (BA) and α-Naphthalene acetic acid (NAA) treatments were evaluated on adventitious bud and shoot regeneration. High rates of bud initiation and shoot development were obtained both with BA supplemented medium, in the range from 1 mg L−1 to 3 mg L−1, and with 0.1 mg L−1 NAA supplemented medium. NAA concentrations above 1 mg L−1 significantly reduced bud initiation and shoot elongation. The results obtained using different in vitro culture vessels such as Petri dishes, tubes and glass culture jars were compared. The highest adventitious bud induction was observed in Petri dishes for internodes cultured in 2 mg L−1 BA supplemented medium, with 95% responsive explants forming 9.0 ± 2.4 adventitious buds. The adventitious buds observed in Petri dishes reached a maximum height of 1 mm, with no further development, while some of the adventitious shoots cultured in tubes and glass culture jars grew over 1 cm in height. A shoot regeneration gradient of the internodes collected along the branch axis was noticed, with basal ones exhibiting higher regeneration frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号