首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and temporal changes in community structure of soil organisms may result from a myriad of processes operating at a hierarchy of spatial scales, from small-scale habitat conditions to species movements among patches and large-sale landscape features. To disentangle the relative importance of spatial and environmental factors at different scales (plot, patch and landscape), we analyzed changes in Collembola community structure along a gradient of forest fragmentation, testing predictions of the Hierarchical Patch Dynamics Paradigm (HPDP) in different European biogeographic regions (Boreal, Continental, Atlantic, Mediterranean, Alpine). Using variance partitioning methods, based on partial CCAs, we observed that the independent effect of environmental processes was significantly explaining Collembola community variance in all regions, while the relative effect of spatial variables was not significant, due to the observed high levels of landscape heterogeneity along the gradient. Environmental factors at the patch and plot scales were generally significant and explained the larger part of community changes. Landscape variables were not significant across all study sites. Yet, at the landscape level, an increase in forest habitat and proximity of forest patches were showed to have an indirect influence on local community changes, by influencing microhabitat heterogeneity at lower spatial scales in all studied regions. In line with HPDP, large-scale landscape features influenced spatio-temporal changes in soil fauna communities by constraining small-scale environmental processes. In turn, these provided mechanistic understanding for diversity patterns operating at the patch scale, via shifts in community weighted mean of Collembola life-forms occurring in local communities along the fragmentation gradient.  相似文献   

2.
Riparian vegetation is distinct from adjacent upland terrestrial vegetation and its distribution is affected by various environmental controls operating at the longitudinal scale (along the river) or transverse scale (perpendicular to the river). Although several studies have shown how the relative importance of transverse or longitudinal influences varies with the scale of observation, few have examined how the influences of the two scales vary with the level of ecological organization. We modeled vegetation-environment relationships at three hierarchically nested levels of ecological organization: species, plant community, and vegetation type. Our hierarchically structured analyses differentiated the spatial extent of riparian zones from adjacent upland vegetation, the distribution of plant community types within the riparian zone, and the distribution of plant species within community types. Longitudinal gradients associated with climate and elevation exerted stronger effects at the species level than at the community level. Transverse gradients related to lateral surface water flux and groundwater availability distinguished riparian and upland vegetation types, although longitudinal gradients of variation better predicted species composition within either riparian or upland communities. We concur with other studies of riparian landscape ecology that the relative predictive power of environmental controls for modeling patterns of biodiversity is confounded with the spatial extent of the study area and sampling scheme. A hierarchical approach to spatial modeling of vegetation-environment relationships will yield substantial insights on riparian landscape patterns.  相似文献   

3.
Conservationists, managers, and land planners are faced with the difficult task of balancing many issues regarding humans impacts on natural systems. Many of these potential impacts arise from local-scale and landscape-scale changes, but such changes often covary, which makes it difficult to isolate and compare independent effects arising from humans. We partition multi-scale impacts on riparian forest bird distribution in 105 patches along approximately 500 km of the Madison and Missouri Rivers, Montana, USA. To do so, we coupled environmental information from local (within-patch), patch, and landscape scales reflecting potential human impacts from grazing, invasive plant species, habitat loss and fragmentation, and human development with the distribution of 28 terrestrial breeding bird species in 2004 and 2005. Variation partitioning of the influence of different spatial scales suggested that local-scale vegetation gradients explained more unique variation in bird distribution than did information from patch and landscape scales. Partitioning potential human impacts revealed, however, that riparian habitat loss and fragmentation at the patch and landscape scales explained more unique variation than did local disturbances or landscape-scale development (i.e., building density in the surrounding landscape). When distribution was correlated with human disturbance, local-scale disturbance had more consistent impacts than other scales, with species showing consistent negative correlations with grazing but positive correlations with invasives. We conclude that while local vegetation structure best explains bird distribution, managers concerned with ongoing human influences in this system need to focus more on mitigating the effects of large-scale disturbances than on more local land use issues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Recent work in landscape ecology suggests that organisms use environmental cues at a variety of scales to select habitat. As a result, habitat studies that evaluate environmental conditions at multiple spatial scales have become increasingly common. We examined whether the way in which data are rescaled influences inferred relationships between organisms and habitat features. Using a habitat model developed at fine scales, we systematically rescaled habitat (canopy density, slope, and cover type) and distribution maps according to a variety of different rescaling rules, including spatial averaging, thresholding, presence/absence, and majority. We found that the spatial autocorrelation of habitat data interacts with rescaling rules to alter the correspondence between species presence and habitat across scale. Different rules lead to substantially divergent and sometimes opposite correlations among the species and habitat features on the landscape. Such differences in interpretation due to variation in methodology can lead to very different interpretations of a species habitat requirements and thus have important implications for both ecology and conservation.  相似文献   

6.
The fragmented landscape of the Midwest USA includes prairie remnants embedded in an agricultural matrix, potentially impermeable to dispersing individuals. We examined butterfly responses to local (environmental variables measured within the prairie fragment itself such as vegetative characteristics) and landscape (environmental variables measured up to 2 km surrounding the fragment, but not the fragment itself) factors at 20 prairie remnants in Iowa. Our objectives were to: 1) document how the composition and configuration of the landscape affects butterfly community within the fragment, 2) determine whether explanatory power is gained by including both landscape and local variables rather than only local variables, and 3) analyze differences in butterfly community composition between linear and block shaped fragments. Results from partial least squares regression suggest there are significant effects of the landscape on butterfly community composition at all spatial extents investigated. The local variable that was most highly correlated with butterfly community response was percentage litter, while percentage of roads was the most important variable at all landscape spatial extents. Ordination diagrams clearly separate linear from block sites based on butterfly community composition. Variance partitioning using partial canonical correspondence analysis indicated that landscape variables at all spatial extents add additional explanatory power beyond local variables with little overlap in percentage of variation explained. Our results suggest that butterflies are making decisions based both on the local and landscape environmental factors, thus land surrounding prairie remnants should be included in management decisions.  相似文献   

7.
Birds can serve as useful model organisms to investigate community level consequences of forestry practices. In this study we investigated the relationships between wintering bird communities and habitat and landscape characteristics of lowland managed forests in Northern Italy. This area is characterized by the spread of the black locust, an alien species that has been favored by forestry practices at the expense of natural oak forests. Birds were censused in winter by point counts in randomly selected plots of 50 m radius. We first addressed bird community–habitat relationships by means of habitat structure measurements, then we investigated bird community–landscape relationships by using GIS techniques. We used generalized linear models (GLM) to test for the effects of habitat and landscape variables on bird community parameters (namely bird species richness, diversity and abundance). Bird community parameters were influenced by oak biomass and tree age, and by oak area and core area, while the other forest habitat types showed less influence. In forest management terms, the main conclusion is that the retention of native oaks is the keyfactor for the conservation of winter bird diversity in local deciduous woods. At the habitat level black locust harvesting may be tolerated, provided that old, large, native oaks are retained in all local woodlots to preserve landscape connectivity and foraging resources. At the landscape meso-scale, large native oak patches, should be preserved or, where necessary, restored. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The discipline of landscape ecology recognizes the importance of measuring habitat suitability variables at spatial scales relevant to specific organisms. This paper uses a novel multi-scale hierarchical patch delineation method, PatchMorph, to measure landscape patch characteristics at two distinct spatial scales and statistically relate them to the presence of state-listed endangered yellow-billed cuckoos (Coccyzus americanus occidentalis) nesting in forest patches along the Sacramento River, California, USA. The landscape patch characteristics calculated were: patch thickness, area of cottonwood forest, area of riparian scrub, area of other mixed riparian forest, and total patch area. A third, regional spatial variable, delineating the north and south portions of study area was also analyzed for the effect of regional processes. Using field surveys, the landscape characteristics were related to patch occupancy by yellow-billed cuckoos. The area of cottonwood forest measured at the finest spatial scale of patches was found to be the most important factor determining yellow-billed cuckoo presence in the forest patches, while no patch characteristics at the larger scale of habitat patches were important. The regional spatial variable was important in two of the three analysis techniques. Model validation using an independent data set of surveys (conducted 1987–1990) found 76–82% model accuracy for all the statistical techniques used. Our results show that the spatial scale at which habitat characteristics are measured influences the suitability of forest patches. This multi-scale patch and model selection approach to habitat suitability analysis can readily be generalized for use with other organisms and systems.  相似文献   

9.
Agricultural intensification has led to dramatic losses in biodiversity over the past several decades. Many studies have shown the effects of intensification on vegetation or soil communities at field or local scales. However, the functional significance of biodiversity may only appear at larger spatial and temporal scales, due to exchanges among local ecosystems throughout a landscape. To examine how patterns of biodiversity loss are reflected at larger spatial scales, plant and soil biodiversity and associated indicators of ecosystem functions were assessed in riparian areas over a 150 km2 agricultural landscape in the Sacramento Valley of California. Publicly-available GIS data were first used to classify and select sites over the range of soils, topography and plant community types. Representative sites from the landscape were sampled for soil physiochemical properties, as well as microbial, nematode, and plant communities. Higher agricultural intensification, based on field and landscape indices, was negatively correlated with richness and diversity of plant and soil taxa, and was related to indicators of ecosystem functions, such as increased soil nitrate and phosphorus loading, decreased riparian health ratings, and lower soil carbon, soil microbial biomass and soil food web structure. Both field- and landscape-scale factors played important roles in the measured losses. The study area was composed of a wide array of soils, vegetation, and land management, indicating that the observed trends transcended site-specific conditions.  相似文献   

10.
A comprehensive understanding of variables associated with spatial differences in community composition is essential to explain and predict biodiversity over landscape scales. In this study, spatial patterns of bird diversity in Central Kalimantan, Indonesia, were examined and associated with local-scale (habitat structure and heterogeneity) and landscape-scale (logging, slope position and elevation) environmental variables. Within the study area (c. 196 km2) local habitat structure and heterogeneity varied considerably, largely due to logging. In total 9747 individuals of 177 bird species were recorded. Akaike's information criterion (AIC) revealed that the best explanatory models of bird community similarity and species richness included both local- and landscape-scale environmental variables. Important local-scale variables included liana abundance, fern cover, sapling density, tree density, dead wood abundance and tree architecture, while important landscape-scale variables were elevation, logging and slope position. Geographic distance between sampling sites was not significantly associated with spatial variation in either species richness or similarity. These results indicate that deterministic environmental processes, as opposed to dispersal-driven stochastic processes, primarily structure bird assemblages within the spatial scale of this study and confirm that highly variable local habitat measures can be effective means of predicting landscape-scale community patterns.  相似文献   

11.
Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species.  相似文献   

12.
The biological integrity of stream ecosystems depends critically on human activities that affect land use/cover along stream margins and possibly throughout the catchment. We evaluated stream condition using an Index of Biotic Integrity (IBI) and a habitat index (HI), and compared these measures to landscape and riparian conditions assessed at different spatial scales in a largely agricultural Midwestern watershed. Our goal was to determine whether land use/cover was an effective predictor of stream integrity, and if so, at what spatial scale. Twenty-three sites in first-through third-order headwater streams were surveyed by electrofishing and site IBIs were calculated based on ten metrics of the fish collection. Habitat features were characterized through field observation, and site HIs calculated from nine instream and bank metrics. Field surveys, aerial photograph interpretation, and geographic information system (GIS) analyses provided assessments of forested land and other vegetation covers at the local, reach, and regional (catchment) scales. The range of conditions among the 23 sites varied from poor to very good based on IBI and HI scores, and habitat and fish assemblage measures were highly correlated. Stream biotic integrity and habitat quality were negatively correlated with the extent of agriculture and positively correlated with extent of wetlands and forest. Correlations were strongest at the catchment scale (IBI with % area as agriculture, r2=0.50, HI with agriculture, r2=0.76), and tended to become weak and non-significant at local scales. Local riparian vegetation was a weak secondary predictor of stream integrity. In this watershed, regional land use is the primary determinant of stream conditions, able to overwhelm the ability of local site vegetation to support high-quality habitat and biotic communities.  相似文献   

13.
The question of what determines plant community composition is fundamental to the study of plant community ecology. We examined the relative roles of historical land use, landscape context, and the biophysical environment as determinants of plant community composition in regenerating citrus groves in north-central Florida. Results were interpreted in light of plant functional traits. Herbaceous and woody plants responded differently to broad-scale variables; herbs correlated most strongly with surrounding land cover at a scale of 8 km, while the only significant determinant of woody species distributions was local land use history. There were significant correlations between herbaceous species and spatial context, habitat isolation, environmental variables, and historical variables. Partial Mantel tests indicated that each variable provided a unique contribution in explaining some of the variation in the herbaceous dataset. The correlation between woody plants and local historical variables remained significant even with other effects corrected for. In the herbaceous community, species composition was linked to functional traits much as expected from classical theory. While spatial influences in our study system are important for both woody and herbaceous plants, the primary determinant of plant community composition in regenerating citrus groves is historical land use. Our results suggest that the fine-scale mechanisms of local competition, tolerance and facilitation invoked by many classical studies may ultimately be less important than land use history in understanding current plant community composition in regenerating agricultural areas.  相似文献   

14.
Contemporary landscape ecology continues to explore the causes and consequences of landscape heterogeneity across a range of scales, and demands for the scientific underpinnings of landscape planning and management still remains high. The spatial distribution of resources can be a key element in determining habitat quality, and that in turn is directly related to the level of heterogeneity in the system. In this sense, forest habitat mosaics may be more affected by lack of heterogeneity than by structural fragmentation. Nonetheless, increasing spatial heterogeneity at a given spatial scale can also decrease habitat patch size, with potential negative consequences for specialist species. Such dual effect may lead to hump-backed shape relationships between species diversity and heterogeneity, leading to three related assumptions: (i) at low levels of heterogeneity, an increase in heterogeneity favours local and regional species richness, (ii) there is an optimum heterogeneity level at which a maximum number of species is reached, (iii) further increase in spatial heterogeneity has a negative effect on local and regional species richness, due to increasing adverse effects of habitat fragmentation. In this study, we investigated the existence of a hump-shaped relationship between local plant species richness and increasing forest landscape heterogeneity on a complex mosaic in the French Alps. Forest landscape heterogeneity was quantified with five independent criteria. We found significant quadratic relationships between local forest species richness and two heterogeneity criteria indicators, showing a slight decrease of forest species richness at very high heterogeneity levels. Species richness–landscape heterogeneity relationships varied according to the heterogeneity metrics involved and the type of species richness considered. Our results support the assumption that intermediate levels of heterogeneity may support more species than very high levels of heterogeneity, although we were not able to conclude for a systematic negative effect of very high levels of heterogeneity on local plant species richness.  相似文献   

15.
A landscape perspective on sustainability of agricultural systems   总被引:2,自引:1,他引:1  
Agricultural sustainability considers the effects of farm activities on social, economic, and environmental conditions at local and regional scales. Adoption of more sustainable agricultural practices entails defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. Landscape ecology is an informative discipline in considering sustainability because it provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To move toward more sustainable agriculture, we propose adopting a systems perspective, recognizing spatial heterogeneity, integrating landscape-design principles and addressing the influences of context, such as the particular products and their distribution, policy background, stakeholder values, location, temporal influences, spatial scale, and baseline conditions. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) standard specifications for management practices and corresponding effects; (3) incentives and disincentives for enhancing economic, environmental, and social conditions (including financial, regulatory and other behavioral motivations); (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) integrative policies for promoting agricultural sustainability.  相似文献   

16.
The scale at which plants utilize spatially distributed resources may be determined by their ability to locate sites that can sustain population growth. We developed a spatially-explicit model of the dispersal of annual plants in landscapes which were hierarchically structured, i.e., the spatial pattern of suitable sites was nested and scale-dependent. Results show that colonizing ability and extinction probability are most sensitive to the mean dispersal distance of the species. Dispersal out of the parental site, but within the immediate neighborhood, was the most efficient means for population expansion. When landscape patterns change with scale then dispersal distances determine the spatial scales of habitat utilization. As a complicating factor, the type of statistical distribution of dispersal distances also influences the colonizing ability. However, the importance of dispersal distance mean and distribution decreased as the number and connectance of suitable sites increased. The results suggest that landscape models which consider the interaction between scale dependent changes in landscape pattern and species dispersal and establishment characteristics are relevant to many issues in community ecology, invasion biology, and conservation biology.  相似文献   

17.

Context

Understanding the factors contributing to maintaining biodiversity is crucial to mitigate the impact of anthropogenic disturbances. Representing large proportions of green area in highly modified landscapes, residential gardens are often seen as local habitats that can contribute to larger networks of suitable environments at the landscape scale.

Objectives

We investigated the impact of the landscape context on butterfly communities observed in residential gardens, taking into account garden characteristics, land-use types and presence of linear features in the surrounding landscape. We examined how species traits affected butterflies’ response to landscape context and habitat quality.

Methods

We performed a cross-scale study, based on citizen science data documenting butterfly species composition and abundance in 920 gardens across France. We examined the effect of garden quality, the area of different land-use types and the length of linear elements measured at three scales within the surrounding landscape. Species were grouped according to their habitat preference and mobility.

Results

Urbanization negatively affected total species richness and the abundance of butterfly in each group. This was related to declining habitat quality and reduced area of suitable habitat in the surrounding landscape. The magnitude of this effect, however, was negatively correlated with mobility, a trait related to habitat preference. The spatial scale at which landscape context best explained variation in butterfly abundance changed with species’ habitat preference.

Conclusions

This study highlights the importance of preserving high quality habitats in altered landscapes and considering species’ mobility and habitat preference when assessing the impact of landscapes on butterfly communities.
  相似文献   

18.
The importance of the spatial as well as the temporal structure of habitat patches for urban biodiversity has been recognised, but rarely quantified. In dynamic environments the rate of habitat destruction and recreation (i.e. the landscape turnover rate), the minimum amount of potential habitat, its spatial configuration as well as the environmental conditions determining habitat quality are crucial factors for species occurrence. We analysed species responses to environmental parameters and to the spatio-temporal configuration of urban brownfield habitats in a multi-species approach (37 plant and 43 insect species). Species presence/absence data and soil parameters, site age, vegetation structure and landscape context were recorded by random stratified sampling at 133 study plots in industrial areas in the city of Bremen (Germany). Based on the field data, we predicted species occurrences by species distribution models using a multi-model inference approach. Predicted species communities were driven by successional age both at the scale of a single building lot and at the landscape scale. Minimum average succession time of brownfield habitats required to support all and especially regionally rare species depended on the proportion of available open space; the larger the potential habitat area the faster the acceptable turnover. Most plant, grasshopper, and leafhopper species modelled could be maintained at an intermediate turnover rate (mean age of 10–15 years) and a proportion of open sites of at least 40%. Our modelling approach provides the opportunity of inferring optimal spatio-temporal landscape configurations for urban conservation management from patch scale species-environment relationships. The results indicate that urban planning should incorporate land use dynamics into the management of urban biodiversity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.

Context

Knowledge of how environmental gradients generate changes in community composition across forest landscapes (β-diversity) represents a critical issue in the era of global change, which exerts especially powerful impacts by shifting disturbance regimes.

Objectives

We analyzed the response of tree communities to increased disturbance rates that were linked to European settlement at the temperate-boreal interface of eastern Canada. We tested whether disturbance has led to spatial homogenization or heterogenization, and to decoupling or strengthening of community-environment relationships.

Methods

We used a reconstruction of pre-industrial tree communities based on historical land survey records (1854–1935), together with modern data, to assess changes in tree β-diversity patterns. Then, β-diversity was partitioned into fractions explained by spatial (dbMEM) and environmental variables (latitude, elevation, slope, drainage and surface deposits) in order to assess changes in spatial structures and community-environment relationships.

Results

In pre-industrial times, environmental variables explained only a small proportion of β-diversity since dominant taxa were present across the range of environmental gradients, whereas habitat specialists were very rare. Between pre-industrial and modern times, our analysis highlights an increase in β-diversity and the proportion of β-diversity that was explained by environmental variables. Increased disturbance rates have favored early-successional habitat specialist taxa and reduced the habitat breadth of pre-industrial generalists, thereby increasing the strength of community-environment relationships.

Conclusions

Our results support that disturbance can alter the strength of community-environment relationships and also suggest that functional traits of species within the regional pool could predict whether or not disturbance alters such relationships.
  相似文献   

20.
Assessing the associations between spatial patterns in population abundance and environmental heterogeneity is critical for understanding various population processes and for managing species and communities. This study evaluates responses in the abundance of the European rabbit (Oryctolagus cuniculus), an important prey for predators of conservation concern in Mediterranean ecosystems, to environmental heterogeneity at different spatial scales. Multi-scale habitat models of rabbit abundance in three areas of Doñana, south-western Spain, were developed using a spatially extensive dataset of faecal pellet counts as an abundance index. The best models included habitat variables at the three spatial scales examined: distance from lagoons (broad scale), mean landscape shrub coverage and interspersion of pastures (home-range scale), and shrub and pasture cover (microhabitat scale). These variables may well have been related to the availability of food and refuge for the species at the different scales. However, the models’ fit to data and their predictive accuracy for an independent sample varied among the study regions. Accurate predictions in some areas showed that the combination of variables at various spatial scales can provide a reliable method for assessing the abundance of ecologically complex species such as the European rabbit over large areas. On the other hand, the models failed to identify abundance patterns in a population that suffered the strongest demographic collapse after viral epidemics, underlining the difficulty of generalizing this approach. In the latter case, factors difficult to implement in static models such as disease history and prevalence, predator regulation and others may underlie the lack of association. Habitat models can provide useful guidelines for the management of landscape attributes relevant to rabbits and help improve the conservation of Mediterranean communities. However, other influential factors not obviously related to environmental heterogeneity should also be analyzed in more detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号