首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Traffic has a considerable effect on population and community dynamics through the disruption and fragmentation of habitat and traffic mortality. This paper deals with a systematic way to acquire knowledge about the probabilities of successful road crossing by mammals and what characteristics affect this traversability. We derive a model from traffic flow theory to estimate traffic mortality in mammals related to relevant road, traffic and species characteristics. The probability of successful road crossing is determined by the pavement width of the road, traffic volume, traversing speed of the mammals and their body length. We include the traversability model in a simple two-patch population model to explore the effects of these road, traffic and species characteristics on population dynamics. Analysis of the models show that, for our parameter ranges, traffic volume and traversing speed have the largest effect on traffic mortality. The population size is especially negatively affected when roads have to be crossed during the daily movements. These predictions could be useful to determine the expected effectiveness of mitigating measures relative to the current situation. Mitigating measures might alter the road and traffic characteristics. The effects of these changes on traffic mortality and population dynamics could be analysed by calculating the number of traffic victims before and after the mitigating measures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Negative impacts of road networks on wildlife are of global concern. While direct mortality of wildlife via roads has been well-documented, we know little about indirect effects of roads. Using a simulation model parameterized from empirical data, we explored how roads in proximity to maternity roosts influenced foraging activities of the endangered Indiana bat. First, we conducted manipulated landscape simulations to identify characteristics (such as traffic volume, foraging habitat availability, etc.) that influenced landscape permeability. We used a classification and regression tree procedure to assess which landscape and road-related variables, alone or in combination, influenced bat movement. We determined that roads did act as filters (>10 vehicles/5 min) or barriers (>200 vehicles/5 min) to movement. However, it is a combination of the proportion of foraging habitat accessible without crossing a road, and roost-to-road distance that dictated whether the barrier and filter effects of roads hindered the bats’ foraging abilities. We then simulated movement patterns and foraging success of Indiana bats at 32 existing maternity roosts to identify conditions under which colonies currently persist. We established a foraging success threshold, above which Indiana bats currently persist. The value represents the time virtual bats spend in foraging habitat during the simulation period. Finally, simulations from these landscapes around known maternity roosts demonstrate that the road network and landscape configuration are critical to foraging success. This modeling approach and threshold value are beneficial to road developers and represent an invaluable tool in the ecological design of transportation infrastructures.  相似文献   

3.
We conducted two studies on how highways affect their adjacent habitats by sampling carabid beetles (Coleoptera, Carabidae) in patches of formerly continuous forest next to highways. (1) We sampled carabids at 14 highway intersections near Helsinki, Finland. Each intersection (constructed 2–40 years ago) had two forested patches to study: a remnant (0.5–37.4 ha) and, isolated from the remnant by an intersection lane, an islet (size 0.2–1.8 ha). Pitfall trap catch data (2301 carabids, 25 species) showed that remnants hosted higher catches of three carabid species, and slightly higher species richness, than islets (patch-size effect). Time since intersection construction had no apparent effect on carabids. Traffic volume along the intersection lane determined the assemblage structure of carabids in dry patches, and the abundance of a forest carabid Calathus micropterus. Compared to moist patches, drier patches hosted lower catches of four generalist species; they also had different assemblages of carabids (habitat-type effect). An interaction between patch size and habitat type for a forest generalist Pterostichus oblongopunctatus indicated that the patch-size effect was dependent on habitat type. (2) We examined possible dispersal of carabids among forested patches that were separated by highway lanes in Drenthe, the Netherlands. We released 2696 marked individuals of 10 species, and recaptured 376 using dry pitfall traps. We found no evidence for inter-patch movement for nine forest species, but 22 of 225 recaptured individuals of Poecilus versicolor, an eurytopic open-habitat species, had crossed the highway. Catches of seven forest species were also significantly lower in the road verges, compared to the adjacent forests. These two studies suggest that (i) decreasing patch size negatively affects forest-carabid catch and overall species richness, (ii) habitat type can affect the intensity of the patch-size effect, (iii) carabid assemblages of forest fragments vary with traffic volume (which may be linked with urbanization), (iv) forest carabids rarely cross highways, and (v) open habitats associated with road margins are dispersal barriers for forest carabids.  相似文献   

4.
Tick density and population dynamics are important factors in the ecological processes involved in pathogen circulation in a habitat. These characteristics of tick populations are closely linked to habitat suitability, which reflects the limiting ecological factors and landscape features affecting tick populations; however, little work has been done on the regional assessment of habitat suitability. In this study, a regional model for the distribution and abundance of the tick Ixodes ricinus in central Spain is developed. An occurrence and an abundance model were constructed; climate and vegetation variables were found to be the main predictors of both occurrence and density in a relatively homogeneous matrix of habitat patches, whereas topographical variables were found to have small contributions and were therefore discarded. The residuals of the abundance model showed good correlation with the isolation of each patch. The predictive power of the abundance model was greatly enhanced by inclusion of the traversability (a measure of the permeability of each patch to the propagules of the metapopulation) and recruitment (an index of the relative importance of each patch to the traffic through the entire habitat network). The removal from the landscape of the patches whose recruitment values were in the top 10% has a critical effect on tick density, an effect not observed when patches are removed at random. These results indicate that permanent tick populations can be sustained only in landscapes containing a minimum network of viable sites. Graph theory and measurements of patch isolation should prove to be important elements in the forecasting of tick abundance and the management of the features underlying the landscape ecology of tick populations and pathogen circulation in the field.  相似文献   

5.
In recent years the use of plants as bioaccumulators or bioindicators has increased because enable the prediction of pollution for monitoring purposes, even in urban environments where traffic is a major source of heavy metals pollution. In this study we hypothesized holm oak (Quercus ilex L.) a valid trapping species for heavy metals. We also hypothesized that metals capture capacity by deposition on the crown is connected to the surrounding environmental characteristics and the distance of trees from the source of pollution. The study was conducted in the city of Florence. Holm oaks were selected in different sites near to heavy traffic roads. Concentrations of Zn, Pb, Cd, Cu, Fe, Mn, Cr, and Ba were analyzed through two methods: leaf washing with distilled water and leaf unwashing.One-year-old leaves (new leaves) were also compared with previous-year leaves (old leaves). Our results demonstrated the good capacity of this species to capture heavy metals (Pb, Fe, Mn, Cr, and Ba), particularly due to the presence of old leaves, which enhance the crown deposition surface. Washing was effective and it allowed testing the behaviour with regard to microelements: new leaves showed high Cu concentration, while old leaves had high Pb concentration. The dispersion of metals through the atmosphere was assessed through regression analysis, in two comparable gardens: leaves at farther distance from the traffic were richer in Zn, Pb, Mn, and Ba. The physical context of the surrounding environment was probably altering the distribution of heavy metals as barriers to dispersion, which can reach tens of metres from the source of pollution. Therefore, this work suggests that wind modelling and trees distribution and characteristics should be taken into consideration to evaluate the pollutants dispersion, especially for planning of recreational urban green areas.  相似文献   

6.
Landscape ecologists have increasingly turned to the use of landscape graphs in which a landscape is represented as a set of nodes (habitat patches) connected by links representing inter-patch-dispersal. This study explores the use of a graph-based regionalization method, Graph-based REgionalization with Clustering And Partitioning (GraphRECAP), to detect structural groups of habitat patches (compartments) in a landscape graph such that the connections (i.e. the movement of individual organisms) within the groups are greater than those across groups. Specifically, we mapped compartments using habitat and dispersal data for ring-tailed lemurs (Lemur catta) in an agricultural landscape in southern Madagascar using both GraphRECAP and the widely-used Girvan and Newman method. Model performance was evaluated by comparing compartment characteristics and three measures of network connectivity and traversability: the connection strength of habitat patches in the compartments (modularity), the potential ease of individual organism movements (Harary index), and the degree of alternative route presence (Alpha index). Compartments identified by GraphRECAP had stronger within-compartment connections, greater traversability, more alternative routes, and a larger minimum number of habitat patches within compartments, all of which are more desirable traits for ecological networks. Our method could thus facilitate the study of ecosystem resilience and the design of nature reserves and landscape networks to promote the landscape-scale dispersal of species in the fragmented habitats.  相似文献   

7.
Quantifying landscape dynamics is a central goal of landscape ecology, and numerous metrics have been developed to measure the influence of human activities on natural landscapes. Composite scores that characterize human modifications to landscapes have gained widespread use. A parsimonious alternative is to estimate the proportion of a cover type (i.e. natural) within a spatial neighborhood to characterize both compositional and structural aspects of natural landscapes. Here I extend this approach into a multi-scale, integrated metric and apply it to national datasets on land cover, housing density, road existence, and highway traffic volume to measure the dynamics of natural landscapes in the conterminous US. Roughly one-third of the conterminous US (2.6 million km2) in 1992 was classified as human-dominated. By 2001 this expanded by 80,800 km2, and forecasted residential growth by 2030 will potentially lead to an additional loss of up to 92,200 km2. Wetland cover types were particularly affected. The natural landscapes metric developed here provides a simple, robust measure of landscape dynamics that has a direct physical interpretation related to proportion of natural habitat affected at a location, represents landscapes as a gradient of conditions rather predicated on patch/matrix definition, and measures the spatial context of natural areas.  相似文献   

8.
Understanding interactions between roadways and population structure and movements of wildlife is key to mitigating “road effects” associated with increasing urbanization of the landscape. Aquatic turtles are a useful focal group because (1) population persistence is sensitive to mortality of individuals upon roads; (2) turtles frequently move among wetlands and encounter roads, and (3) turtles are an important component of vertebrate biomass in aquatic ecosystems. From 2005 to 2007, we examined the effects of urbanization on local- and landscape-scale populations of turtles. To do so, we sampled and marked turtles in 15 ponds arranged along a steep, urban–rural gradient in central New York State. We captured 494 turtles, representing 327 individuals, the majority of which were common snapping turtles Chelydra serpentina (n = 191) and eastern painted turtles Chrysemys picta picta (n = 122). At the local population (pond) scale, a higher proportion of female snapping turtles in ponds was associated with lower road densities within 500 m of ponds. The mean size of both species of turtle increased in ponds with a lower density of roads within 100 m. At the landscape-level, we observed fewer turtles dispersing through urbanized habitat than forested, and fewer movements through areas with a higher density of roads. Our study suggests that roads alter both local- and landscape-level turtle populations through a loss of female turtles, and by reducing movement between ponds. By extension, the study targets key landscape features upon which to focus mitigation efforts.  相似文献   

9.
Vegetation barriers have been widely applied along urban streets to improve roadside air quality. For a deep investigation of their influences, field measurements and numerical simulations are performed in this study. Carbon monoxide (CO) is selected as a representative of gaseous traffic emissions for both field observations and numerical models. Computational Fluid Dynamics (CFD) models of the standard k-ε turbulent model and Eulerian approach for species transport are solved by FLUENT solver. Results obtained from numerical simulations show a good agreement with field observations on the distribution of roadside CO. In perpendicular wind conditions, both field observations and numerical simulations present a prominent CO reduction over the slow lanes (footpath and bikeway) when vegetation barriers exist. To effectively mitigate roadside air pollution, numerical simulations also provide the optimal heights for roadside vegetation barriers in the given street canyons. For street canyons with an aspect ratio (the ratio of building height to street width) ranging from 0.3 to 1.67, 1.1 m can be used as an optimal height, and 2.0 m could serve as an alternative if tall vegetation barriers are considered. For street canyons with an aspect ratio of lower than 0.3, 0.9 m to 2.5 m can be considered as the optimal heights for roadside vegetation barriers. According to sensitivity analysis, the optimal heights for vegetation barriers are largely insensitive to wind velocities in the given street canyons. In the more complicated urban street canyons and complex meteorological conditions, the optimal heights can be determined by specific numerical simulations. These findings are expected to provide important insights into alleviation of gaseous mobile emissions in terms of vegetation barrier design in urban streets.  相似文献   

10.
Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.  相似文献   

11.
At Naringal in south-western Victoria, Australia, clearing of the original forest environment has created an agricultural landscape dominated by grazed pastures of introduced grasses. Remnant forest vegetation is re-stricted to small patches of less than 100 ha in size, that are loosely linked by narrow forested strips along road reserves and creeks. Six native and two introduced species of small terrestrial mammal (< 2 kg) occur within this environment. The native mammals, being dependent upon forest vegetation, were less tolerant to forest fragmentation than were the introduced species that also persist in farmland and farm buildings. The native mammals displayed an increasing frequency of occurrence in successively larger size-classes of forest patches. Those species with the greatest body-weight were the most vulnerable to habitat loss. All species of small mammal occurred in narrow habitat corridors of forest vegetation on roadsides. The resident status, seasonal variation in relative abundance, patterns of reproduction, and movements of each species were monitored in two habitat corridors during a 25-month trapping study. The corridors were found to facilitate continuity between otherwise-isolated populations of small mammals in this locality in two ways: firstly, by providing a pathway for the dispersal of single animals between patches; and secondly, by enabling gene flow through populations resident within the corridors. The small size of forest remnants at Naringal, and the vulnerability of species with low population sizes, emphasize the importance of preserving a mosaic of numerous habitat patches that together will support regional populations of sufficient size for longer-term persistence. The continuity between remnant habitats that is provided by a network of habitat corridors is an essential, and critical, component of this conservation strategy.  相似文献   

12.
The expansion of roads, and the subsequent changes to the surrounding landscape not only lead to landscape fragmentation but also have been shown to be a key driver of biodiversity loss and ecosystem degradation. Local declines of species abundance as well as changes in animal behaviour have drawn attention to wider ecosystem effects including altered species composition and a degradation of ecosystem functioning. However, methods for measuring and quantifying the distribution and environmental impacts of roads are not yet fully developed. We present a new technique for assessing the potential impacts of roads on biodiversity using a spatial road disturbance index (SPROADI). The index is calculated from three sub-indices: traffic intensity as a measure of traffic volume per time and space; vicinity impact, which is the assessment of edge effect of roads on adjacent habitats (the road-effect zone); and fragmentation grade, which provides an indication of the degree to which the landscape is intersected by roads. SPROADI was then tested using data from the Federal State of Brandenburg in north-eastern Germany. A sensitivity analysis was carried out on the results to assess the robustness of the index. The findings revealed expected patterns of high road disturbance in urban and peri-urban landscapes surrounding Berlin. Less obvious were the high levels of road density and impacts in forest plantations across the southern region of Brandenburg, and low levels of road disturbance in agricultural crop lands of the north-western region. Results were variable for areas under some form of protection. The only national park displayed substantially lower SPROADI values in contrast to the surrounding non-protected areas whilst other protected area categories, which were landscape conservation areas and nature parks, revealed SPROADI values that were equally high as those for non-protected areas. The results of this study demonstrate the strengths and potential applications of SPROADI as a quantitative means for identifying low-traffic areas in the context of conservation and sustainable transport planning.  相似文献   

13.
Roads can have drastic impacts on wildlife populations. Although there is wide recognition of the negative impacts caused by roads and a wealth of practical studies, there is a lack of theoretical work that can be used to predict the impact of road networks or to implement mitigation measures. Here, using Skellam’s diffusion model, we develop analytic and numerical approaches to analyze the impact of road networks on the survival of populations. Our models show that the viability of a population is determined not only by road density but also by the size and shape of patches. Accordingly, we studied the minimum size of a patch to sustain a population with given diffusion and growth parameters. We provide simple formulas to estimate the minimum patch size, and illustrate the importance of shape with square and rectangular patches. Our models also allow the estimation of time to extinction after road construction for a population in a patch smaller than that of the minimum size. Finally, using numerical computations we illustrate how the spatial arrangement of fences strongly affects both the equilibrium density and the spatial distribution of populations, and that not all fence layouts are equally effective. We anticipate that our methods provide a tool to assess the impact of geometrical features of road networks on wildlife and that they can be used to design mitigation measures to prevent the decline and extinction of populations in an anthropogenically disturbed landscape.  相似文献   

14.
We assessed whether forest restoration was successful in Expo ’70 Commemorative Park in Osaka Prefecture, Japan, which was planted in the 1970s with native late-successional tree species. Detailed survey and analysis of species composition, stand vertical stratification, and forest dynamics, including comparison with a reference, natural late-successional forest, were conducted. The restoration plots had grown to larger basal area compared with the reference plots, however, this was a consequence of very high densities of the overstory trees due to low self-thinning rate. Stand vertical structure of the restoration plots was biased toward overstory layers, causing high mortality of understory trees and shrubs. Because there are no mature forests near the restoration site that could act as a seed source, abundance and diversity of understory trees are likely to continue decreasing in the restoration plots, resulting in single-layered forest structure similar to those of monocultures and even-aged forests. Many seedlings of exotic species emerged in the restoration plots and this could lead to a plagiosere where exotic species dominate the vegetation inhibiting regeneration and growth of native species. Ordination analysis using different measures, basal area and abundance, showed apparently contradicting results, suggesting that multiple criteria are needed to evaluate forest restoration success. Our results indicate restoration of mature, late-successional forest cannot be achieved by simultaneous planting of native species. To sustain urban forests into the future, we must conduct long-term monitoring and management referencing natural forest structure and dynamics.  相似文献   

15.
Patch geometry and habitat quality among patches are widely recognized as important factors affecting population dynamics in fragmented landscapes. Little is known, however, about the influence of within-patch habitat quality on population dynamics. In this paper, we investigate the relative importance of patch geometry and within-patch habitat quality in determining population dynamics using a spatially explicit, agent-based model. We simulate two mobile species that differ in their species traits: one resembles a habitat specialist and the other a habitat generalist. Habitat quality varies continuously within habitat patches in space (and time). The results show that spatial variation in within-patch quality, together with patch area, controls population abundance of the habitat specialist. In contrast, the population size of the generalist species depends on patch area and isolation. Temporal variation in within-patch quality is, however, less influential in driving the population resilience of both species. We conclude that specialist species are more sensitive than generalist species to within-patch variation in habitat quality. The patch area-isolation paradigm, developed in metapopulation theory, should incorporate variation in within-patch habitat quality, particularly for habitat specialists.  相似文献   

16.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

17.
The effect of greenery on traffic noise mitigation has been extensively studied on the level of single plants, green walls, berms and hedges, but not considering whole sample areas within the cities. Therefore, the aim of this paper is to investigate the relationship between features of urban morphology related to green spaces, roads or buildings and traffic noise distribution in urban areas. The analysis was applied in eight UK cities with different historical and architectural background, following two different settlement forms (radial, linear). In each city a 30 km2 grid was defined and three different levels of approach were considered (macro-scale, meso-scale, micro-scale). The first level regarded the eight cities as single entities, while in the second one every single tile of the applied grid was investigated in two different cities. In the third level only the eight city centres were analyzed. Statistical analysis was used combined with GIS tools. In total 18 variables were constructed and tested for possible relationships with noise levels (Lden). It was found that in spite of the fact that each city has its own dynamic and form, features of urban morphology were related to traffic noise levels to a different extent at each scale. At the macro-scale, the green space pattern was related to the structure of the city as well as the traffic noise levels in combination with the rest of the morphological parameters. At the meso-scale, an increase in internal road connectivity contributed to higher traffic noise. Green space variables explained part of the variance in traffic prediction models. Finally, at the micro-scale, it was also proved that different areas can have the same building coverage but different noise levels. Therefore, these indexes could be profiled and used as an “a priori” tool for urban sound planning.  相似文献   

18.
Geertsema  W.  Opdam  P.  Kropff  M.J. 《Landscape Ecology》2002,17(3):263-279
In agricultural landscapes many plant species are limited to the network of landscape elements that are not used for agricultural production. This habitat is fragmented in space and time due to anthropogenic, biotic and abiotic factors. Therefore, plant populations are spatially sub-divided and their persistence might be dependent on the spatial dynamics in the network of local populations. Dispersal characteristics and seed bank persistence are main determinants of colonization ability which in turn is a key determinant of metapopulation viability. We propose a conceptual model that relates plant population dynamics to habitat quality, configuration and dynamics. In this model, the habitat is arranged as a network of suitable and unsuitable patches,and the distribution of the patches is assumed to be dynamic in time. Based on dispersal and seed bank characteristics four plant strategies are distinguished:species having either long (> 100 m) or short (< 100m) distance dispersal and either a long (> 5 yr)or short (< 5 yr) term persistent seed bank. We expect that species with contrasting strategies have different survival probabilities in landscapes with contrasting habitat arrangement in space and time. We found few empirical studies for testing the hypotheses based on the model. Therefore the relation between landscapes and plant survival needs to be further explored,especially the quantitative aspects. We propose an iterative process of empirical and modelling research to determine this relation and to define management options for multifunctional farms in which biodiversity is one of the land use aims. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The application of de-icing salts for winter road maintenance is recognized as a major contributor to the decline of urban trees. We conducted a long-term monitoring program across several locations in the City of Edmonton (Alberta, Canada) to evaluate the impact of roadway salt application on tree species widely planted in boulevards and right-of-ways: Ulmus americana, Fraxinus pennsylvanica, Pinus contorta, and Picea glauca. Soil and leaf samples were collected from a total of 16 sites over six years. There were four sites selected for each tree species: three mid- to high- traffic roadside sites that received regular winter maintenance and one non-serviced site (control). Sampling was performed three times per year from late spring to late summer. Airborne salinity was assessed in four locations at different distances from the road. In 50% of the roadside sites, soil electrical conductivity (EC) values exceeded 2 dS m−1. Soil pH in all of the roadside sites was also significantly higher than in the control sites, with values ranging from 7.6 to 8.5. In all four species, trees growing in sites with high soil EC had increased leaf Na concentrations and reduced leaf chlorophyll concentrations. Among the airborne monitoring sites, Na deposition in high traffic locations was over four-fold higher than those measured in the control location. Furthermore, Na levels remained relatively high at 20–50 m from the main road. Our data suggest that while soil salinity is among the main stressors affecting roadside trees in Edmonton, salt spray deposition may also have a significant impact on trees located close to high vehicle traffic areas and dense road networks. Our study highlights the importance of collecting data over several years and from multiple locations to account for the spatial and temporal heterogeneity of the urban environments in order to better evaluate the impact of road salt application on urban trees.  相似文献   

20.
以陕西省子午岭东段铜川市境内的裂叶紫斑牡丹(Paeonia rockii ssp. atava)种群和秦岭中段宝鸡市境内的全缘叶紫斑牡丹(Paeonia rockii ssp. rockii)种群为调查对象,绘制其静态生命表、种群年龄结构图、存活曲线、死亡率曲线以及生殖力表,进行种群数量动态分析。结果表明:裂叶紫斑牡丹种群在3龄前和9 ~ 15龄之间分别经历了环境筛选和竞争自疏,11年为其生理寿命,30年左右为极限寿命,存活曲线表现为Deevey-Ⅰ型,种群表现为增长型。全缘叶紫斑牡丹种群在3龄前经历了强烈的环境筛选,3龄以后种群处于高死亡率状态,9年左右为其生理寿命,24年为极限寿命,存活曲线表现为Deevey-Ⅱ型,种群表现为衰退型。造成两种紫斑牡丹种群数量动态差异的可能原因是繁殖能力的差异、居群规模大小、种群适应性以及人为干扰等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号