首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
AIM:To investigate whether honokiol induces the autophagy of human lung cancer A549 cells and to explore its mechanism. METHODS:The A549 cells were cultured in vitro, and treated with honokiol at different concentrations (0, 10, 20, 40, 60 and 80 μmol/L) for 48 h. MTT assay was performed to analyze the effect of honokiol on the viability of the A549 cells. The formation of autophagosome was observed by staining with acridine orange under fluorescence microscope. The protein levels of autophagy-associated protein LC3, mTOR and p-mTOR in the A549 cells treated with honokiol, or combined with autophagy inhibitor 3-methyladenine (3-MA) were determined by Western blot. RESULTS:Honokiol significantly inhibited the viability of A549 cells in a dose-dependent manner (P<0.05). The number of the intracellular acidic autophageic vacuoles with bright red fluorescence was significantly increased after honokiol treatment. The protein level of LC3-Ⅱ/LC3-I in the A549 cells was significantly enhanced after honokiol (40 μmol/L) treatment, and the ratio of LC3-Ⅱ/LC3-I was significantly decreased by treatment with 3-MA (P<0.05). Furthermore, treatment with honokiol (40 μmol/L) in the A549 cells for 48 h also resulted in significant down-regulation of phosphorylated form of mTOR (P<0.01), while the total protein level was not changed. CONCLUSION:Honokiol significantly inhibits the growth of lung cancer A549 cells and induces the autophagy, which may be correlated with inhibition of mTOR signaling pathway.  相似文献   

2.
AIM: To explore the anticancer function of Shp2 in lung adenocarcinoma A549 cells and the related molecular mechanisms. METHODS: The viability and proliferation of A549 cells treated with Shp2 specific inhibitor Phps-1 or cisplatin (DDP) were measured by CCK-8 assay and EdU assay. Annexin V-FITC/PI double staining was applied to detect apoptotic rate of A549 cells with different interventions. The protein levels of caspase-3-17p, Bcl-2, Bax, p-STAT3/STAT3 and p-ERK/ERK were determined by Western blot. RESULTS: Compared with control group, Phps-1 at the concentration of 20 μmol/L significantly increased the viability of A549 cells after 24 h of treatment (P<0.05). Meanwhile, the proliferation rate of A549 cells in Phps-1 20 μmol/L group was significant increased compared with control group (P<0.05). The apoptotic rate of A549 cells in DDP treatment group decreased from 13.01%±2.62% to 3.67%±0.93% after adding Phps-1 (P<0.05). Phps-1 down-regulated the protein levels of caspase-3-17p, Bax and p-ERK, but up-regulated p-STAT3.CONCLUSION: Shp2 is a tumor suppressor in A549 cells, which may be associated with the activation of STAT3 signal pathway.  相似文献   

3.
AIM:To investigate the effects of luteolin on the invasion and epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1) in lung cancer A549 cells. METHODS:The effect of luteolin at 5, 10, 20, 40, 80 and 160 μmol/L on the viability of A549 cells was measured by MTT assay. The invasion ability was analyzed by Transwell method. The morphological changes of the A549 cells were observed under microscope.The protein expression of E-cadherin and vimentin in the A549 cells were determined by Western blot. RESULTS:The viability of the A549 cells was significantly inhibited by luteolin in a dose-time dependent manner (P<0.05). The IC50 of luteolin for the A549 cells (24 h) was 68.79 μmol/L, while that (48 h) was 47.86 μmol/L. TGF-β1 induced morphological alteration of the A549 cells from epithelial to mesenchymal forms. Luteolin significantly inhibited TGF-β1-induced invasion of the A549 cells (P<0.01). The protein expression of E-cadherin was significantly down-regulated and the protein expression of vimentin was significantly up-regulated in the presence of TGF-β1 at 5 μg/L (P<0.01). However, luteolin reversed TGF-β1-induced EMT, up-regulation of E-cadherin and down-regulation of vimentin (P<0.01). CONCLUSION:Lu-teolin reverses TGF-β1-induced EMT in the lung cancer A549 cells.  相似文献   

4.
LIANG Min  CHEN Xin 《园艺学报》2016,32(12):2239-2244
AIM: To investigate the effects of ursolic acid (UA) on the migration and invasion of human lung cancer cell line A549, and to explore its mechanism. METHODS: The cell viability was detected by MTT assay. The expression of miRNA-133a was detected in the A549 cells treated with UA by real-time PCR. The miRNA-133a mimics and inhibitor were transfected into the A549 cells, and the transfection efficiency was analyzed by real-time PCR. The cell migratory and invasive abilities were determined by wound healing and Transwell methods, respectively. RESULTS: The viability of the human lung cancer A549 cells was significantly inhibited by UA in a dose-dependent manner (P<0.05). IC50 of UA (24 h) for lung cancer A549 cells was 31.04 μmol/L. UA treatment significantly inhibited the migratory and invasive abilities of A549 cells in a concentration-dependent manner, accompanied by significantly elevation of miRNA-133a expression. The mimics and inhibitor of miRNA-133a significantly upregulated and downregulated the expression of miRNA-133a in the transfected A549 cells, respectively. In addition, the viability of the A549 cells was decreased extremely after tansfected with the miRNA-133a mimics (P<0.01), so did the results of the cell migration and invasion test. The A549 cells tansfected with the miRNA-133a inhibitor showed an opposite changes of the cell viability, migration and invasion. CONCLUSION: UA inhibited the viability, migration and invasion of lung cancer A549 cells by elevating the expression of miRNA-133a.  相似文献   

5.
AIM: To investigate the effect of naringin (NRG) on cisplatin (DDP) resistance in human lung cancer A549/DDP cells and its possible mechanism. METHODS: A549/DDP cells were cultured in vitro and treated with NRG and/or DDP at different concentrations for 24 h, and then the cell viability were measured by CCK-8 assay. The combination index (CI) of NRG and DDP were analyzed by Chou-Talalay method. The apoptosis rate was analyzed by flow cytometry. Western blot was performed to detect the protein levels of P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), p-Akt, CXC chemokine receptor 4 (CXCR4), cleaved caspase-3, Bcl-2 and Bax.RESULTS: The protein levels of P-gp, MRP1, p-Akt and CXCR4 in the A549/DDP cells were higher than those in the A549 cells (P<0.05). The cell viability was remarkably reduced in a dose-dependent manner when A549/DDP cells were exposed to NRG and/or DDP (P<0.05), and the IC50 values of NRG and DDP were 36.92 μmol/L and 129.77 μmol/L, respectively. When the inhibition rate exceeded 15%, NRG in combination with DDP produced a synergistic effect (CI<1). Combination treatment with NRG and DDP significantly induced apoptosis (P<0.05), up-regulated the protein levels of cleaved caspase-3 and Bax, and down-regulated the protein level of Bcl-2 (P<0.05). Meanwhile, NRG remarkably down-regulated the protein levels of P-gp, MRP1, p-Akt and CXCR4 in a dose-dependent manner (P<0.05). CONCLUSION: NRG may enhance the sensibility of A549/DDP cells to DDP most likely via up-regulating the protein level of Bax and down-regulating the protein levels of Bcl-2, P-gp, MRP1, p-Akt and CXCR4.  相似文献   

6.
AIM: To investigate the possible signaling pathway that promotes epithelial-mesenchymal transition (EMT) of the lung cancer A549 cells stimulated with muscarinic receptor 3 (M3R) agonist carbachol. METHODS: The lung cancer cells A549 were treated with 400 μmol/L carbachol. The morphological changes of the cells were observed under inverted phase contrast microscope. The migration and invasion abilites were measured by Wound healing and Transwell assays. qPCR was used to detect the mRNA level of vimentin and E-cadherin. The protein levels of p-AKT, vimentin and E-cadherin were determined by Western blot. RESULTS: After treatment with carbachol, the A549 cells showed loss of the close connection and the cell morphology was transformed from irregular polygon to spindle-like cells. The results of Wound healing and Transwell assays showed that the migration and invasion abilites of the A549 cells were enhanced. Carbachol increased the vimentin expression and decreased the E-cadherin expression at mRNA and protein level (P<0.05). The phosphorylation of AKT in the A549 cells was up-regulated (P<0.05). These changes was inhibited by M3R antagonist 4-DAMP. CONCLUSION: Carbachol promotes EMT in the human lung cancer A549 cells by activating PI3K/AKT signaling pathway.  相似文献   

7.
AIM: To investigate the effect of di-indolyl thiozoline (DIIT) on the proliferation of human lung cancer A549 cells. METHODS: The effects of DIIT on the proliferation of human lung cancer A549 cell line were determined by CCK-8 assay and EdU assay. The effects of DIIT on the expression of cyclin-dependent kinase 4 (CDK4), cyclin D1, and the phosphorylation of Akt and mTOR were determined by Western blot. RESULTS: After the A549 cells were treated with DIIT at 12.5, 25, 50 and 100 mg/L, the cell viability detected by CCK-8 assay was decreased by 12%, 27% (P<0.01), 33% (P<0.01) and 52% (P<0.01), respectively, compared with DMSO control group. The EdU positive cell number determined by EdU assay was decreased by 10%, 21% (P<0.05), 26% (P<0.05) and 34% (P<0.01), respectively, compared with DMSO control group. Compared with DMSO control group, DIIT inhibited the phosphorylation of Akt and mTOR and the expression of cyclin CDK4 and cyclin D1 (P<0.05). CONCLUSION: Di-indolyl thiozoline inhibits the proliferation of A549 cells, which may be related to the decreases in phosphorylation levels of Akt and mTOR and the inhibition of cell cycle-related protein expression.  相似文献   

8.
AIM: To investigate the protective effect of hypoxic preconditioning on human bone marrow mesenchymal stem cells (hBM-MSCs), and to provide basic experimental support for more effective autologous stem cell transplantation in aged patients. METHODS: The old hBM-MSCs were subjected to hypoxic preconditioning using a hypoxia incubator chamber for 24 h. The cells were divided into young group, old group and old+hypoxia group (with 24 h hypoxic preconditioning). Hydrogen peroxide (H2O2, 300 μmol/L) was applied to simulate the oxidative stress. The cells were treated with 50 μmol/L LY294002 for 2 h to inhibit PI3K/AKT pathway. BrdU incorporation and CCK-8 assay were used for analyzing the cell proliferation and viability. The protein levels of Bax, Bcl-2 and p-AKT were measured by Western blot. RESULTS: BrdU-positive cells, which represented the cell proliferation, and the cell viability were significantly increased in old+hypoxia group compared with old group (P<0.05). The protein level of Bax decreased (P<0.05) and Bcl-2 increased (P<0.05) in old+hypoxia group compared with old group after using 300 μmol/L H2O2 simulate. the oxidative stress. The phosphorylation of AKT was enhanced by hypoxic preconditioning in old group (P<0.05). The protective effect of hypoxic preconditioning on the cell survival was decreased after treated with LY294002 (inhibitor of the PI3K/AKT pathway) (P<0.05). CONCLUSION: Hypoxic preconditioning increases the survival and proliferation of old hBM-MSCs by activation of AKT pathway.  相似文献   

9.
AIM: To investigate the effects of 3-phosphoinositide-dependent protein-1 (PDK1) on the biological characteristics of non-small-cell lung cancer cell line A549 and the underlying mechanisms.METHODS: The expression levels of PDK1 in lung normal epithelial cell line BEAS-2B and different lung cancer cell lines H460, SPCA1 and A549 were determined by Western blot and real-time PCR. Small interfering RNA was used to down-regulated PDK1 expression in the A549 cells, and then cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. The expression of cell cycle-and apoptosis-related molecules at protein level and the activation of Akt/FoxO1 pathway were measured by Western blot. Insulin-like growth factor-1 (IGF-1, one of the most potent Akt activators) was used to evaluate the interaction between PDK1 and Akt/FoxO1 pathway.RESULTS: Compared with lung normal epithelial cell line BEAS-2B, PDK1 expression in the lung cancer cell lines was obviously increased (P<0.05). Knockdown of PDK1 suppressed cell viability and cell cycle, but promoted the apoptosis of the A549 cells. The results of Western blot showed that the protein levels of cyclin D1, CDK4, p-Rb, Bcl-2, p-Akt and cytoplasmic p-FoxO1 were significantly decreased after knockdown of PDK1, with increases in the protein levels of P27, cleaved caspase-3 and nuclear FoxO1. Pre-incubation with IGF-1 partly reversed the effect of PDK1 knockdown on Akt/FoxO1 pathway and increased the viability of A549 cells.CONCLUSION: In human non-small-cell lung cancer A549 cells, knockdown of PDK1 suppresses cell viability and promotes cell apoptosis by regulating the expression of cell cycle-and apoptosis-related molecules via Akt/FoxO1 pathway, suggesting that PDK1 may be a potential target for diagnosis and theatment of lung cancer.  相似文献   

10.
WANG Wei  WANG Kun 《园艺学报》2016,32(9):1551-1555
AIM: To investigate the effects of tripchlorolide (TP) on proliferation and autophagy of human lung cancer A549 cells, and explore its mechanism. METHODS: MTT assay was performed to analyze the effect of TP on the viability of human lung cancer A549 cells. The A549 cells were treated with TP, and their autophagy was observed under the fluorescence microscope through acridine orange staining. Green fluorescence spots were observed by fluorescence microscopy through GFP-LC3 plasmid transfection experiment. The levels of LC3 and p-ERK in the A549 cells after TP treatment were determined by Western blot. RESULTS: The viability of human lung cancer A549 cells was significantly inhibited by TP in a dose-time dependent manner (P<0.05). The number of the intracellular acidic follicles dyed with bright red fluorescence was significantly increased after TP treatment in A549 cells. The number of green dot-like congregate autophagosomes in cell cytoplasm was significantly increased after TP treatment in the A549 cells transfected with GFP-LC3 plasmid, while the normal treatment only induced a few cells with autophagosome formation. At the same time, we did not observe the dot-like congregate autophagosomes after TP treatment in the A549 cells transfected with GFP-control plasmid. Compared with control group, the expression of LC3-Ⅱ protein was up-regulated in A549 cells after TP treatment (P<0.01). Furthermore, treatment with TP in A549 cells for 48 h also led to a significant upregulation of phosphorylated form of ERK (P<0.01). In contrast, no significant change in the levels of total ERK protein was observed. Compared with 100 nmol/L TP group, TP+3-MA group down-regulated the protein levels of LC3-Ⅱ (P<0.01) and p-ERK (P<0.01) in the A549 cells. CONCLUSION: TP significantly inhibits the growth of A549 lung cancer cells and induces the autophagy, which may be correlated with upregulation of p-ERK protein.  相似文献   

11.
AIM: To investigate the effects of marrow stromal cell line HS-5 on human lung adenocarcinoma A549 cells in the tumor microenvironment. METHODS: The effects of HS-5 cell-conditioned medium (HS-5-CM) on the viability and migration ability of A549 cells were detected by MTT assay and wound-healing assay. After treatment with HS-5-CM, the expression of CX3C chemokine receptor 1 (CX3CR1) at mRNA level in the A549 cells was examined by qPCR. The protein levels of p-ERK and ERK in the A549 cells treated with MAPK/ERK pathway inhibitor U0126 were observed by Western blot, the migration ability of the A549 cells was measured by wound-healing assay, and the protein expression of CX3CR1 was determined by Western blot. RESULTS: HS-5-CM promoted the viability and migration ability of the A549 cells (P<0.01). The expression of CX3CR1 at mRNA level in the A549 cells was increased after treatment with HS-5-CM. MAPK/ERK inhibitor U0126 inhibited the activation of MAPK/ERK signaling pathway (P<0.01), and reduced the migration ability (P<0.01) and the expression of CX3CR1 (P<0.05) in the A549 cells. CONCLUSION: HS-5-CM significantly promotes the A549 cell viability and migration ability. Activation of MAPK/ERK signaling pathway and the expression of CX3CR1 may play a important role in this process.  相似文献   

12.
AIM: To investigate the effect of suberoylanilide hydroxamic acid (SAHA) on the proliferation and apoptosis of human hepatocellular carcinoma HepG2 cells and to explore its possible mechanism. METHODS: HepG2 cells were treated with SAHA at different concentrations for 48 h. The proliferation of HepG2 cells was detected by real-time cellular analysis. The protein levels of acetylated histones H3K9 and H3K27, glucose-regulated protein 78 (GRP78), protein kinase R-like endoplasmic reticulum kinase (PERK) and p-PERK were determined by Western blot. The cell apoptosis was analyzed by flow cytometry. RESULTS: Compared with control group, treatment with SAHA at 0.1 μmol/L and 1 μmol/L for 48 h showed no significant inhibitory effect on the proliferation of HepG2 cells, while SAHA at 6 μmol/L and 12 μmol/L significantly inhibited the proliferation of HepG2 cells (P<0.05). The results of Western blot showed that the protein levels of acH3K9, acH3K27, GRP78 and p-PERK increased significantly after treated with SAHA at diffe-rent concentrations for 48 h, while the protein level of PERK was decreased significantly (P<0.05). The results of flow cytometry analysis showed that the apoptotic rates of the HepG2 cells increased with the increase in SAHA concentration. CONCLUSION: SAHA up-regulates the acetylation of H3K9 and H3K27 in the HepG2 cells and induces apoptosis of HepG2 cells by activating the endoplasmic reticulum stress-related apoptosis pathway.  相似文献   

13.
AIM: To investigate the effects of curcumin on the abilities of migration and invasion in the lung cancer PC-9 cells, and to observe the relationship between curcumin and nectin-4 expression.METHODS: The viability, migration and invasion of lung cancer PC-9 cells treated with curcumin or transfected with siNectin-4 were measured by MTT assay, wound healing test and Transwell assay, respectively. The protein levels of nectin-4, p-AKT and AKT in the PC-9 cells treated with curcumin or transfected with siNectin-4 were detected by Western blot.RESULTS: Curcumin inhibited the viability of PC-9 cells. The wound healing rates and the numbers of the transmembrane cells in curcumin 10 μmol/L and 20 μmol/L groups were decreased compared with control group without curcumin treatment. The expression level of nectin-4 was reduced after curcumin treatment for 24 h. The viability of the PC-9 cells was significantly inhibited after transfected with siNectin-4 for 48 h or 72 h (P<0.01), and the wound healing rates was decreased in siNectin-4 group compared with NC group (P<0.01). The numbers of the transmembrane cells in siNectin-4 group was significantly reduced (P<0.01). Curcumin and knockdown of nectin-4 suppressed the activation of AKT pathway in PC-9 cells. In siNectin-4+curcumin group, the cell viability reduced compared with curcumin group, and wound healing rates, cell invasive ability and AKT phosphorylation levels were decreased.CONCLUSION: Curcumin inhibits migration and invasion of the lung cancer PC-9 cells via down-regulation of nectin-4 expression and inhibition of AKT pathway.  相似文献   

14.
AIM: To investigate the effect of shikonin on reversing hepatocyte growth factor(HGF)-induced resistance to gefitinib in lung cancer HCC827 cells, and to explore its possible mechanisms.METHODS: The gefitinib-resistant HCC827 cells induced by HGF were treated with shikonin and gefitinibthe alone or in combination. The inhibition rates of cell viability were determined by MTT assay. The invasive ability of HCC827 cells with HGF-induced resistance to gefitinib was determined by Transwell assay. The protein levels of epithelial-mesenchymal transition (EMT) and related signaling pathway in the HCC827 cells were detected by Western blot.RESULTS: The results of MTT assay showed that the cell activity of HCC827 cells was significantly inhibited by shikonin in a dose dependent manner. The IC50 of shikonin in HCC827 cells was 3.06 μmol/L. And the IC50 of gefitinib in HCC827 cells was 0.51 μmol/L. Under the condition of combined treatment with shikonin and gefitinib in the presence of HGF (20 μg/L), the IC50 of gefitinib was 7.36 μmol/L, significantly lower than that treated with gefitinib alone (P<0.01), so did the result of the cell migration (P<0.01). HGF induced EMT, while shikonin reversed this effect. The protein expression level of p-AKT was significantly up-regulated by HGF, while markedly down-regulated treatment with shikonin and gefitinib compared with gefitinib alone (P<0.01).CONCLUSION: Shikonin reverses HGF-induced resistance to gefitinib in lung cancer HCC827 cells, and the mechanism may be likely related to the preventon of EMT and the inhibition of HGF-induced activation of p-AKT signaling pathway.  相似文献   

15.
SHI Xin 《园艺学报》2015,31(3):452-456
AIM: To study the influences of tangeretin (TGN) on the growth and invasion of non-small-cell lung cancer (NSCLC) cells, and to explore the molecular mechanisms. METHODS: The A549 cells were treated with different concentrations of TGN in vitro. The relative cell activity was determined by MTT assay. The apoptotic rate was analyzed by flow cytometry with Annexin V-FITC/PI staining. The number of the invasive cells was measured by Transwell assay. The mRNA expression of MMP-2 and MMP-9 was detected by RT-PCR, and the protein levels of Ki67, Cyt C, caspase-3, cleaved caspase-3, MMP-2, MMP-9, Akt, p-Akt and p-PI3K were determined by Western blotting analysis. RESULTS: TGN inhibited the proliferation of A549 cells in a dose-dependent manner (P<0.05) along with the low expression level of proliferation biomarker Ki67. TGN up-regulated the protein levels of Cyt C, caspase-3 and cleaved caspase-3 (P<0.01) and promoted the apoptosis of A549 cells in a dose-dependent manner. Moreover, TGN down-regulated the invasion-related molecules MMP-2 and MMP-9 at the mRNA and protein levels, and the number of invasive cells reduced with the increase in the concentration of TGN. The protein levels of p-Akt and p-PI3K in the A549 cells was reduced (P<0.05), and no difference of the cell viability in the cells treated with different concentrations of TGN was observed after blocking PI3K/Akt signaling pathway using LY294002. CONCLUSION: TGN inhibits the growth and invasion of A549 cells and promotes the cell apoptosis by potentially inhibiting PI3K/Akt signaling pathway activation. Therefore, this study will provide a new target for the prevention and control of NSCLC.  相似文献   

16.
AIM: To investigate the effects of microRNA(miRNA)-126 on the proliferation, migration and invasion of human lung cancer cell lines, and to explore its mechanism. METHODS: The A549 cells were transfected with miRNA-126 agomir by Lipofectamine 2000. The expression of miRNA-126 was detected by real-time PCR. The cell activity was detected by MTT assay. The number of viable A549 cells was counted by the method of Trypan blue exclusion. The cell colony-forming capability was determined by cell colony formation test. The cell migration and invasion abilities were assayed by wound healing and Transwell methods, respectively. The protein levels of p-EGFR, EGFR, p-AKT, AKT, p-mTOR and mTOR were determined by Western blot. RESULTS: The expression level of miRNA-126 was significantly increased in the A549 cells compared with negative control(NC) group and control group(P<0.01). The proliferation of A549 cells was decreased extremely after transfected with the miRNA-126 agomir(P<0.01), so did the result of the cell colony-formation test. The migration and invasion abilities of the lung cancer cells were also significantly inhibited. The protein levels of p-EGFR, p-AKT and p-mTOR were significantly down-regulated compared with NC group and control group(P<0.01). CONCLUSION: Over-expression of miRNA-126 significantly inhibits the proliferation, migration and invasion ability of human lung cancer A549 cells by down-regulation of EGFR/AKT/mTOR pathway.  相似文献   

17.
AIM:
To investigate the levels of aldolase A (ALDOA), carcinoembryonic antigen (CEA) and lactate dehydrogenase (LDH) in malignant pleural effusion (MPE) from patients with lung cancer and tuberculous pleural effusion (TBPE) from patients with tuberculous pleurisy, and to explore the effects of ALDOA on the proliferation, migration and invasion of human lung adenocarcinoma A549 cells. METHODS:Pleural effusion samples including 65 cases of MPE and 35 cases of TBPE were collected, and the levels of ALDOA, CEA and LDH were detected by ELISA and chemiluminescence assay. After A549 cells were treated with different concentrations of ALDOA, the proliferation, migration and invasion of the cells were investigated by MTT assay, scratch test, Matrigel assay and Transwell invasion assay. RESULTS:The levels of ALDOA, CEA and LDH in MPE were (46.8±21.4) μg/L, (82.2±56.6) μg/L and (755.8±382.5) U/L, respectively, which were significantly higher than those in TBPE [(23.9±17.2) μg/L, (12.6±9.7) μg/L and (388.4±163.9) U/L, respectively; P<0.01]. The concentration of ALDOA in MPE from adenocarcinoma patients [(71.7±32.1) μg/L] was significantly higher than that in MPE from squamous-cell carcinoma patients [(21.3±14.6) μg/L, P<0.05]. The concentrations of ALDOA in MPE and TBPE were positively correlated with the concentrations of CEA and LDH (P<0.01 or P<0.05). ALDOA enhanced the proliferation, migration and invasion of A549 cells in a concentration-dependent manner. CONCLUSION:The expression level of ALDOA in MPE is significantly higher than that in TBPE, especially in MPE from lung adenocarcinoma patients. There are highly positive correlations between ALDOA and CEA, ALDOA and LDH in pleural effusion. ALDOA concentration-dependently promotes the proliferation, migration and invasion of A549 cells.  相似文献   

18.
AIM: To investigate the effect of celastrol on the cell cycle of human lung adenocarcinoma A549 cells and to probe into its mechanisms.METHODS: A549 cells were exposed to celastrol at gradient concentrations. The cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively, and the median lethal concentration (LC50) of celastrol was screened. The A549 cells were treated with celastrol at LC50, and the cell cycle was detected by flow cytometry. The expression of cyclin D1 was determined by Western blot, and the expression of microRNA (miR)-17-5p and miR-155-5p was detected by real-time PCR. The correlation between cyclin D1 and miR-17-5p or miR-155-5p was predicted by bioinformatics software. After miR-17-5p mimics/miR-155-5p mimics/mutant-miR-17-5p/mutant-miR-155-5p and pcDNA-GFP-cyclin D1-3'UTR were cotransfected into the A549 cells, the changes of GFP expression were evaluated by fluorescence microscopy and flow cytometry. Finally, after miR-17-5p mimics or miR-155-5p mimics were transfeced into the A549 cells, the expression of miR-17-5p and miR-155-5p was detected by real-time PCR, and the protein level of cyclin D1 was determined by Western blot. RESULTS: With the increasing concentration of celastrol, the viability inhibition rate and apoptotic rate of the A549 cells were increased, indicating that celastrol effectively inhibited the growth of A549 cells and induced apoptosis. The LC50 of celastrol was almost 3 μmol/L. After treatment with celastrol at LC50, the A549 cell cycle was arrested at G1 phase, the protein expression of cyclin D1 was down-regulated (P<0.01), and the expression levels of miR-17-5p and miR-155-5p were significantly increased (P<0.01). The results of bioinformatics software prediction indicated that there were binding sites for miR-17-5p and miR-155-5p in the 3'-UTR of cyclin D1. After cotransfected with miR-17-5p or miR-155-5p and pcDNA-GFP-cyclin D1-3'UTR into the A549 cells, the expression of GFP declined (P<0.05). After miR-17-5p or miR-155-5p mimics were transfected into A549 cells, the results of real-time PCR showed this treatment significantly increased the miRNA expression (P<0.01), and the results of Western blot showed the transfection inhibited cyclin D1 expression (P<0.01).CONCLUSION: Celastrol blocks the A549 cells at G1 phase, inhibits the viability and induces apoptosis, which may be caused by up-regulating the expression of miR-17-5p and miR-155-5p, and then down-regulating cyclin D1 expression. This study provides a new theoretical basis for the treatment of non-small-cell lung cancer with celastrol.  相似文献   

19.
AIM: To investigate the effect of small interfering RNA (siRNA)-mediated progranulin (PGRN) gene silencing on the proliferation and migration abilities of human non-small-cell lung cancer A549 cells and its mechanism. METHODS: The mRNA and protein expression levels of PGRN in the A549 cells and human bronchial epithelial (HBE) cells were detected by qPCR and Western blot. A549 cells were transfected with PGRN-siRNA by liposome method. The expression of PGRN at mRNA and protein levels in the A549 cells transfected with PGRN-siRNA was detected by qPCR and Western blot, respectively. The cell viability was measured by MTT assay. The cell proliferation ability was measured by living cells counting and crystal violet staining assays. The cell migration ability was measured by wound-healing and Transwell assays. The protein levels of proliferating cell nuclear antigen (PCNA), cyclin D1, Bcl-2 and Bax were determined by Western blot. The protein levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phosphorylated protein kinase B (p-Akt) were also determined by Western blot. RESULTS: The expression of PGRN at mRNA and protein levels was higher in the A549 cells than that in the HBE cells (P<0.05). The expression of PGRN at mRNA and protein levels in the A549 cells transfected with PGRN-siRNA was significantly decreased, and the cell proliferation and migration abilities were significantly decreased. The protein expression levels of PCNA, cyclin D1 and Bcl-2 were significantly reduced and the protein expression level of Bax was significantly increased (P<0.05). Meanwhile, the protein levels of p-ERK1/2 and p-Akt were down-regulated (P<0.05). CONCLUSION: PGRN gene silencing obviously inhibits the proliferation and migration abilities of human non-small-cell lung cancer A549 cells. The PI3K/Akt and MAPK/ERK signaling pathways may play an important role in these processes.  相似文献   

20.
AIM: To investigate the effects of sinapic acid(SA) on the proliferation and apoptosis of rat vascular smooth muscle cells(VSMCs) induced by high glucose(HG). METHODS: Cultured A7r5 cells were randomly divided and treated as indicated. The cell viability was determined by MTT assay. DNA synthesis was measured by BrdU assay. Cell cycle progression and cell apoptotic rate were determined by flow cytometry analysis. The levels of reactive oxygen species(ROS) were detected by ELISA. The protein levels of cyclin D1, P21, P27, phosphorylated protein kinase C(p-PKC), p-P38 and β-actin were evaluated by Western blot. RESULTS: Compared with control group, the viability of A7r5 cells was significantly enhanced, the DNA synthesis was increased, the cell cycle progression was promoted, the levels of ROS were elevated, the cell apoptotic rate was reduced, the protein expression of P21 and P27 was decreased, and the protein levels of cyclin D1, p-PKC and p-P38 were increased in HG group(all P<0.05). These effects were reversed by SA(0.1, 1 and 10 μmol/L) treatment in a dose-dependent manner(all P<0.05). Both P38 inhibitor SB203580 and PKC inhibitor chelerythrine significantly inhibit HG-induced PKC/P38 activation and cell viability(P<0.05).CONCLUSION: SA inhibits HG-induced VSMCs proliferation and promotes cell apoptosis via reducing PKC/P38 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号