首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.

Context

The local intensity of farming practices is considered as an important driver of biodiversity in agricultural landscapes and its effect on biodiversity has been shown to interact with landscape complexity. But the influence of landscape-wide intensity of farming practices on biodiversity and its combined effect with landscape complexity have been little explored.

Objective

In this study, we tested the interactive effect of the landscape-wide intensity of farming practices and landscape complexity on the local species richness and abundance of farmland wild bee communities.

Methods

We captured wild bees in 96 crop fields and explored the effect of landscape-wide intensity of various farming practices along a gradient of landscape complexity (proportion of semi-natural habitats).

Results

We found that species richness and abundance of wild bees were more positively influenced by landscape complexity in highly insecticide-sprayed landscapes than in less intensively managed landscapes. In contrast, we found that the positive effect of landscape complexity on bee species richness only occurred in landscapes with low nitrogen inputs.

Conclusions

Our study demonstrates the interactive effects of landscape-wide farming intensity and landscape complexity in shaping the diversity of farmland wild bee communities. We conclude that the management of farming intensity at the landscape-scale could mitigate the effects of habitat loss on wild bee decline and would help to maintain pollination services in agricultural landscapes.
  相似文献   

2.

Context

The abundance of important providers of ecosystem services such as wild bees likely increases with landscape heterogeneity, but may also fluctuate across the flowering season following varying weather conditions.

Objectives

In the present study, we investigated the combined effect of landscape heterogeneity and intra-annual variability in temperature and precipitation on the spatial and temporal stability of wild bee abundance.

Methods

We used bee monitoring data from six 4 km × 4 km sites in central Germany and 16 local communities per site. The data were collected six times per year from 2010 to 2013. Following a multimodel inference approach, we identified the importance of landscape heterogeneity, weather variability and their interaction to the stability of wild bee abundance.

Results

We found that the stability of wild bee abundance increased with landscape heterogeneity, but decreased with increasing intra-annual variability in both temperature and precipitation. However, our key finding was a buffering mechanism enabling high abundance stability in heterogeneous landscapes even under highly variable temperature conditions. Interestingly, the same mechanism did not apply for high variability in precipitation.

Conclusions

Our findings suggest that increasing landscape heterogeneity is beneficial for protecting wild bees against the projected increase in temperature variability until the end of the twenty first century, although we cannot make inferences for extreme events such as heatwaves. Nevertheless, our results equally highlight that landscape heterogeneity should not be treated as a one-size-fits-all solution and the need remains for developing alternative strategies to mitigate the effect of increasing variability in precipitation.
  相似文献   

3.
4.

Context

Species distributions are driven by a wide variety of abiotic and biotic factors, including nest placement for breeding individuals. As such, the spatial distribution of nests within a landscape can reflect environmental heterogeneity, habitat preferences, or even interactions with predators and other species.

Objectives

We determined the extent to which environmental heterogeneity and predation risk accounted for the observed spatial distribution of nests.

Methods

We assessed the spatial distribution of 112 nests of a migratory shorebird, the Hudsonian Godwit (Limosa haemastica), at Beluga River, Alaska, from 2009 to 2012, and explicitly tested for the relative influence of habitat characteristics and predation risk on nest locations. We also evaluated the effect of nest location, distance to conspecific nests, and proximity to roads on nest fate using 64 nests that were monitored through completion.

Results

Hudsonian Godwit nests were clustered across the landscape despite a lack of significant spatial autocorrelation (i.e., patchiness) in vegetation characteristics at either the micro- or landscape scale. Nest fate also was not predicted by either the distance to the nearest conspecific neighbor or proximity to roads. Thus, neither habitat characteristics nor predation risk explained the clustering of godwit nests.

Conclusions

These results suggest that godwits may select nest locations based more on social cues than underlying heterogeneity in vegetation or predation risk. As such, intra- and inter-specific interactions should be considered when developing management plans for species of conservation concern.
  相似文献   

5.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

6.

Context

A challenging issue in landscape ecology is the evaluation of changes in a forest landscape following a disturbance. This evaluation usually entails examining changes in the forest inventory, which represents the best information available for a given forest region.

Objectives

Our aim was to extend existing methods used to evaluate forest inventory to include additional variables, such as value-based forest product options, wood fibre attributes, and ecosystem services. Inclusion of such variables in forest inventory evaluations would allow research results to be presented from an economic perspective, which is often required for policy development and forest management decision-making.

Methods

We developed a value-based framework to evaluate forest inventory and implemented it in the wood fibre value simulation model. We then used a local data set from Manitoba, Canada, to show how the model can be applied to the mapping of new inventory layers to facilitate the evaluation of landscape changes.

Results

Five new inventory layers are mapped including bioenergy and heating value that can be directly used for evaluating landscape changes, and wood density, fibre length, and pulp yield, which can be combined with total wood volume to derive new variables or indices to express changes in landscape conditions.

Conclusions

Our model can contribute to the assessment of landscape changes by indicating the values a forest can have when it is used for different conservation or utilization purposes. The model can also support improved decision-making with respect to the management of forest resources.
  相似文献   

7.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

8.

Context

Primates are an important component of biodiversity in tropical regions. However, many studies on the effects of habitat change on primates ignore the relative influence of landscape composition and configuration.

Objectives

This study addresses the question: how important are landscape-scale forest area and composition relative to patch-scale (1–1080 ha) and site-scale (transect of 1 km) habitat variables for the occupancy and abundance of four primate species in the Colombian Llanos.

Methods

Using a randomly stratified survey design, 81 fragments were surveyed for primate occupancy and abundance. We used zero-inflated models to test the relative influence of landscape-scale, patch-scale and site-scale variables on occupancy and abundance for each species. A 95% confidence set of models was constructed using the cumulative Akaike weight for each model and the relative importance of each set of variables calculated for each primate species.

Results

Occupancy was determined by a combination of site-scale, patch-scale and landscape-scale variables but this varied substantially among the primate species.

Conclusion

Our study highlights the importance of managing primates at a range of scales that considers the relative importance of site-, patch- and landscape-scale variables.
  相似文献   

9.

Context

Agroecosystems are dynamic, with yearly changing proportions of crops. Explicit consideration of this temporal heterogeneity is required to decipher population and community patterns but remains poorly studied.

Objectives

We evaluated the impact on the activity-density of two dominant carabid species (Poecilus cupreus and Anchomenus dorsalis) of (1) local crop, current year landscape composition, and their interaction, and (2) inter-annual changes in landscape composition due to crop rotations.

Methods

Carabids were sampled using pitfall-traps in 188 fields of winter cereals and oilseed rape in three agricultural areas of western France contrasting in their spatial heterogeneity. We summarized landscape composition in the current and previous years in a multi-scale perspective, using buffers of increasing size around sampling locations.

Results

Both species were more abundant in oilseed rape, and in landscapes with a higher proportion of oilseed rape in the previous year. P. cupreus abundance was negatively influenced by oilseed rape proportion in the current year landscape in winter cereals and positively by winter cereal proportion in oilseed rape. A. dorsalis was globally impacted at finer scales than P. cupreus.

Conclusions

Resource concentration and dilution-concentration processes jointly appear to cause transient dynamics of population abundance and distribution among habitat patches. Inter-patch movements across years appear to be key drivers of carabids’ survival and distribution, in response to crop rotation. Therefore, the explicit consideration of the spatiotemporal dynamics of landscape composition can allow future studies to better evidence ecological processes behind observed species patterns and help developing new management strategies.
  相似文献   

10.

Context

Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climate-induced changes through promoting carbon sequestration, forest resilience, and facilitated change.

Objectives

We modeled direct and indirect effects of climate change on avian abundance through changes in forest landscapes and assessed impacts on bird abundances of forest management strategies designed to mitigate climate change effects.

Methods

We coupled a Bayesian hierarchical model with a spatially explicit landscape simulation model (LANDIS PRO) to predict avian relative abundance. We considered multiple climate scenarios and forest management scenarios focused on carbon sequestration, forest resilience, and facilitated change over 100 years.

Results

Management had a greater impact on avian abundance (almost 50% change under some scenarios) than climate (<3% change) and only early successional and coniferous forest showed significant change in percent cover across time. The northern bobwhite was the only species that changed in abundance due to climate-induced changes in vegetation. Northern bobwhite, prairie warbler, and blue-winged warbler generally increased in response to warming temperatures but prairie warbler exhibited a non-linear response and began to decline as summer maximum temperatures exceeded 36 °C at the end of the century.

Conclusion

Linking empirical models with process-based landscape change models can be an effective way to predict climate change and management impacts on wildlife, but time frames greater than 100 years may be required to see climate related effects. We suggest that future research carefully consider species-specific effects and interactions between management and climate.
  相似文献   

11.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

12.

Context

Quantitative models of forest dynamics have followed a progression toward methods with increased detail, complexity, and spatial extent.

Objectives

We highlight milestones in the development of forest dynamics models and identify future research and application opportunities.

Methods

We reviewed milestones in the evolution of forest dynamics models from the 1930s to the present with emphasis on forest growth and yield models and forest landscape models We combined past trends with emerging issues to identify future needs.

Results

Historically, capacity to model forest dynamics at tree, stand, and landscape scales was constrained by available data for model calibration and validation; computing capacity; model applicability to real-world problems; and ability to integrate biological, social, and economic drivers of change. As computing and data resources improved, a new class of spatially explicit forest landscape models emerged.

Conclusions

We are at a point of great opportunity in development and application of forest dynamics models. Past limitations in computing capacity and in data suitable for model calibration or evaluation are becoming less restrictive. Forest landscape models, in particular, are ready to transition to a central role supporting forest management, planning, and policy decisions.

Recommendations

Transitioning forest landscape models to a central role in applied decision making will require greater attention to evaluating performance; building application support staffs; expanding the included drivers of change, and incorporating metrics for social and economic inputs and outputs.
  相似文献   

13.

Context

Complex structural connectivity patterns can influence the distribution of animals in coastal landscapes, particularly those with relatively large home ranges, such as birds. To understand the nuanced nature of coastal forest avifauna, where there may be considerable overlap in assemblages of adjacent forest types, the concerted influence of regional landscape context and vegetative structural connectivity at multiple spatial scales warrants investigation.

Objectives

This study determined whether species compositions of coastal forest bird assemblages differ with regional landscape context or with forest type, and if this is influenced by structural connectivity patterns measured at multiple spatial scales.

Methods

Three replicate bird surveys were conducted in four coastal forest types at ten survey locations across two regional landscape contexts in northeast Australia. Structural connectivity patterns of 11 vegetation types were quantified at 3, 6, and 12 km spatial scales surrounding each survey location, and differences in bird species composition were evaluated using multivariate ordination analysis.

Results

Bird assemblages differed between regional landscape contexts and most coastal forest types, although Melaleuca woodland bird assemblages were similar to those of eucalypt woodlands and rainforests. Structural connectivity was primarily correlated with differences in bird species composition between regional landscape contexts, and correlation depended on vegetation type and spatial scale.

Conclusions

Spatial scale, landscape context, and structural connectivity have a combined influence on bird species composition. This suggests that effective management of coastal landscapes requires a holistic strategy that considers the size, shape, and configuration of all vegetative components at multiple spatial scales.
  相似文献   

14.

Context

With accelerated land-use change throughout the world, increased understanding of the relative effects of landscape composition and configuration on biological system and bioinvasion in particular, is needed to design effective management strategies. However, this topic is poorly understood in part because empirical studies often fail to account for large gradients of habitat complexity and offer insufficient or even no replication across habitats.

Objectives

The aim of this study was to disentangle the independent and interactive effects of landscape composition and landscape configuration on the establishment and spread of invasive insect species.

Methods

We explore a spatially-explicit, mechanistic modeling framework that allows for systematic investigation of the impact of changes in landscape composition and landscape configuration on establishment and spread of invasive insect species. Landscape metrics are used as an indicators of invasive insect establishment and spread.

Results

We showed that the presence of an Allee effect leads to a balance between the effectiveness of spread and invasion success. Spread is maximized at an intermediate dispersal level and inhibited at both low and high levels of dispersal. The landscape, by either increasing or mitigating the dispersal abilities of a species, can lead to a rate of spread under a dispersal threshold for which density and spread is at the highest.

Conclusion

Our study proposes that change in landscape structure is an additional explanation of the highly variable spread dynamics observed in natural and anthropogenic landscapes. Consequently, a landscape-scale perspective could significantly improve spread risk assessment and the design of control or containment strategies.
  相似文献   

15.

Context

Cultural ecosystem services, many of which depend on biodiversity, are recognized as important but seldom quantified biophysically across landscapes. Furthermore, many ecosystem service models are static, and the supply of cultural ecosystem services may be misrepresented if seasonal shifts in biotic communities are ignored.

Objectives

We modeled landscape dynamics of wildflower blooms in a temperate montane landscape to determine (1) how floral resources (wildflower species richness, abundance, timing, and presence of charismatic species) changed over the growing season, (2) how projected wildflower viewing hotspots varied over space and time, and (3) how spatial shifts in floral resources affected potential public access to wildflower viewing.

Methods

Data were collected at 63 sites across a rural-to-urban gradient in the Southern Appalachian Mountains (USA). Generalized linear models were used to identify factors affecting floral resources at two temporal scales. Floral resources were projected across the landscape and hotspots of wildflower viewing were quantified using overlay analysis.

Results

Floral resources were affected by topoedaphic conditions, climate, and surrounding building density and changed seasonally. Seasonal models revealed locational shifts in ecosystem service hotspots, which changed the proportion of hotspots accessible to the public and identified wildflower-viewing opportunities unnoticed by static models.

Conclusion

Relationships between landscape gradients, biodiversity, and ecosystem service supply varied seasonally, and our models identified cultural ecosystem service hotspots otherwise obscured by simple proxies. Landscape models of biodiversity-based cultural ecosystem services should include seasonal dynamics of biotic communities to avoid under- or over-emphasizing the importance of particular locations in ecosystem service assessments.
  相似文献   

16.

Context

Deforestation is a major driver of biodiversity loss, mainly due to agriculture. As rice is among the world’s most important crops, determining how agricultural communities are shaped is imperative. However, few studies have addressed the factors that alter community assembly in human-modified landscapes. We aim to quantify taxonomic, functional, trait and phylogenetic diversity of an anuran community from rice crops on a biodiversity hotspot.

Objectives

Identify local and landscape characteristics responsible for variations in multiple dimensions of anuran diversity in rice crops.

Methods

This study was performed in Tocantins, Brazil. We chose 36 lentic waterbodies on rice fields for anuran sampling. We quantified taxonomic diversity (TD), functional diversity (FD) and phylogenetic diversity (PD) for each waterbody. We also estimated the mean functional differences among species for each trait separately. To evaluate how local and landscape scale features affect anurans, we performed generalized linear mixed models in 500, 1000 and 1500 m buffers around each waterbody.

Results

We found increased PD and FD in waterbodies closer to many other waterbodies and large forest patches. Anuran biomass decreased with increasing distance to the closest waterbody. Trait diversity varied with waterbody abundance and closeness, percentage of bare ground and marginal vegetation.

Conclusions

Our study emphasizes the importance of waterbody and forest patch networks for maintaining high anuran FD and PD in agricultural landscapes. As both metrics are known to be related to ecosystem resilience, understanding these patterns is pivotal for biodiversity management, especially in the tropics, where agricultural expansion is unrelenting and biodiversity is especially unique.
  相似文献   

17.

Context

A challenge devising revegetation strategies in fragmented landscapes is conserving for the widest spectrum of biodiversity. Habitat network reconstruction should improve landscape capacity to maintain species populations. However, the location of revegetation often fails to account for species occurrence and dispersal processes operating across spatial scales.

Objectives

Our objective was to integrate metapopulation theory with estimates of landscape capacity and dispersal pathways to highlight connectivity gaps. Maintenance of populations could thereby be facilitated through reconnecting habitat networks across regional and broader scales, with assumed benefit for the dispersal needs of less sensitive species.

Methods

Predicted occupancy and metapopulation capacity were calculated for a generic focal species derived from fragmentation-sensitive woodland birds, mammals and reptiles. A metapopulation connectivity analysis predicted regional dispersal links to identify likely routes through which individuals may move to contribute to the viability of the population. We used the revegetation programmes of the Brigalow–Nandewar Biolinks project, eastern New South Wales, Australia, to demonstrate our approach.

Results

Landscape capacity of the current landscape varied across the region. Low-value links between populations provided greatest opportunities for revegetation and improved landscape capacity. Where regional connectivity did not indicate a pathway between populations, broader scale connectivity provided guidance for revegetation.

Conclusions

The metapopulation-based model, coupled with a habitat dispersal network analysis, provided a platform to inform revegetation locations and better support biodiversity. Our approach has application for directing on-ground action to support viable populations, assess the impact of revegetation schemes or monitor the progress of staged implementations.
  相似文献   

18.

Context

Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem.

Objectives

To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape.

Methods

Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses.

Results

We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator.

Conclusions

The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning.
  相似文献   

19.

Context

Field inventory plots which usually have small sizes of around 0.25–1 ha can only represent a sample of the much larger surrounding forest landscape. Based on airborne laser scanning (LiDAR) it has been shown for tropical forests that the bias in the selection of small field plots may hamper the extrapolation of structural forest attributes to larger spatial scales.

Objectives

We conducted a LiDAR study on tropical montane forest and evaluated the representativeness of chosen inventory plots with respect to key structural attributes.

Methods

We used six forest inventory and their surrounding landscape plots on Mount Kilimanjaro in Tanzania and analyzed the similarities for mean top-of-canopy height (TCH), aboveground biomass (AGB), gap fraction, and leaf-area index (LAI). We also analyzed the similarity in gap-size frequencies for the landscape plots.

Results

Mean biases between inventory and landscape plots were large reaching as much as 77% for gap fraction, 22% for LAI or 15% for AGB. Despite spatial heterogeneity of the landscape, gap-size frequency distributions were remarkably similar between the landscape plots.

Conclusions

The study indicates that biases in field studies of forest structure may be strong. Even when mean values were similar between inventory and landscape plots, the mostly non-normally distributed probability densities of the forest variable indicated a considerable sampling error of the small field plot to approximate the forest variable in the surrounding landscape. This poses difficulties for the spatial extrapolation of forest structural attributes and for assessing biomass or carbon fluxes at larger regional scales.
  相似文献   

20.

Context

Human–nature interactions are reflected in the values people assign to landscapes. These values shape our understanding and actions as landscape co-creators, and need to be taken into account to achieve an integrated management of the landscape that involves civil society.

Objectives

The aim of this research was to increase the current knowledge on the most and least common landscape values perceived by local stakeholders, the patterns in the spatial distribution of values, and their connection to different socio-economic backgrounds and landscape characteristics across Europe.

Methods

The research consisted of a cross-site comparison study on how landscape values are perceived in six areas of Europe using Public Participation GIS surveys. Answers were analysed combining contingency tables, spatial autocorrelation and bivariate correlation methods, kernel densities, land cover ratios, and viewshed analyses. Results were discussed in the light of findings derived from other European participatory mapping studies.

Results

We identified shared patterns in the perception of landscape values across Europe. Recreation, aesthetics, and social fulfilment were the most common values. Landscape values showed common spatial patterns mainly related to accessibility and the presence of water, settlements, and cultural heritage. However, respondents in each study site had their own preferences connected to the intrinsic characteristics of the local landscape and culture.

Conclusions

The results encourage land planners and researchers to approach landscape values in relation to socio-cultural and bio-physical land characteristics comprehensibly, acknowledging the complexity in the relationship between people’s perception and the landscape, to foster more effective and inclusive landscape management strategies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号