首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
日光温室土质墙体温度与吸放热量测试分析   总被引:1,自引:0,他引:1  
何芬  周长吉 《北方园艺》2015,(10):58-61
以青海西宁地区典型日光温室为研究对象,冬季最冷时段测试和分析了该类型温室梯形土质墙体温度分布及内外表面热通量,研究了日光温室墙体温度变化规律及墙体吸放热特征,以期为合理分析评价墙体保温蓄热性能及构建墙体传热模型提供理论依据。结果表明:墙体在垂直方向温度变化差异不大;厚度方向上墙体内表面测点温度波动较大,晴天日变化幅度达到26.07℃,阴天为8.6~11.6℃。墙体在晴天吸收的总热量为687.84 W/m2,阴1d、阴2d以释放热量为主,向室内释放的总热量分别为640.59W/m2和1 106.99W/m2;墙体外表面在典型天气条件下均向室外释放热量,分别为984.70、1 785.13、1 866.55W/m2。  相似文献   

2.
科技文摘     
《中国园艺文摘》2011,27(5):195-200
日光温室墙体与地面吸放热量测定分析 为研究日光温室土质后墙与地面对室内的放热情况,测定了晴、阴天气条件下土质后墙和地面的表面温度及热通量。结果表明,单位面积墙体与地面各自的放热量与室内太阳辐射密切相关 .  相似文献   

3.
优化墙体结构并最大限度地发挥墙体的蓄热保温性能,对提升日光温室作物的生产水平具有重要意义。现以3种不同北墙体结构(24cm砖墙+50cm黄土+24cm砖墙即砖土结构、24cm砖墙+50cm灰煤渣+24cm砖墙即砖煤结构、37cm砖墙+10cm苯板即砖苯结构)日光温室为研究对象,通过分析典型天气下气温、北墙传热量、北墙内表面温度等指标的变化规律以及不同结构北墙的温度时空分布特点,初步评价了不同北墙体结构日光温室的保温性能差异。结果表明:砖苯结构北墙体的瞬时吸热散热能力较强,但其蓄放热持久性较差,而砖土结构复合北墙体的瞬时吸热、连续蓄热保温性较好。整体而言,砖土北墙结构日光温室在晋中地区具有较好的推广价值。  相似文献   

4.
以内保温日光温室为研究对象,在日光温室后墙(37墙)加装间距0.4m的水管(直径0.1m、长3.0m)共28根,蓄热水管总体积0.66m3。分析了加装蓄热水管对日光温室热环境的影响,以期提高太阳能热利用效率和改善日光温室热环境,降低日光温室墙体的建造成本。结果表明:加装的蓄热水管单位体积有效蓄热量为73.8 MJ·m-3,后墙单位体积蓄热量增加了69.6 MJ·m-3;加装蓄热水管的后墙体距内表面0、10、20cm处的昼夜温差较对照温室分别降低了3.8、1.9、1.0℃;日光温室加装蓄热水管后,日最低气温平均提高0.7~2.4℃,日平均地温提高0.2~2.0℃,夜间平均地温提高0.4~2.3℃。可见,加装的蓄热水管明显地改善了温室内的热环境,提高了日光温室的太阳能热利用率。  相似文献   

5.
以内保温日光温室为研究对象,在日光温室后墙(37墙)加装间距0.4 m的水管(直径0.1 m、长3 m)共28根,蓄热水管总体积0.66 m~3,研究蓄热水管对日光温室热环境的影响。结果表明:日光温室加装蓄热水管后,晴天时温室内最低气温可提高2.3℃,阴天时提高0.6℃,后墙距墙体内表面0、10、20 cm处最低温度均高于对照,墙体的保温性能明显增强。1月试验区最高气温、最低气温及平均气温分别提高了5.22、0.71、1.36℃。连续不良天气(3 d)条件下,加装蓄热水管能将日光温室土壤(20 cm)日最低温提高2.6~3.1℃;连续晴天(3 d)条件下能提高2.0~3.7℃。可见,加装蓄热水管明显地改善了温室内的热环境,提高了日光温室的太阳能热利用率。  相似文献   

6.
日光温室水循环增温蓄热系统应用效果研究   总被引:1,自引:0,他引:1  
为了提高北方地区冬季日光温室内的温度,满足作物生长需求,同时减少温室加温能耗,设计了一种水循环增温蓄热系统。该系统以日光温室墙体结构为依托,以水为介质进行热量的蓄积与释放,利用冬季晴天时北墙部位的太阳辐射热量使水增温,并把水储存在蓄热水箱内;夜间温室内温度降到一定程度时,利用所贮蓄的热量给温室加温。结果表明,应用该系统可使温室每天平均气温提高3.65℃以上,地温提高2.00℃左右;夜间气温至少提高3.00℃,地温提高1.00℃以上;既能有效地提高温室温度满足作物生长需求,还能替代化石燃料的使用而减少CO、CO2、SO2、NOx等有害气体的排放量;冬季3个月产生环境效益2.8万元。  相似文献   

7.
韩云全  陈超  管勇  李琢  凌浩恕 《中国蔬菜》2012,1(18):99-105
为改善日光温室作物的生长环境,将北京工业大学建筑工程学院相变畜热技术研究团队研制的复合相变蓄热墙体材料应用于种植番茄的日光温室北墙内表面。对比试验结果表明,在种植条件完全相同的情况下,采用了复合相变蓄热墙体材料温室内的番茄,在整个生长过程中的形态指标始终好于未采用复合相变蓄热墙体材料的温室,而且前者的果实大,产量大幅提升。从温室北墙内表面温度、耕作层土壤温度、有效积温以及复合相变墙体蓄放热能力等方面,定量地评价了复合相变蓄热墙体对改善日光温室作物生长热环境的影响。  相似文献   

8.
兰州地区日光温室北墙体长度变化对温室热环境的影响   总被引:1,自引:0,他引:1  
以兰州地区日光温室为研究对象,建立了日光温室模型,并对该模型进行了试验验证,以北墙体阴影率和温室日放/蓄热量比值以及累积日有效积温等为评价指标,分析了不同天气条件下温室长度变化对温室内热环境的影响,以期探究日光温室北墙体长度的变化对温室热环境的影响。结果表明:日光温室东墙和西墙在北墙会造成阴影,以13:00时为中心呈对称的关系,保温被开启与关闭时刻的阴影率最大,随着温室墙体长度的增加,其阴影率逐渐减小。在改变温室北墙体长度,而温室其它结构参数保持不变的条件下,兰州地区日光温室的日放/蓄热量比值与太阳辐射强度及北墙体长度呈非线性关系;当日放热量等于日蓄热量时,确定温室北墙体适宜长度为89.4~102.5 m;累积日有效积温与北墙体长度呈幂函数关系,北墙体长度越大,其累积日有效积温越低。  相似文献   

9.
为了明确土壤新风系统在日光温室中应用的可行性,设置了不同风速(5.8、4.6、3.1m·s~(-1))条件,以监测土壤新风系统进出口空气温湿度及不同管道长度的气流温度,并计算了系统的热特性。结果表明:日光温室内部≥50cm深土壤的温度比较恒定,日变化幅度≤0.3℃。在5.8、4.6、3.1m·s~(-1)的流速下,新风经过系统温度分别提高了7.8~8.9、9.8~11.9、6.3~7.8℃;出口空气湿度分别为42.3%~52.0%、35.4%~40.3%、61.6%~83.6%;进出口焓差分别为7.7~9.4、9.9~12.1、9.3~12.5kJ·kg~(-1);运行时段内吸收土壤的热量分别为23 160、23 492、14 884kJ。土壤新风系统可以显著提升新风温度,出口处新风湿度低于室内空气湿度,具有良好的吸热能力,说明土壤新风系统可以用于冬季日光温室空气环境的调控。  相似文献   

10.
为了加强对温室内部光温环境的控制,促进乌鲁木齐日光温室春季蔬菜合理生产,对春季乌鲁木齐典型天气下温室内部、土壤与温室前部、中部、后部不同高度的空气温度、光照日动态变化、墙体温度以及热流密度动态变化进行测试。结果显示乌鲁木齐早春日光温室内部光照条件较好,晴朗天气下12:00~16:00 光照强度最高可达55 554 lx,温度最高可达48 ℃。温室内部光照分布不均,晴天前部光照强度较后部高8 000~12 000 lx,温室距地面150 cm 高度的光照强度平均比50 cm 处高10 000~16 000 lx,呈现距离温室薄膜越近光照越强的特点。从温室跨度方向来看,晴天温室后部温度略高于中部和前部。温室后墙具有保温蓄热的能力,单位面积墙体蓄热量分别为1.97 MJ · m-2,放热量为0.79 MJ · m-2,放热量为蓄热量的40.10%;土壤温度变化有明显的滞后性,且随着土壤深度增加滞后时间也增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号