首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the protective effects of lutein on retinal ganglion cells in vitro. METHODS: The effect of lutein on tert-butyl hydroperoxide (t-BHP)-treated retinal ganglion cells (RGC-5 cell line) was determined. The protein expression of Brn-3 and MAP-2 was examined by the method of immunocytochemistry to identify the RGC-5 cells. The RGC-5 cells were induced by a 24 h exposure of t-BHP, and the cell viability was examined by MTT assay. The apoptotic ratio of the RGC-5 cells after exposed to t-BHP or/ and lutein treatment was analyzed by flow cytometry assay with Annexin V-FITC /PI staining. The activation of caspase-3 was detected by immunocytochemistry and the protein levels of Bcl-2, Bax, cleaved caspase-3, JNK and c-Jun were determined by Western blot. RESULTS: The RGC-5 cells expressed Brn-3 and MAP-2 proteins. Lutein treatment prevented t-BHP-induced RGC-5 cell apoptosis and increased the cell activity. Compared with control group, exposure of the RGC-5 cells to t-BHP decreased the expression of anti-apoptotic protein Bcl-2, increased the Bax/Bcl-2 ratio, up-regulated the level of cleaved caspase-3, also promoted the phosphorylation of JNK and c-Jun. Lutein partly reversed the effects of t-BHP on the RGC-5 cells mentioned above. CONCLUSION: Lutein protects RGC-5 cells against t-BHP-induced apoptosis by up-regulating Bcl-2 expression and inhibiting caspase-3 activation through modulating the JNK signaling pathway.  相似文献   

2.
AIM: To explore the possible mechanism of tert-butyl hydroperoxide (t-BHP)-induced apoptosis in rat cortical neurons. METHODS: Primary cultured rat cortical neurons were performed in vitro and cell viability was measured by MTT assay. DNA fragmentation was used to evaluate cell apoptosis and mitochondrial transmembrane potential (ΔΨm) was determined by flow cytometric assay. Cellular glutathione (GSH) content was measured by spectrophotometer. Bcl-2 and Bax protein, cytosolic cytochrome c, cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were detected by Western blotting. RESULTS: After exposure of cortical neurons to tBHP (25-400 μmol/L), the cell viability was reduced. ΔΨm and cellular GSH content were also decreased significantly. The level of Bcl-2 protein was reduced and Bax was elevated. Meanwhile, tBHP exposure resulted in cytochrome c release, caspase-3 and PARP proteolysis, DNA fragmentation and eventually neuron apoptosis. CONCLUSION: Mitochondrial damage may mediate tBHP- induced apoptosis in cortical neurons.  相似文献   

3.
AIM:To investigate the effects of Homer1a over-expression on the apoptosis and AMP-activated protein kinase (AMPK) protein expression in mechanically injured neurons. METHODS:The rat cortical neurons were isolated and cultured in vitro, and then ramdomly divided into control group, model group, empty vector group, and Exp-Homer1a group. Neuron models with mechanical injury were constructed and infected with the Homer1a over-expression vector. The mRNA expression of Homer1a was detected by qPCR. The cell viability in each group was detected by MTT assay. The activity of lactate dehydrogenase (LDH) in the supernatant of each group was measured by LDH test kit. The apoptosis level was analyzed by flow cytometry. The protein levels of Hormer1a, cleaved caspase-3, Bax, Bcl-2, p-AMPKα and AMPKα were determined by Western blot. RESULTS:Compared with control group, the viability of mechanically injured neurons was significantly decreased, the LDH activity in the supernatant and neuronal apoptotic rate were significantly increased (P<0.05), and Homer1a expression at mRNA and protein levels was significantly increased (P<0.05). Compared with model group, the LDH activity in the supernatant and neuronal apoptotic rate in Exp-Homer1a group were significantly decreased, the protein levels of cleaved caspase-3 and Bax were significantly decreased (P<0.05), and the protein levels of Bcl-2 and p-AMPKα were significantly increased (P<0.05). CONCLUSION:Over-expression of Homer1a may increase the viability of mechanically injured neurons and inhibit their apoptosis by promoting the activation of AMPKα phosphorylation.  相似文献   

4.
AIM: To investigate the effect of reactive oxygen species (ROS) on the apoptosis of HepG2 cells induced by artesunate. METHODS: The effect of artesunate on the viability of HepG2 cells was measured by MTT assay. The morphological changes of the apoptotic cells were observed by the method of Hoechst 33258 fluorescence staining.The apoptosis of HepG2 cells was analyzed by flow cytometry. DCFH-DA was used to detect the changes of ROS generation during the process of apoptosis. The protein levels of Bax, Bcl-2, cleaved caspase-3 and cytochrome C (Cyt C) were determined by Western blot. HepG2 cells were pretreated with apocynin and then Western blot was used to detect the expression of p47phox and p22phox, and ROS changes were analyzed by flow cytometry. RESULTS: Compare with control group, the cell viability was obviously inhibited after treatment with artesunate for 24 h (P<0.05). The nuclei were densely stained, and the proportion of apoptotic cells was increased (P<0.05). ROS was increased significantly (P<0.05). The results of Western blot demonstrated that the expression level of Bax was increased, Bcl-2 was decreased, the ratio of Bax/Bcl-2 was increased, and the protein levels of cleaved caspase-3 and Cyt C were increased. Pretreatment with apocynin reduced the expression of p47phox and p22phox and the generation of ROS in the artesunate treatment group. CONCLUSION: Artesunate induces the apoptosis of HepG2 cells. The possible mechanism may be related to the increase in the generation of ROS.  相似文献   

5.
AIM: To investigate the effect of butylphthalide on apoptosis of hippocampal neurons in Alzheimer disease (AD) rats via SIRT1/NF-κB signaling pathway and its mechanism. METHODS: AD rat model was established by intragastric administration of AlCl3 and intraperitoneal injection of D-galactose. After treated with butylphthalide at 25 mg/kg (low dose), 50 mg/kg (medium dose) and 100 mg/kg (high dose), the effects of butylphthalide on the morphology of hippocampal neurons, apoptosis rate, and the protein levels of Bcl-2, Bax, cleaved caspase-3 and the SIRT1/NF-κB signaling pathway associated proteins were determined by HE staining, flow cytometry and Western blot, respectively. After treated with SIRT1 agonist SRT1720 and inhibitor sirtinol, the role of SIRT1/NF-κB signaling pathway in hippocampal neuronal apoptosis was observed. On the basis of giving 50 mg/kg butylphthalide, sirtinol was administered, and the effect of butylphthalide on neuronal apoptosis regulated by SIRT1/NF-κB signaling pathway was evaluated. RESULTS: The morphology of hippocampal neurons in the AD rats were improved, the apoptosis rate of hippocampal neurons and the protein levels of Bax and cleaved caspase-3 were inhibited, and the protein levels of Bcl-2 and the activation of SIRT1/NF-κB signaling pathway were promoted by butylphthalide significantly (P<0.05). The protein expression of Bcl-2 and the activation of SIRT1/NF-κB signaling pathway were promoted, and the apoptosis of hippocampal neurons and the protein levels of Bax and cleaved caspase-3 were inhibited by SRT1720 remarkably (P<0.05), whereas the effect of sirtinol was contrary to that of SRT1720. After sirtinol treatment, the inhibitory effect of butylphthalide on apoptosis of hippocampal neurons, the protein levels of Bax and cleaved caspase-3, and the promotion of Bcl-2 protein expression in hippocampal neurons were markedly weakened (P<0.05). CONCLUSION: Butylphthalide inhibits the apoptosis of hippocampal neurons in the AD rats by down-regulating the protein expression of Bax and cleaved caspase-3, and up-regulating the protein expression of Bcl-2 through activating SIRT1/NF-κB signaling pathway.  相似文献   

6.
AIM: To investigate the effect of calcium-regulated heat stable protein 1 (CARHSP1) gene expression on the viability, apoptosis and expression of interleukin-6 (IL-6) and C-reactive protein (CRP) in vascular endothe-lial cells induced by hypoxia.METHODS: The protein expression of CARHSP1 was detected by Western blot in atherosclerotic plaques. Human umbilical vein endothelial cells (HUVECs) were treated with hypoxia, and the cells were divided into normal culture group, hypoxia group, hypoxia+CARHSP1-siRNA group and hypoxia+pcDNA3.1-CARHSP1 group. The viability and apoptotic rate of the HUVECs were measured by CCK-8 assay and flow cytometry, respectively. The mRNA expression of IL-6 and CRP was detected by RT-PCR. The protein levels of caspase-3, cleaved caspase-3, Bcl-2 and Bax were determined by Western blot.RESULTS: The protein expression of CARHSP1 in atherosclerotic plaques was significantly higher than that in control group (P<0.05). Hypoxia significantly increased the expression of CARHSP1. The cell viability and the protein expression of Bcl-2 were significantly lower in hypoxia group than those in normal culture group (P<0.05). The apoptotic rate and the protein levels of IL-6, CRP, cleaved caspase-3 and Bax were significantly higher than those in normal culture group (P<0.05). Compared with hypoxia group, the cell viability and protein expression of Bcl-2 were significantly increased in hypoxia+CARHSP1-siRNA group, while the apoptotic rate and the protein levels of IL-6, CRP, cleaved caspase-3 and Bax were decreased significantly (P<0.05). The cell viability and protein expression of Bcl-2 were decreased significantly in hypoxia+pcDNA3.1-CARHSP1 group, while the apoptotic rate and the protein le-vels of IL-6, CRP, cleaved caspase-3 and Bax were increased significantly (P<0.05).CONCLUSION: The expression of CARHSP1 is increased in atherosclerotic plaques, and inhibition of CARHSP1 expression improves the viability, reduces the apoptosis, and down-regulates the expression of IL-6 and CRP in the HUVECs. Over-expression of CARHSP1 exerts the opposite effect.  相似文献   

7.
AIM To investigate the effect of nisin on apoptosis of human osteosarcoma MG63 cells and its related oxidative stress mechanism. METHODS The MG63 cells were cultured in the medium containing different concentrations of nisin with or without antioxidant N-acetyl-L-cysteine (NAC). The cell viability was measured by CCK-8 assay. Apoptosis was analyzed by flow cytometry with annexin-V/PI staining. The production of intracellular reactive oxygen species (ROS) was detected by redox-sensitive dye 2',7'-dichlorofluorescein diacetate (DCFH-DA). The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolyl carbocyanine iodide (JC-1) was used to detect the changes of mitochondrial membrane potential (MMP). The protein levels of apoptosis-associated molecules Bax, Bcl-2 and cleaved caspase-3 were determined by Western blot. RESULTS Nisin decreased the viability of MG63 cells and promoted the apoptosis in a dose-dependent manner. It also up-regulated the protein level of cleaved caspase-3, increased the protein expression ratio of Bax/Bcl-2, triggered a large amount of intracellular ROS generation and reduced the MMP (P<0.05). Moreover, antioxidant NAC significantly inhibited nisin-induced apoptosis of MG63 cells, down-regulated the protein level of cleaved caspase-3, decreased Bax/Bcl-2 ratio, reduced intracellular ROS level, and restored the MMP (P<0.05). CONCLUSION Nisin may promote oxidative stress in human osteosarcoma cells, activate mitochondrial apoptosis pathway, and eventually induce apoptosis.  相似文献   

8.
ATM: To explore the possibility that advanced glycation end products (AGEs) induces rat chondrocyte injury by modulating oxidative stress. METHODS: Primarily cultured rat chondrocytes were identified. The viability of the chondrocytes was measured by CCK-8 assay. The intracellular levels of reactive oxygen species (ROS) were detected by DCFH-DA staining. The number of apoptotic cells was determined by Hoechst 33342 nuclear staining and flow cytometry. RT-PCR was performed to measure the mRNA levels of Bax, Bcl-2, caspase-3, MMP3, MMP13 and COL2 in the chondrocytes. Western blotting was used to evaluate the protein levels of cleaved caspase-3, MMP3, MMP13 and COL2. RESULTS: Compared with control group, the intracellular levels of ROS in the chondrocytes treated with AGEs were significantly increased (P<0.05), and pretreatment with N-acetyl-L-cysteine (NAC) suppressed the formation of ROS (P<0.05). Besides, NAC inhibited AGEs-induced apoptosis of the chondrocytes, as indicated by reduceing the levels of Bax/Bcl-2 and caspase-3, decreased the expression of MMP3 and MMP13, and reduced the loss of COL2.CONCLUSION: AGEs induce chondrocyte injury by activating oxidative stress.  相似文献   

9.
AIM: To investigate the effect of homeodomain-interacting protein kinase 2 (HIPK2) on the viabi-lity, apoptosis and JAK2/STAT3 signaling pathway in NRK-52E renal tubular epithelial cells induced by hypoxia and reoxygenation (H/R). METHODS: HIPK2 small interfering RNA (siRNA) was transfected into NRK-52E cells by LipofectamineTM 2000, and normal control group (control group) and negative control group (HIPK2-NC group) were set up. After H/R, the cell viability was measured by CCK-8 assay, the apoptotic rate and Ca2+ fluorescence intensity were analyzed by flow cytometry, and the protein levels of Ki67, cleaved caspase-3, caspase-12, Bcl-2, Bax, p-JAK2 and p-STAT3 were determined by Western blot. RESULTS: Compared with control group, the protein expression of HIPK2 in the NRK-52E cells was significantly decreased after transfection with HIPK2 siRNA (P<0.05). Compared with control group, the cell viability and the protein expression of Ki67 and Bcl-2 in H/R group were also significantly decreased, and the apoptotic rate, the Ca2+ fluorescence intensity and the protein levels of cleaved caspase-3, caspase-12, Bax, p-JAK2 and p-STAT3 were significantly increased (P<0.05). Compared with H/R group, the cell viability and the protein expression of Ki67 and Bcl-2 in HIPK2-siRNA+H/R group were significantly increased, while the apoptotic rate, the Ca2+ fluorescence intensity and the protein levels of cleaved caspase-3, caspase-12, Bax, p-JAK2 and p-STAT3 were significantly decreased (P<0.05). CONCLUSION: Inhibition of HIPK2 gene expression promotes H/R-induced growth of NRK-52E renal tubular epithelial cells, and reduces the apoptosis. The mechanism is related to down-regulating the JAK2/STAT3 signaling pathway.  相似文献   

10.
AIM: To study the protective effect of brain-derived neurotrophic factor (BDNF) on vascular endothelial cells with H2O2-induced oxidative injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and the oxidation injury model of HUVECs was established by treatment with H2O2. The oxidatively injured HUVECs were cultured with different concentrations (1, 10 and 100 μg/L) of BDNF. At the same time, the control group (no injury), PBS treatment after H2O2 injury group and TrkB inhibitor group (with 100 μg/L BDNF and 1: 1 000 TrkB inhibitor) were also set up. The viability of the HUVECs was detected by MTT assay. The levels of LDH, MDA, SOD and GSH were measured. The releases of NO, ET-1 and ICAM-1 were analyzed by ELISA. The changes of ROS production and cell apoptosis were evaluated by flow cytometry. The protein levels of TrkB, p-TrkB, cleaved caspase-3, Bcl-2 and Bax were determined by Western blot. RESULTS: Compared with uninjured control group, in H2O2 oxidative injury plus PBS treatment group, the viability of the cells was decreased significantly, the LDH and MDA levels were increased significantly and the activities of SOD and GSH were decreased significantly. The NO secretion was decreased, and the ET-1 and ICAM-1 concentrations were increased significantly. The ROS content and apoptotic rate were increased significantly. The protein levels of cleaved caspase-3 and Bax were increased but Bcl-2 protein expression was decreased significantly. Compared with PBS treatment group, in H2O2-injured HUVECs treated with different concentrations of BDNF, the cell viability was gradually increased, the LDH and MDA levels were decreased and the activities of SOD and GSH were increased gradually. The secretion of NO was increased but ET-1 and ICAM-1 were decreased gradually. The ROS content and apoptotic rate were decreased significantly. The TrkB and p-TrkB levels were significantly increased significantly, the protein expression of cleaved-caspase 3 and Bax was decreased gradually and the Bcl-2 protein expression increased gradually. The role of BDNF was inhibited by TrkB inhibitor. CONCLUSION: BDNF protects HUVECs from oxidative injury by binding with TrkB to activate the BDNF-TrkB signaling pathways.  相似文献   

11.
WANG Li-min 《园艺学报》2015,31(9):1715-1719
AIM: To investigate the effect of Ginsenoside Rh2(Rh2) on the apoptosis of human osteosarcoma cell line MG-63.METHODS: The cell viability was determined by MTT assay. MG-63 cell apoptotic rate was examined by flow cytometry with Annexin V-PI double staining. The expression of Bcl-2, Bax, cytochrome C(Cyt C) and cleaved caspase-3 were measured by Western blot.RESULTS: Rh2 enhanced the apoptosis of MG-63 cells in a dose-dependent manner. Furthermore, after treatment with Rh2, the release of mitochondrial Cyt C and Bax expression were increased, while Bcl-2 and the ratio of Bcl-2/Bax were decreased as compared with control group(P<0.05). The protein level of cleaved caspase-3 was also increased(P<0.05).CONCLUSION: Ginsenoside Rh2 accelerates the apoptosis of MG-63 cells through mitochondria-dependent pathway, suggesting that Rh2 is a novel approach for the treatment of osteosarcoma.  相似文献   

12.
13.
AIM: To observe the effects of edaravone on high glucose-induced apoptosis of SH-SY5Y cells and its potential mechanism. METHODS: The SH-SY5Y cells were cultured in the DMEM medium with 100 mmol/L glucose and 100 μmol/L edaravone for 24 h. The viability of the SH-SY5Y cells was detected by MTT assay. The levels of ROS in the cells were determined by DCFH-DA fluorescent probing. The apoptotic rates of the cells were analyzed by flow cytometry. The protein expression of Bax and Bcl-2 in the cells were detected by Western blot. The expression levels of micro-RNA-25 (miR-25) were determined by real-time PCR. To further clarify the target sites of edaravone on inhibiting apoptosis induced by high glucose, miR-25 inhibitor was applied to the SH-SY5Y cells and the activity of caspase-3 was measured.RESULTS: Compared with control group, the cell viability was decreased significantly in model group, and the ROS level was increased significantly. The protein expression of Bax was up-regulated significantly, while the expression levels of Bcl-2 and miR-25 were significantly down-regulated. Compared with model group, the cell viability was increased significantly in edaravone group. The ROS level was decreased significantly. Meanwhile, the expression of Bax was down-regulated, while the expression of Bcl-2 and miR-25 was up-regulated with statistical significance. The caspase-3 activity of the cells incubated with 100 mmol/L glucose and miR-25 inhibitor was increased. However, no alteration of caspase-3 activity with edaravone added simultaneously was observed. CONCLUSION: Edaravone inhibits the apoptosis of SH-SY5Y cells induced by high glucose with the potential target site of miR-25.  相似文献   

14.
AIM: To investigate the effect of salvianolate on oxidative damage induced by hydrogen peroxide in human endothelial EA.hy926 cells.METHODS: EA.hy926 cells were cultured in vitro and divided into the following groups:control group, damage group, and anti-damage groups (salvianolate+damage groups). The cell viability was measured by CCK-8 assay. The migration ability of the EA.hy926 cells was detected by Transwell assay. The content of nitric oxide (NO) in the culture supernatant of the EA.hy926 cells was examined. The levels of vascular endothelial growth factor (VEGF) were detected by ELISA. The apoptosis,mitochondrial membrane potential and intracellular superoxide anion content of the EA.hy926 cells were analyzed by flow cytometry. The protein levels of caspase-3, cleaved caspase-3, Bcl-2, Bax, NF-κB and p53 were determined by Western blot. RESULTS: Compared with damage group, the viability of EA.hy926 cells pretreated with salvianolate at different concentrations was significantly increased (P<0.05). The apoptotic rate was significantly decreased (P<0.05). Savianolate enhanced the migration ability of the cells. The levels of VEGF, NO and mitochondrial transmembrane potential were increased (P<0.05), and the intracellular ROS level was significantly decreased (P<0.05). The protein levels of NF-κB, p53, Bax and cleaved caspase-3 were significantly decreased, and the protein level of Bcl-2 was markedly increased(P<0.05). CONCLUSION: Savianolate reduces the damage of EA.hy926 cells by hydrogen peroxide exposure, and its mechanism may be related to the blocking of NF-κB signaling pathway.  相似文献   

15.
AIM:To investigate the effect of TRIM29 gene expression silencing on the apoptosis and PI3K/AKT signaling pathway in human nasopharyngeal carcinoma 5-8F cells. METHODS:The 5-8F cells were divided into blank group, negative control (NC) group (transfected negative control siRNA) and si-TRIM29 group (transfected TRIM29 specific siRNA). The viability of the 5-8F cells transfected with si-TRIM29 for 0~96 h was measured by CCK-8 assay. The apoptotic rate and the protein levels of TRIM29, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, t-AKT and p-AKT in the 5-8F cells transfected with si-TRIM29 for 48 h were determined by flow cytometry and Western blot, respectively. PI3K/AKT signal specific inhibitor LY294002 at 10 μmol/L and si-TRIM29 alone or in combination were treated with the 5-8F cells, and the cells were divided into blank group, LY294002 group and LY294002+si-TRIM29 group. The apoptotic rates in the 3 groups were detected by flow cytometry. RESULTS:The protein expression of TRIM29 in the 5-8F cells transfected with TRIM29 siRNA was significantly lower than that in blank group (P<0.05). Compared with blank group, the cell viability was significantly decreased, the apoptotic rate was significantly increased, the protein levels of cleaved caspase-3, cleaved caspase-9 and Bax were significantly increased, and the protein levels of Bcl-2 and p-AKT were significantly decreased in si-TRIM29 group (P<0.05). The apoptotic rate in LY294002 group was higher than that in blank group, while that in LY294002+si-TRIM29 group was even higher than that in LY294002 group (P<0.05). CONCLUSION:Silencing of TRIM29 gene expression induces apoptosis of nasopharyngeal carcinoma 5-8F cells by inhibiting PI3K/AKT signaling pathway.  相似文献   

16.
17.
AIM: To investigate the apoptosis and molecular mechanism of human hepatocellular carcinoma HepG2 cells induced by ginsenoside Rh4. METHODS: Human hepatocellular carcinoma HepG2 cells were treated with ginsenoside Rh4 at doses of 10, 20 and 40 μmol/L, and the inhibitory effect of ginsenoside Rh4 on HepG2 cell viability was measured by MTT assay. The apoptotic rate of HepG2 cells was analyzed by flow cytometry. The morphological changes of the HepG2 cells were observed by Hoechst 33258 and TUNEL staining. The expression of apoptosis-related proteins Bax, Bcl-2, caspase-3 and caspase-9 was determined by Western blot. RESULTS: Ginsenoside Rh4 promoted apoptosis of HepG2 cells in a dose-dependent manner. TUNEL and Hoechst 33258 staining showed that the cells appeared obvious shrinking, swelling and rupture after treated with ginsenoside Rh4 for 24 h. The results of Western blot showed that with the increasing concentrations of ginsenoside Rh4, the expression of pro-apoptotic proteins Bax, cleaved caspase-3 and caspase-9 increased, while anti-apoptotic protein Bcl-2 decreased gradually. CONCLUSION: Ginsenoside Rh4 induces apoptosis of human hepatocellular carcinoma HepG2 cells, and the main mechanism may be related to down-regulation of Bcl-2 and up-regulation of Bax, cleaved caspase-3, and caspase-9.  相似文献   

18.
AIM: To observe the effect of berberine (Ber) on doxorubicin (DOX)-induced apoptosis in bladder cancer T24 cells. METHODS: The cells were exposed to DOX in the presence or absence of different concentrations of Ber. The viability of the cells was determined by CCK-8 assay. The apoptosis was measured by Hoechst 33258 staining and the protein levels of cleaved caspase-3, cleaved caspase-9, Bcl-2 and Bax were detected by Western blotting.RESULTS: Ber enhanced the inhibitory effect of DOX on the viability of T24 cells and promoted DOX-induced apoptosis in T24 cells. DOX increased the protein levels of cleaved caspase-3, cleaved caspase-9 and Bax, all of which were enhanced by treatment with Ber. In contrast, Ber exposure further decreased the expression of Bcl-2 in DOX-treated T24 cells.CONCLUSION: Ber enhances the anti-proliferative effects of DOX through promoting apoptosis in bladder cancer cells.  相似文献   

19.
AIM: To explore the effects of mammalian target of rapamycin (mTOR) double inhibitor AZD8055 on autophagy and apoptosis of human cholangiocarcinoma cell line HuCCT1. METHODS: The effect of AZD8055 on the viability of HuCCT1 cells was detected by MTT assay. Autophagosome was detected by acridine orange (AO) staining. After treated with AZD8055, the expression levels of apoptosis-related proteins Bcl-2, Bax and cleaved caspase-3 and auto-phagy marker proteins beclin 1, LC3 and p62 were determined by Western blot. Apoptotic rate was analyzed by flow cyto-metry with Annexin V-FITC/PI double staining. RESULTS: AZD8055 significantly inhibited the viability of HuCCT1 cells (P<0.05). AO staining showed that AZD8055 significantly increased orange granules in the cytoplasm. After treated with AZD8055, compared with the control group, the protein level of beclin 1 and the ratio of LC3-Ⅱ/LC3-I were enhanced, while p62 was attenuated (P<0.05). The protein expression level of pro-apoptotic regulator Bax was down-regulated and anti-apoptotic regulator Bcl-2 was increased. The protein level of cleaved caspase-3 was reduced (P<0.05). The results of flow cytometry showed that AZD8055 inhibited cell apoptosis. CONCLUSION: AZD8055 inhibits the viability of cholangiocarcinoma cells, and the mechanism is closely related with autophagy induced by AZD8055.  相似文献   

20.
AIM: To investigate the effect of ecdysterone (EDS) on H9c2 cardiomyocytes after oxidative stress. METHODS: H9c2 cells were cultured in vitro and divided into control group, high dose (2 μmol/L) of EDS group, middle dose (1.5 μmol/L) of EDS group, low dose (1 μmol/L) of EDS group, and H2O2 group. H9c2 cardiomyocytes in H2O2 group and high, middle and low doses of EDS groups were exposed to H2O2 for 6 h to establish the model of oxidative stress. The viability of the H9c2 cells was detected by CCK-8 assay. The apoptosis of H9c2 cells was analyzed by flow cytometry. The levels of lactate dehydogenase (LDH) and creatine kinase-MB (CK-MB) in the culture medium, and the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the H9c2 cells were measured by colorimetry. The generation of reactive oxygen species (ROS) and the mitochondrial membrane potential were evaluated by flow cytometry and confocal laser scanning microscopy. The protein levels of Bax, Bcl-2 and cleaved caspase-3 in the H9c2 cells were determined by Western blot. RESULTS: Ecdysterone at the selected concentrations had no effect on the viability of H9c2 cells. Compared with control group, the levels of LDH, CK-MB, ROS and MDA, and the apoptotic rates of the H9c2 cells were significantly increased after treated with H2O2, but were decreased by EDS treatment in a dose-dependent manner. The levels of SOD and mitochondrial membrane potential of the H9c2 cells in H2O2 group were reduced significantly compared with control group, but high, middle and low doses of EDS treatments up-regulated the levels of SOD and mitochondrial membrane potential in H2O2-treated H9c2 cells. The protein levels of Bax and cleaved caspase-3 in the H9c2 cells in H2O2 group showed significant elevation in comparison with control group, and the protein expression of Bcl-2 declined in H2O2 group compared with control group, but high, middle and low doses of ecdysterone treatments down-regulated the protein levels of Bax, cleaved caspase-3 and up-regulated the expression of Bcl-2 in H2O2-treated H9c2 cells. CONCLUSION: Ecdysterone attenuates the effect of H2O2-induced oxidative stress on H9c2 cardiomyocytes. The mechanism may be involved in scavenging oxidative stress products, increasing antioxidant enzyme activity and improving mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号