首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
With return times between 20 and 100 years, ice storms are a primary disturbance type for temperate forests of eastern North America. Many studies have been conducted at the forest patch and plot scales to examine relations between damage and variables describing site, composition and structure. This paper presents results from a landscape scale study of fragmentation relations with damage in eastern Ontario forests. Data previously collected for two independent and spatially non-overlapping patch level damage studies were used. A Generalized Linear Model (GLM) was used to analyse relations between damage and fragmentation metrics representing patch isolation, edge density, and the relative size and distribution of patches in the landscape. The metrics were applied using spatial extents of 1 × 1 km and 4 × 4 km, following analyses of the variability of numbers of patches and of the lacunarity of forest patterns over a range of extents. The results showed that patch isolation, as measured by the mean Euclidean distance between patches (ENN) was significantly related to damage.  相似文献   

2.
Selective logging of tropical forests imposes spatial pattern on the landscape by creating a mosaic of patches affected by different intensities of disturbance. To understand the ecological impacts of selective logging it is therefore necessary to explore how patterns of tree species composition are affected by this patchy disturbance. This study examines the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo. We compare tree diversity between logged and unlogged forest at three scales: species richness within plots, species turnover among plots, and total species richness and composition of plots combined. Logging had no effect on tree diversity measured at the smallest scale. Logged forest had a greater rate of species turnover with distance, so at a large spatial scale it supported more tree species than the relatively homogeneous unlogged area. Tree species composition also differed significantly between the two types of forest, with more small dipterocarps and large pioneers in logged forest, and more large dipterocarps in unlogged forest. Our results emphasize the importance of sampling at a sufficiently large scale to represent patterns of biodiversity within tropical forest landscapes. Large areas of production forest in SE Asia are threatened with conversion to commercial crops; our findings show that selectively logged forest can retain considerable conservation value.  相似文献   

3.
We applied drone remote sensing to identify relationships between key forest health indicators collected in the field and four Vegetative Indices (VI) to improve conservation management of urban forests. Key indicators of urban forest health revealed several areas of conservation concern including a majority of overstory trees in moderate to severe decline, canopy gaps, anthropogenic dumping, vines overtaking the forest canopy, and invasion by non-native plant species. We found plot-level vegetation index (VI) values of NDVI, NDRE, GNDVI, and GRVI calculated from drone imagery are significantly related to the impact of several of these ecological concerns as well as metrics of forest composition and equitability. Despite the small number of plots, too few to provide a general predictive framework, these findings indicate a substantial potential for drone remote sensing as a low-cost, efficient tool for urban forest management. We discuss how our findings can advance urban forest management and discuss challenges and opportunities for future drone VI research in urban natural areas.  相似文献   

4.
林内景观质量评价对林场的经营和管理有重要意义,而林分空间结构的研究对生态景观林景观质量有重要影响。以塞罕坝机械林场落叶松纯林与落叶松-白桦混交林为研究对象,选取了16张最具代表性的照片,采用美景度评价(SBE)法以美景度作为景观质量指标,通过探究林分空间结构对林分夏季近景的景观质量影响,进而为塞罕坝生态景观林夏季景观经营技术提供依据。结果表明:(1)林内垂直结构越完整,林下整齐度越高,人们的喜好频数越高,美景度越高。(2)林内透视距离与美景度值存在明显的二项式关系;林内透视距离高于1倍树高时,美景度值随透视距离增加而增加。(3)林分枝下高与株高比值和美景度值存在二项式关系,林分枝下高与株高比值在0.5~0.6之时,美景度值存在1个峰值,此时人们接受程度最高。人们对林内垂直结构、透视距离、林下整齐度、树干形态与枝下高等指标偏好程度为打造更美好的生态景观林提供科学指导,对林场的转型和森林景观旅游事业有促进作用。  相似文献   

5.
It is becoming increasingly evident that cities are important places for biodiversity. Biodiverse urban forests are vital green areas within cities and have favorable impacts on the citizens, including their health. We focused on the effect of the urban forest environment on biodiversity in Prague, the capital of the Czech Republic. We used a multi-taxon approach with five taxa of different ecological demands: butterflies, bees and wasps, vascular plants, mosses, and lichens. We modeled their responses to the various urban forest attributes at four hierarchical levels – plot, permeability, forest, and landscape. Our results revealed that temporally continuous forests dominated by native oaks with open canopies, a high number of admixed and interspersed tree species and shrubs, together with scattered trees in the surrounding landscape, were optimal biodiverse forest environments. The most influential parameter that positively influenced bees and wasps, plants, and lichens at the plot level was canopy openness. We found that the permeability was suitable mainly on 20 m surroundings and increasing coverage of native oaks and tree species richness were the most important parameters. Continuity was the only found parameter that influenced mosses at the forest level. Scattered tree vegetation was the most important landscape parameter and positively drove the species richness of bees and wasps. Forest management methods can relatively easily solve the improvement of the scattered light gap structure within urban forests. Applying traditional forest management (pasture management, controlled burning and/or coppicing) is also an option but requires sensitive communication with the public. The canopy cover has been used as an indicator of urban forest health conditions, now indicating that artificial disturbances could be important issues for urban forest management and planning in the future. Therefore, active forest management is an essential method for biodiversity maintenance. We conclude that urban forests have a high potential for increasing native biodiversity. The response of the studied groups in urban forests was complementary. The resulting biodiverse stages of urban forests are akin to the established idea of the open temperate deciduous woodlands.  相似文献   

6.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

7.

Context

Forest cover change analyses have revealed net forest gain in many tropical regions. While most analyses have focused solely on forest cover, trees outside forests are vital components of landscape integrity. Quantifying regional-scale patterns of tree cover change, including non-forest trees, could benefit forest and landscape restoration (FLR) efforts.

Objectives

We analyzed tree cover change in Southwestern Panama to quantify: (1) patterns of change from 1998 to 2014, (2) differences in rates of change between forest and non-forest classes, and (3) the relative importance of social-ecological predictors of tree cover change between classes.

Methods

We digitized tree cover classes, including dispersed trees, live fences, riparian forest, and forest, in very high resolution images from 1998 to 2014. We then applied hurdle models to relate social-ecological predictors to the probability and amount of tree cover gain.

Results

All tree cover classes increased in extent, but gains were highly variable between classes. Non-forest tree cover accounted for 21% of tree cover gains, while riparian trees constituted 31% of forest cover gains. Drivers of tree cover change varied widely between classes, with opposite impacts of some social-ecological predictors on non-forest and forest cover.

Conclusions

We demonstrate that key drivers of forest cover change, including topography, road distance and historical forest cover, do not explain rates of non-forest tree cover change. Consequently, predictions from medium-resolution forest cover change analyses may not apply to finer-scale patterns of tree cover. We highlight the opportunity for FLR projects to target tree cover classes adapted to local social and ecological conditions.
  相似文献   

8.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

9.
Cities around the world are investing in urban forest plantings as a form of green infrastructure. The aim is that these plantations will develop into naturally-regenerating native forest stands. However, woody plant recruitment is often cited as the most limiting factor to creating self-sustaining urban forests. As such, there is interest in site treatments that promote recruitment of native woody species and simultaneously suppress woody non-native recruitment. We tested how three, common site treatments—compost, nurse shrubs, and tree species composition (six-species vs. two-species)—affected woody plant recruitment in 54 experimental plots beneath a large-scale tree planting within a high-traffic urban park. We identified naturally regenerating seedling and sapling species and measured their abundance six-years after the site was planted. This enabled us to examine initial recruitment dynamics (i.e. seedlings) and gain a better understanding of seedling success as they transition to the midstory (i.e. saplings). Seedling and sapling recruitment (native and total) was greater in areas with higher canopy cover. The combination of the nurse shrub treatment with compost and species composition (six-species) treatments increased seedling recruitment by 47% and 156%, respectively; however, the nurse shrub treatment by itself decreased seedling recruitment by 5% and native seedling recruitment by 35%. The compost treatment alone had no effect on the total number of recruits but resulted in 76% more non-native seedlings. The sizes of these treatment effects were strongly dependent on whether the forest plantings were in open areas, versus areas with existing tree canopy, the latter condition facilitating recruitment. Our findings therefore suggest that combinations of site treatments, paired with broad canopy tree species, may be most effective for promoting regeneration of native species resulting in more self-sustaining urban forests.  相似文献   

10.
Little is known about urban forest planning, management and its benefits in emerging countries. The uneven distribution of tree canopy cover and parks in urban area is related to environmental justice, especially with disadvantaged socio-economic and marginated communities. However, the inequity of urban forest in many cities of emerging countries where often found irregular and unregulated land use patterns and social and socio-economic inequities, is hardly highlighted. This study explores the inequity of distribution of tree canopy cover and public park in Cali, Colombia. Utilizing the traditional socio-economic indices, the stratification, linear regression analysis is conducted to describe relationship between total tree canopy cover, tree canopy cover of various land use types, number of parks and park area per capita. The result demonstrates that lower income communities have lower tree canopy cover, fewer parks and smaller park area than higher income communities. This paper discusses importance of accounting for urban forests and ecosystem service in city planning efforts and better strategies of reducing inequity in emerging countries. Addressing the inequity of urban forest could be a better strategy to create resilient, sustainable, safe and livable cities in emerging countries.  相似文献   

11.
Worldwide forests fragmentation has lead to a massive increase of habitat edges, creating both negative and positive impacts on birds. While busy highways dissecting forested areas create edges which are known to reduce bird densities due to the disturbing effect of noise, the impacts of logging forest roads with low traffic volumes have rarely been studied. In this study, we compared species richness and similarity of canopy, cavity and shrub guilds of birds along low-traffic forest roads, in forest interior, and at forest edges in secondary forests in central Europe, where the forests have passed through extensive changes toward uniformly compact growths dominated by production conifers. Although we found tree diversity as positively affecting bird richness across all habitats, the bird richness along forest roads was higher than in forest interior but lower than along forest edges. The shrub guild of birds along forest roads resembled this guild along forest edges while canopy and cavity guilds at the roads were more similar to these guilds in forest interior. Forest interior had the highest probability for some guild to be absent. We conclude that low-traffic roads lead to increase of habitat heterogeneity in structurally poor forests and attract birds due to additional habitat attributes—including better light conditions—that are scarce in forest interior. Therefore, broader support for higher structural diversification of uniform plantations in central European production forests would benefit bird communities inhabiting these areas.  相似文献   

12.
In this paper the use of topographical attributes for the analysis of the spatial distribution and ecological cycle of kauri (Agathis australis), a canopy emergent conifer tree from northern New Zealand, is studied. Several primary and secondary topographical attributes are derived from a Digital Elevation Model (DEM) for a study area in the Waitakere Ranges. The contribution of these variables in explaining presence or absence of mature kauri is assessed with logistic regression and Receiver Operating Characteristic (ROC) plots. A topographically based landslide hazard index, calculated by combining a steady state hydrologic model with the infinite slope stability equation, appears to be very useful in explaining the occurrence and ecological dynamics of kauri. It is shown that the combination of topographical, soil physical and hydrological parameters in the calculation of this single landslide hazard index, performs better in explaining presence of mature kauri than using topographical attributes calculated from the DEM alone. Moreover, this study demonstrates the possibilities of using terrain attributes for representing geomorphological processes and disturbance mechanisms, often indispensable in explaining a species’ ecological cycle. The results of this analysis support the ‘temporal stand replacement model’, involving disturbance as a dominant ecological process in forest regeneration, as an interpretation of the community dynamics of kauri. Furthermore a threshold maturity stage, in which trees become able to stabilize landslide prone sites and postpone a possible disturbance, together with great longevity are seen as major factors making kauri a ‘landscape engineer’.  相似文献   

13.
Invasion of grasslands by woody plants has been identified as a key indicator of changes in ecosystem structure and function in arid and semi-arid rangelands throughout the world. We investigated changes in the balance between woody and herbaceous components of a semi-arid landscape in western Colorado (USA) using historical aerial photography. Aerial photographs from 1937, 1965–67, and 1994 were sampled at matched locations within overlapping photographs. We modeled change in spatial pattern and heterogeneity across the entire landscape and found a small, net decrease in woody canopy cover; however means disguised normal distributions of change that demonstrated offsetting increases and decreases. We described a region of widespread canopy decline within piñon-juniper forests between 2300 and 2600 m (7500–8500 feet) and a region of predominant increase at lower elevations, between 1800 and 2250 m (5900–7400 feet). It remains unclear whether this shift was driven by climate or by human-caused or natural disturbance. Mean conifer cover decreased within coniferous forests, which counteracted a trend of increased conifer cover in mixed forests, savanna-like woodlands, and the shrub steppe. Disturbance had a significant interaction with cover change in several communities, including forests, savanna and shrublands. Anthropogenic disturbances counteracted successional trends toward canopy closure more than wildfires, but this did not entirely explain observed canopy decline. The natural dynamics in this region also caused diverse changes rather than a simple progression towards increased forest cover. Importantly, temporal change in vegetation varied spatially across the landscape illustrating the importance of landscape level, spatially explicit analyses in characterizing temporal dynamics.  相似文献   

14.
15.
For some time, ecologists have known that spatial patterns of forest structure reflected disturbance and recovery history, disturbance severity and underlying influences of environmental gradients. In spite of this awareness, historical forest structure has been little used to expand knowledge of historical fire severity. Here, we used forest structure to predict pre-management era fire severity across three biogeoclimatic zones in eastern Washington State, USA, that contained extensive mixed conifer forests. We randomly selected 10% of the subwatersheds in each zone, delineated patch boundaries, and photo-interpreted the vegetation attributes of every patch in each subwatershed using the oldest available stereo-aerial photography. We statistically reconstructed the vegetation of any patch showing evidence of early selective harvesting, and then classified them as to their most recent fire severity. Classification used published percent canopy mortality definitions and a dichotomized procedure that considered the overstory and understory canopy cover and size class attributes of a patch, and the fire tolerance of its cover type. Mixed severity fires were most prevalent, regardless of forest type. The structure of mixed conifer patches, in particular, was formed by a mix of disturbance severities. In moist mixed conifer, stand replacement effects were more widespread in patches than surface fire effects, while in dry mixed conifer, surface fire effects were more widespread by nearly 2:1. However, evidence for low severity fires as the primary influence, or of abundant old park-like patches, was lacking in both the dry and moist mixed conifer forests. The relatively low abundance of old, park-like or similar forest patches, high abundance of young and intermediate-aged patches, and widespread evidence of partial stand and stand-replacing fire suggested that variable fire severity and non-equilibrium patch dynamics were primarily at work.  相似文献   

16.
Urban forests are important for the health of cities. These forests face high anthropogenic pressure, including demands on their multi-functional role. Therefore, the impact of pests-induced disturbances may be greater for urban forests than forests outside of cities. Monitoring of pests in their native environment is an important tool for the management of urban forests. To better understand how pest population density is affected by the forest environment, we used the Oak bark beetle, Scolytus intricatus, as a model organism. The study was carried out in 2014–2015 in the urban forests of Pardubice City, Czech Republic. Pest population density was studied at three levels: branch, tree and patch. The increasing branch diameter was identified as an important variable with a threshold of 70 mm for entrance holes and 45 mm for emergence holes. Increasing host tree diameter at breast height with a threshold of 46.8 cm was statistically significant at the tree level in terms of the number of entrance holes. Increasing spring canopy openness was identified as an important variable at the patch level with a threshold of 50.78% and had a decreasing trend for the number of reared adults and their total body size. Big oak trees with thick branches under closed spring canopy are the most susceptible to attack by S. intricatus. Based on our findings, we propose that the maintenance of mature oaks under open canopies is important for urban forest management. Avoiding mixed plantings of oaks and conifers should promote these open canopies and lead to multiple advantages regarding oak silviculture.  相似文献   

17.
Analysis of carabids spatial distribution in a hedgerow network landscape in western France, pinpoints the role of the landscape among other levels of ecological organization.Dispersion of forest species differs among core forest species, peninsula forest species and corridor forest species. Abundance of forest carabid species in a particular hedgerow is related to the positive effect of a dense herbaceous layer and the presence of a tree layer which is enhanced by the presence of two parallel hedgerows, especially along lanes.At the landscape level distance from the largest forest determines abundance of forest species within the first kilometer out of it. Beyond that, abundance is independent of distance from the source forest and the discriminant ecological factors are: hedgerow structure, presence of lanes bordered by two hedgerows.  相似文献   

18.
Urban forests are increasingly valued for multiple benefits such as amenity, cultural values, native biodiversity, ecosystem services, and carbon sequestration. Urban biodiversity in particular, is the new focus although global homogenisation is undermining regional differentiation. In the northern hemisphere (e.g., Canada and USA) and in the southern hemisphere, particularly in countries like South Africa, Australia, South America and New Zealand, local biodiversity is further impacted by historical colonisation from Europe. After several centuries, urban forests are now composed of synthetic and spontaneous mixtures of native species, and exotic species from around the temperate world (e.g., Europe, North and South America, South Africa, Asia). As far as we are aware no-one has carried out in-depth study of these synthetic forests in any Southern Hemisphere city. Here we describe the composition, structure, and biodiversity conservation imperatives of urban temperate forests at 90 random locations in Christchurch city, New Zealand.We document considerable plant diversity; the total number of species encountered in the 253 sampled urban forest patches was 486. Despite this incredibly variable data set, our ability to explain variation in species richness was surprisingly good and clearly indicates that total species richness was higher in larger patches with greater litter and vegetation cover, and taller canopy height. Species richness was also higher in patches surrounded by higher population densities and closer to very large native forest patches. Native species richness was higher in patches with higher soil pH, lower canopy height, and greater litter cover and in patches closer to very large native forest patches indicating dispersal out of native areas and into gardens. Eight distinct forest communities were identified by Two-Way INdicator SPecies ANalysis (TWINSPAN) using the occurrence of 241 species that occurred in more than two out of all 253 forest patches.Christchurch urban forest canopies were dominated by exotic tree species in parklands and in street tree plantings (linear parkland). Native tree and shrub species were not as common in public spaces but their overall density high in residential gardens. There was some explanatory power in our data, since less deprivation resulted in greater diversity and density, and more native species, which in turn is associated with private ownership. We hypothesise that a number of other factors, which were not well reflected in our measured environmental variables, are responsible for much of the remaining variation in the plant community structure, e.g., advertising, peoples choice. For a more sustainable asset base of native trees in New Zealand cities we need more, longer-lived native species, in large public spaces, including a greater proportion of species that bear fruit and nectar suitable for native wildlife. We may then achieve cities with ecological integrity that present multiple historical dimensions, and sequester carbon in legible landscapes.  相似文献   

19.
Urban forest is a crucial part of urban ecological environment. The accurate estimation of its tree aboveground biomass (AGB) is of significant value to evaluate urban ecological functions and estimate urban forest carbon storage. It has a high accuracy to estimate the forest AGB with field measured canopy structure parameters, but unsuitable for large-scale operations. Limited by low spatial resolution or spectral saturation, the estimated forest AGBs based on various satellite remotely sensed data have relatively low accuracies. In contrast, Unmanned Aerial Vehicle (UAV) remote sensing provides a promising way to accurately estimate the tree AGB of fragmented urban forest. In this study, taking an artificial urban forest in Ma'anxi Wetland Park in Chongqing City, China as an example, we used UAVs equipped with a digital camera and a LiDAR to acquire two point cloud data. One was produced from overlapping images using Structure from Motion (SfM) photogrammetry, and the other was resolved from laser scanned raw data. The dual point clouds were combined to extract individual tree height (H) and canopy radius (Rc), which were then input to the newly established allometric equation with tree H and Rc as predictor variables to obtain the AGBs of all dawn redwood trees in study area. In accuracy assessment, the coefficient of determination (R2) and Root Mean Square Error (RMSE) of extracted H were 0.9341 and 0.59 m; the R2 and RMSE of extracted Rc were 0.9006 and 0.28 m; the R2 and RMSE of estimated AGB were 0.9452 and 17.59 kg. These results proved the feasibility and effectiveness of applying dual-source UAV point cloud data and the new allometric equation on H and Rc to accurate AGB estimation of urban forest trees.  相似文献   

20.
Our research illustrates how a landscape mosaic changes in association with a mixed natural-anthropogenic disturbance history. Our study area is the Northwest Wisconsin (USA) Sand Plain (NWSP), a region with a rich disturbance history including fire, insects and clearcut forestry. We integrated historic airphotos from 1938, 1960, 1980 and 1998 within a GIS to describe change among four landcover classes describing a canopy-closure gradient: closed forests, woodlands, savannas and “open barrens”. Our work addresses two literature needs: empirical studies of mixed-disturbance landscapes, and nonforest habitats within a forest matrix. Our analysis shows that: the area of open barrens fluctuated, woodlands and savannas declined severely and closed forests increased through time. Falling median patch sizes and other landscape metrics suggest that the woodlands are becoming more fragmented. The landcover transitions driving this change vary according to time and place. The dominant transitions are toward closed forests from all classes, and transitions toward open barrens are also consistently important. The woodlands, savannas and open barrens habitats are mostly comprised of transient patches, persisting for less than 20 years. This contrasts with closed forests that often persist for 40 plus years. These changes are consistent with the disturbance regime that is shifting from fire- to forestry-dominance. Our results show a trend towards landscape simplification, manifest as losses of intermediate-density habitats (woodland and savanna) and shrinking patch sizes. The transient nature of the nonforest habitats shows that disturbance resulting in total or partial canopy removal will be vital for their conservation at a landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号