首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据2012年河南省森林资源规划设计调查资料,建立不同优势树种生物量与蓄积量之间的回归模型或标准地资料,以树种含碳率作为生物量转换为碳储量的系数,对南水北调中线工程南阳水源区森林生态系统的碳储量进行估算。结果表明:南阳水源区森林生态系统碳储量7522.68万t,碳密度129.42 t·hm-2。其中森林土壤层碳储量6045.03万t、占总碳储量的80.36%,乔木层碳储量1018.30万t、占13.54%,森林下层植被和枯落物层碳储量为459.35万t、占6.10%;在各类型森林生态系统中,乔木林森林生态系统碳储量最多为6201.95万t、占82.4%。研究可为当地森林经营管理和生态环境改善提供参考。  相似文献   

2.
江西金盆山林区天然常绿阔叶林生态系统碳储量研究   总被引:1,自引:0,他引:1  
【目的】探讨亚热带典型天然常绿阔叶林碳储量及其碳分布格局,以期为常绿阔叶林生态系统碳汇功能评价提供基础数据和理论依据。【方法】以江西省金盆山林区优势树种生态系统生物量研究为基础,结合主要优势树种碳含量实测数据,对金盆山典型常绿阔叶林丝栗栲林、南岭栲林、米槠林的碳储量及碳空间分布格局进行研究,并以这3种林分的碳密度均值计算整个金盆山林区天然常绿阔叶林总碳储量。【结果】金盆山林区丝栗栲林、南岭栲林、米槠林生态系统碳密度分别为294.82、307.63、318.97 t/hm^2,林区生态系统总碳密度为307.14 t/hm^2,林区现存碳总量为2.25×10^6 t;生态系统碳密度分布规律为植被层>土壤层>凋落物层,植被层碳密度分布规律为乔木层>灌木层>草本层,其中乔木层主干的碳密度占56.54%;土壤层碳密度随着土壤层的加深呈下降趋势,40 cm以下土层间的碳密度变化不明显。【结论】金盆山林区常绿阔叶林不同林分间生态系统碳密度差异不显著,生态系统内碳密度有较强的空间分布规律,生态系统碳密度高于我国森林生态系统平均碳密度和多种典型森林类型碳密度,具有较强的碳汇功能。  相似文献   

3.
基于2009年湖北省林业资源连续调查第六次复查数据和标准地实测数据,采用政府间气候变化委员会(IPCC)推荐的森林碳储量估算方法,研究湖北省森林生态系统的碳储量、碳密度和组分特征。结果表明:湖北省森林生态系统总碳储量710.01 Tg·C,其中乔木层、灌木层、枯落物层、土壤层分别占其总碳储量的15.74%、2.89%、2.11%和80.56%,天然林和人工林碳储量分别为420.43 Tg·C和151.59 Tg·C。湖北省森林生态系统平均碳密度为111.51 t·hm-2,表现为土壤层乔木层灌木层枯落物层,不同森林生态系统碳密度差异较大,介于88.32~177.79 t·hm-2之间。森林不同林层中,乔木层碳密度介于7.63~55.7 t·hm-2,灌木层碳密度介于0.25~12.49 t·hm-2,枯落物层碳密度1.14~3.53 t·hm-2之间,土壤层碳密度介于73.25~136.87 t·hm-2之间,主要集中在30 cm的土层厚度,呈现明显的表聚特征,土壤碳储量平均为植被层的3.88倍。森林生态系统碳密度表现为针阔混交林阔叶林针叶林,近成过熟林中龄林幼龄林。湖北省森林主要以中幼林为主,林业碳汇潜力巨大,合理的经营方式,可以提高森林结构质量水平,有效增加森林的碳汇功能。  相似文献   

4.
云南省森林生态系统植被碳储量及碳密度估算   总被引:1,自引:0,他引:1  
基于2009-2013年第8次全国森林资源连续清查数据,利用生物量扩展因子法,采用改良的计算参数,从不同龄组、林型等方面进行考虑,对云南省森林资源的生物量、碳储量及碳密度进行了估算。结果表明,我国第8次森林资源清查中,云南省森林林分生物量为1 640.92×106t,平均生物量为101.71 t/hm2,林分碳储量为775.30×106t C,林分平均碳密度为50.77 t C/hm2,森林植被碳储量总量为818.29×106t C。人工林碳储量只占林分碳储量的5.90%,幼龄林只占林分碳储量的17.09%;天然林与成熟林在云南省森林资源碳储量中所占比重较大,在扩大云南省森林植被碳储量方面,可以通过选择林龄结构及森林林分类型来加以实现。人工林将会在森林植被碳储量中占有越来越重要的地位。  相似文献   

5.
相对准确地计量地带性森林碳库大小是估算区域森林碳汇潜力的前提。根据全市不同森林类型设置样地900个,运用样地清查法估算广州市森林生态系统碳储量和碳密度。结果表明:广州市森林生态系统碳储量为52.16 Tg C。其中,植被层和土壤层碳储量分别为21.97 Tg C和27.16 Tg C。碳储量空间分布主要集中在从化区和增城区;总碳储量的组成中,土壤层碳库比例最大(58%),其次为乔木层碳库比例(40%),而灌木层、草本层、凋落物层和细根(≤ 2.0 mm)的生物量比例大多在1%~2%;天然林碳储量与人工林接近,但是碳密度显著大于人工林(p < 0.05);不同林龄从小到大排序为:幼龄林、中龄林、近熟林、过熟林、成熟林;天然林以阔叶混和它软阔的碳储量最高,阔叶混和黎蒴的碳密度最高。人工林不同林型从大到小排序为:南洋楹 > 黎蒴 > 木荷 > 木麻黄 > 它软阔 > 阔叶混 > 湿地松。森林生态系统碳密度为178.03 t C hm-2,其中,植被层和土壤层碳密度分别为79.61 t C hm-2和98.42 t C hm-2。本研究全面计量了广州市森林生态系统碳库现状,这对评估该地区森林固碳潜力和指导碳汇林经营管理具有重要参考价值。  相似文献   

6.
在2011—2012年江苏省样地野外调查的基础上,结合江苏省2010年森林资源二类调查的结果,计算出江苏省森林生态系统的碳储量和碳密度。结果表明:截止到2012年,江苏省森林生态系统总碳储量为179.16Tg C。其中乔木层、灌草层、凋落物层和土壤层的碳储量分别为57.95,6.90,14.44,99.87Tg C,占总碳量的32.44%,3.85%,8.05%,55.66%。江苏省森林生态系统的平均碳密度为143.00T/hm2。各层的碳密度大小为:土壤层(83.65 T/hm2)乔木层(51.43T/hm2)凋落物层(5.24T/hm2)灌草层(2.66T/hm2)。林分类型不同,其碳储量和碳密度存在很大差异,其中落叶阔叶林碳储量最大为102.03Tg C,竹林碳储量最小为3.90Tg C;常绿阔叶林碳密度最大为170.97 T/hm2,落叶阔叶林碳密度最小:109.99 T/hm2。从龄组看,全省森林碳储量主要集中10a以下林、10~20a林,分别为11.36,27.92Tg C,两者占全省总碳储量25.07%,61.63%。植被地上生物量与土壤特性相关分析表明:土壤碳含量、氮含量与植被地上生物量均呈正相关,其中氮含量与地上生物量有较显著的正相关关系(p=0.03),各土层含水量与地上生物量的相关性不明显。  相似文献   

7.
山西省森林植被碳储量及其动态变化研究   总被引:5,自引:2,他引:3  
以山西省1995年、2000年和2005年的3期森林资源清查数据为基础,采用生物量换算因子法,研究了山西省森林植被碳储量及其动态变化。结果表明:10年间山西森林的碳储量总体呈上升的趋势。全省森林的总碳储量由1995年的3514.22万Mg增加到2005年的4505.61万Mg。在14个(类)森林优势树种中,栎类、油松和杨树这三者的碳储量占主导地位,合计占山西省森林总碳储量的60%以上。在全部森林中,幼、中龄林及近熟林的碳储量合计约占总量的90%。2005年,人工林碳储量占森林总碳储量的百分比提高了5.28%,全省森林平均碳密度为23.8933~26.3717Mg/hm2。  相似文献   

8.
分析了南亚热带中山区的铁坚油杉天然林乔木层、灌木层、草本层和凋落物层的生物量和碳储量以及分配格局,为提高该地区碳储量提供参考依据。在天然铁坚油杉林内设定标准样地,采用标准样方收获法和标准木法测定生态系统的生物量和碳储量。(1)铁坚油杉天然林生态系统总生物量为239.61 t/hm~2,乔木层为237.65 t/hm~2,灌草层为0.18 t/hm~2,凋落物层为1.78 t/hm~2,生物量主要集中在乔木层。(2)植被层各组分有机碳含量相差不大,为介于465.22~512.17 g/kg之间;各组份间的碳含量无显著性差异,0~20 cm层土壤层碳含量高达12.55 g/kg,土壤层碳含量随着土壤深度增加而逐渐降低,随着深度增加碳含量降低程度变小。(3)生态系统总碳为134.55 t/hm~2,其中植被层为68.45 t/hm~2,乔木层为67.54t/hm~2,碳储量相对高,植被层的碳储量主要集中在乔木层,所占比例高达98.70%;土壤层碳储量为66.10 t/hm~2,该生态系统碳储量集中在土壤层和乔木层,且两者所占比例接近,分别为50.20%、49.13%。铁坚油杉天然林生态系统生物量和碳储量相对较高,土壤固碳能力较强,应进行合理保护利用。  相似文献   

9.
云南省森林植被碳储量和碳密度及其空间分布格局   总被引:1,自引:0,他引:1  
《林业资源管理》2019,(5):37-43
以云南省第4次森林资源二类调查数据为基础,利用生物量扩展因子法及平均生物量法,结合各树种不同龄级的计算参数,估算了云南省森林植被碳储量、碳密度,并分析其空间分布格局。结果表明,云南省森林植被总碳储量为892.596 Tg,平均碳密度为39.260 t/hm~2。其中:乔木林碳储量占总碳储量的95.67%;乡土树种云南松和栎类碳储量占乔木林总碳储量的58.34%;幼、中龄林碳储量占乔木林总碳储量的49.97%;碳密度与年龄成正比;天然林的碳储量、碳密度均高于人工促进林和人工林。云南省森林植被碳储量和碳密度的空间分布总体上为西部高、东部低。研究认为,地质环境条件和人类活动干扰是造成全省碳储量和碳密度差异的重要因素。通过严格保护和恢复石漠化区域森林植被,实施森林质量精准提升工程、加强人工造林、抚育和封山育林管理等,是提高全省森林碳储量和碳密度的重要途径。  相似文献   

10.
利用福鼎市2015年森林资源建档数据,采用转换因子连续函数法,结合不同树种(组)的含碳率,估算福鼎市林分乔木层碳储量与碳密度。结果表明:2015年福鼎市林分乔木层碳储量为1 531 476 t,碳密度为21.60 t/hm2,针叶林、阔叶林与针阔混交林碳储量分别占总碳量的31.8%、48.4%与19.8%,阔叶林碳密度值远大于针叶林与针阔混交林,马尾松林碳密度最低;不同经营单位的碳储量与碳密度空间差异较大,大体呈现南大北小、西高东低的趋势;生态公益林碳储量与碳密度均高于商品林,其中防护林碳密度略低于全市碳密度;重点生态区位内林分的碳储量低于重点生态区位外林分碳储量,但其碳密度高于生态公益林与重点生态区位外林分碳密度。该研究揭示了福鼎市森林植被碳储量总体分布较合理,但碳密度较低,固碳能力具有较大的提升空间。  相似文献   

11.
基于2016年沙县森林资源建档数据,采用Arc GIS10. 0软件估算沙县森林植被地上部分碳储量。结果表明,2015年沙县森林植被地上部分碳储量为612. 5万t,其中乔木层、灌木层、草本层碳储量分别是584. 0万t、23. 7万t、4. 8万t;地上部分碳储量主要集中在林分,高达91. 74%;针叶林、阔叶林位居前两位,分别占38. 60%、26. 64%;针叶树种是阔叶树种的近两倍,分别占60. 15%、31. 18%;成熟林、近熟林位居前两位,分别占36. 34%、26. 31%;人工林、天然林近对半分布,分别占52. 79%、47. 21%;重点生态区位外碳储量高达66. 83%。  相似文献   

12.
以2017年云南省镇雄县森林资源规划设计调查的数据资料为基础,运用生物量与蓄积量之间关系的生物量转换因子连续函数模型对镇雄县森林植被的生物量进行估算。利用生物量与碳储量的转化率,估算得出镇雄县森林碳储量及碳密度。结果表明:全县森林植被总生物量为1090.52×10~4t,乔木层生物量贡献占主导地位;全县森林植被总碳储量为545.26×10~4t,地类为纯林的碳储量远大于其他地类;全县平均碳密度为14.75t/hm~2,全县碳密度最高位分布在西北部山区,山区碳密度明显大于平原碳密度平均值,碳密度与树种平均年龄的线性关系,符合s型增长曲线。  相似文献   

13.
基于对5个林龄尾巨桉林分不同层次植被生物量和碳含量的测定,本文研究了5个不同林龄尾巨桉林分植被碳储量的分配格局.结果表明:5个不同林龄尾巨桉林分中乔木层、林下灌木层、林下草本层和凋落物层碳含量均值分别为47.64%、50.59%、44.41%和48.92%,碳储量为7.17~145.15 t·hm-2,随林龄增加而增大.乔木层碳储量所占比例最大,随林龄增加乔木层碳储量所占比例也逐渐增大.  相似文献   

14.
湘中丘陵区不同恢复阶段森林生态系统的碳储量特征   总被引:1,自引:0,他引:1  
【目的】探讨亚热带植被恢复过程中森林生态系统碳储量及其在各层次(植被层、枯落物层、土壤层)分配格局的变化,为揭示植被恢复对森林生态系统碳汇功能的影响机制和分阶段实施森林生态系统碳库管理措施提供科学依据。【方法】采用空间代替时间的方法,在湘中丘陵区选取地域毗邻、环境条件基本一致的檵木+南烛+杜鹃灌草丛(LVR)、檵木+杉木+白栎灌木林(LCQ)、马尾松+柯+檵木针阔混交林(PLL)、柯+红淡比+青冈常绿阔叶林(LAG)作为一个恢复序列,设置固定样地,采用收获法建立部分主要树种相对生长方程和引用部分主要树种通用生长方程估算生物量,采集0~10、10~20、20~30和30~40 cm土层土壤样品,测定植物、土壤碳含量,估算生态系统各层次的碳储量。【结果】植被层各组分碳含量随植被恢复而变化,同一恢复阶段各组分碳含量基本上表现为乔木层灌木层草本层;枯落物层碳含量以PLL最高,其次为LAG,LCQ最低;同一土层碳含量随植被恢复而增加;从LVR到LAG,植被层、枯落物层、0~40 cm土壤层和生态系统碳储量分别增加了70. 80、1. 17、67. 05和139. 02 t C·hm~(-2);植被层、生态系统碳储量各阶段间的增长速率均呈先快后慢的特征,而土壤层呈快—慢—快的特征;不同恢复阶段生态系统碳储量具有一致的垂直分配格局:0~40 cm土壤层植被层枯落物层;随植被恢复,植被层碳储量对生态系统碳储量的贡献率呈增加趋势,而土壤层碳储量的贡献率呈下降趋势,枯落物层变化不大;生态系统、植被层、土壤层碳储量与植物多样性指数(除植被层外)、植被层生物量、土壤碳含量显著(P0. 05)或极显著(P0. 01)正相关。【结论】随着植被恢复,植物多样性、植被层生物量、土壤碳含量、植被层碳储量、土壤层碳储量和生态系统碳储量均增加,但各阶段的增长速率不同。为了提高亚热带森林生态系统碳储量,在植被恢复早、中期阶段,可合理经营促进植被恢复,通过提高植物多样性、植被层生物量、土壤碳含量来提高植被层和土壤层的碳储量;在植被恢复后期阶段,要通过保护好植被来保证土壤碳含量持续增高。  相似文献   

15.
为探究株洲市渌口区森林的固碳能力与分布特征,运用生物量转换因子连续函数法,计算了研究区11个优势树种(组)的碳储量和碳密度,并分析了各优势树种(组)碳储量的空间分布及林分特征,得出以下结论:渌口区的森林碳储总量为1 119 132.36 t,蓄积量和林分面积是影响碳储量的主要因素;渌口区森林的平均碳密度为19.72 t/hm2,各优势树种(组)的碳密度随着龄组的增大而逐渐升高,表现为幼龄林的碳密度最低,过熟林的碳密度最高;渌口区碳储量较高的区域集中分布在东部及南部小范围地区,因为该区域竹林的分布面积大且集中。  相似文献   

16.
对铜壁关不同森林生态系统的生物量、碳储量和碳密度进行评估。结果表明,铜壁关自然保护区森林生态系统总碳储量为237.408 6 tC,平均碳密度为36.807 4 tC/hm~2。其中,乔木生态系统平均碳密度为37.567 1 tC/hm~2,竹丛生态系统平均碳密度为75.210 3 tC/hm~2,灌木生态系统平均碳密度为9.879 9 tC/hm~2,经济林生态系统平均碳密度为11.850 1 tC/hm~2。并针对评估结果与其他研究结果进行了比较。  相似文献   

17.
基于2006年、2016年森林资源调查数据,运用生物量扩展因子法估算乔木林各优势树种(组)生物量,并根据生物量和含碳系数的大小,计算碳储量、碳密度,藉此对不同优势树种(组)、不同起源林分、不同林龄林分、不同类型林分碳储量、碳密度进行了比较分析。结果表明,10年间昆明市西山林场森林面积、蓄积增加151hm^2、58060m^3;碳储量增加了25230.64 t,达到111530.27 t,比2006年增加了23%。碳密度随林龄的增加而增加。  相似文献   

18.
采用材积源—生物量法计算了巩义市森林植被碳储量。结果表明,巩义市森林碳储量为51.53万t,乔木用材林贡献79.8%,灌木林贡献17.2%。乔木用材林碳储量以泡桐和栎类为主,这两个树种分别贡献36.4%和28.8%。灌木林碳储量主要来源于荆条,贡献58.0%。巩义森林平均碳密度为22 t/hm2,油松林碳密度最高为24.7 t/hm2。与全省平均水平相比,巩义森林的碳密度是比较低的。  相似文献   

19.
采用Komiyama红树林异速生长模型,对海南文昌清澜港海莲-黄槿生态系统的植被生物量、碳密度及其空间分布特征进行研究。研究结果表明:海莲-黄槿植被层总生物量为389.57±12.73 t/hm2,其中,乔木层生物量为387.75±12.01 t/hm2,占林分植被层总碳密度的99.5%;海莲-黄槿生态系统总有机碳库密度为688.51±45.69 t/hm2,其中,群落植被层单位面积的碳贮量为184.5 t/hm2,占总碳贮量的26.6%;0~105 cm土壤有机碳单位面积的贮量为504.01±39.69 t/hm2,占生态系统总碳密度的73.2%;林下植被层和现存凋落物层仅占0.2%。  相似文献   

20.
湖北省太子山森林植被碳密度及碳储量研究   总被引:1,自引:0,他引:1  
以湖北省太子山林场管理局2009年森林二类清查数据资料为基础,运用生物量转换因子连续函数法,从森林类型、林龄和林分起源角度,对该区域森林植被碳储量和碳密度进行估测.研究表明:湖北省太子山林管局森林植被碳储量为233855.66 t,平均植被碳密度为39.31 t·hm^-2.人工林碳储量高于天然林4.02倍,该区域森林植被碳储量主要由人工林提供.按森林类型划分,不同森林类型碳储量和碳密度均表现为针叶林>阔叶林>针阔混交林;按林龄划分森林碳储量,幼龄林>成熟林>中龄林>近熟林>过熟林,各林龄碳密度随林龄的增加表现为先增加后降低的趋势,中幼林森林面积和碳储量所占比例较大,该区域森林植被碳储量潜力巨大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号