首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
【目的】以自然突变的楸树雄性不育花芽为研究材料,分析与楸树雄性不育相关基因的表达模式,从基因的表达水平上揭示楸树雄性不育的分子机制,为楸树及木本植物的雄性不育研究提供有价值的参考。【方法】采用高通量测序技术对自然状态下楸树的雄性不育的花芽以及可育的花芽进行转录组测序,通过生物信息学对可育花芽与不育花芽的转录本进行比较分析,预测和筛选出与楸树雄性不育有关的基因。【结果】转录组测序共产生27.18 Gb数据,组装并去冗余后得到86 076个Unigene,然后将Unigene比对到7大功能数据库(NR,NT,GO,COG,KEGG,Swissprot,Interpro)进行功能注释,最终被7大数据库中任意一个数据库注释上的Unigene总数为64 600(75.05%)。将试验组(雄性不育花芽,SL)与对照组(可育花芽,FL)所测得的Unigene进行表达量的分析后,筛选出表达量有差异且可信度高的差异表达基因。在噪音分布中(差异表达倍数在2以上,可信度在0.8以上)共筛选出试验组中有6 915个基因上调表达,3 504个基因下调表达。在泊松分布中(差异表达倍数在2以上,错误发生率在0.001以下),SL-1 vs FL-1、SL-2 vs FL-2、SL-3 vs FL-3三个生物学重复中得出差异上调表达基因分别有13 979,13 513,13 055个,差异下调表达基因分别有12 170,13 807,10 411个。差异基因的GO功能分析表明,在生物过程中显著性富集的条目集群频率较高的是生殖过程、生殖发育过程、生殖系统发育、生殖结构发育,在分子功能中只有生长素流出跨膜转运蛋白活性显著性富集。差异基因KEGG通路分析中,差异基因映射到127个不同的生物途径,显著富集代谢通路中差异基因的生物途径主要为:代谢途径、次生代谢产物的生物合成、剪接体、RNA转运以及甘油磷脂及淀粉和蔗糖的代谢。在用差异基因与同源基因比对分析中,共比对出246个同源性高的Unigene,其COG功能分类多聚集在RNA加工和修饰,细胞周期控制、细胞分裂、染色体分区,转录等,同时将这些同源性高的差异表达基因映射到了丙酮酸代谢、植物激素信号转导途径中。【结论】楸树雄性不育的形成与生殖发育的多个过程、丙酮酸代谢途径、生长素流出跨膜转运蛋白活性以及油菜素内酯介导的信号转导通路密切相关。根据分析的结果和已经完成的相关细胞学观察,推测楸树雄性不育的形成可能是楸树体内丙酮酸代谢过程异常,抑制油菜素内酯的合成,使绒毡层发育异常并进一步影响到小孢子减数分裂,最终导致不育花粉的形成。  相似文献   

2.
【目的】选择扦插繁殖的方式研究花椒无性繁殖过程中的生根和生长特性,探索激素促进花椒根系发生和发育的生理机制,为花椒优良品种的繁育提供理论参考。【方法】以2~3年生‘狮子头’花椒实生苗嫩枝为试材,采用完全随机区组试验设计,进行扦插试验。通过田间调查和室内试验分析方法,持续观测花椒扦插苗的生根进程,测定生根关键物质(可溶性蛋白和可溶性糖含量),并测定关键生物酶(SOD、POD、PPO和IAAO)活性。【结果】花椒插穗生根类型为愈伤组织生根型,生根过程可分为愈伤组织诱导期、不定根形成期、不定根伸长期、生根后期4个阶段。IAA和IBA处理中质量浓度为250 mg/L时插穗的成活率和生根效果指数最高,NAA处理中质量浓度为500 mg/L时有利于花椒插穗生根。扦插生根过程中,插穗皮部SOD和PPO活性在愈伤组织诱导期和不定根形成期上升,在不定根伸长期和后期下降;POD和IAAO活性在愈伤组织诱导期和不定根伸长期上升,在不定根形成期和生根后期下降。【结论】对比不同浓度不同种类的外源激素处理后发现,适宜浓度的外源激素处理对花椒扦插苗的根系发生与发育有促进作用,并可通过促进生根关键酶活性的提高以及诱导生根物质含量的变化对根系发生进程产生影响。  相似文献   

3.
为了解普通油茶花发育过程的分子机制及成花关键基因,选择花芽分化前、萼片形成期、花瓣形成期、雌雄蕊形成期、子房及花药形成期和雌雄蕊成熟期的花芽作为试验材料,对此6个时期样品进行表达谱测序并进行分析。结果表明,测序共获得原始reads数为103 249 386条,平均Cycle Q20均为100%;各样品测序reads与转录组部分测序构建的Unigene库的序列对比,对比效率超过60%,共获得差异表达基因26 861个,7月3日与6月15日差异基因达到19 596个,上调基因数19 408个;对差异基因进行生物功能分析、翻译,核糖体结构和生物合成为245条,转录因子为372条,复制、重组和修复为320条,细胞信号转导机制为285条,翻译后修饰、蛋白质周转和伴侣蛋白为283条,能源生产和转换为114条,碳水化合物运输和代谢为136条,氨基酸的转运和代谢为122条;与花器官形成有关A类基因Unigene数量最多,其中Unigene67783在不同的发育阶段差异较明显,表达水平也较高;B类基因有9条Unigene,其中Unigene56059表达水平较高,各发育阶段差异也较明显;属于C类基因的Unigene数量有9条,总体表达水平较低且差异不明显。  相似文献   

4.
【目的】对白腐菌偏肿革裥菌在木质和非木质环境下的转录组进行测序,为白腐菌降解木材的机制研究提供支持。【方法】采用高通量测序技术对木屑和非木屑处理条件下的菌丝样本进行转录组测序。利用eggNOG、GO、KEGG等数据库对转录本进行注释和比较分析,预测和筛选出偏肿革裥菌与木材降解有关的基因。应用荧光定量PCR(qPCR)检测mnp2等11个与木质素降解相关的差异基因在木屑处理5天条件下的表达量,结合转录组数据对这些基因的表达量变化趋势进行分析。【结果】偏肿革裥菌转录组测序共得到38.9 Gb Clean Data,各样品Clean Data平均达到6.49 Gb,各样品的Reads与参考基因组的比对效率在71.23%~74.25%之间。使用edgeR软件进行差异表达分析,得到差异表达基因898个,其中上调351个、下调547个。差异基因被注释到GO数据库的有251个,注释到KEGG数据库的有223个,注释到eggNOG数据库的有704个。eggNOG分析表明,差异基因表达多聚集在能量产生和转换、转录后修饰、蛋白质代谢、伴侣关系、次生代谢物的生物合成、碳水化合物的运输和分解代谢等功能分类下。GO分析表明,显著性富集与频率较高的生物过程是丙酮酸代谢过程、类异戊二烯生物合成过程、天冬氨酸家族氨基酸代谢过程和木质素分解过程。在KEGG通路分析中,差异基因分布到86个不同的生物途径,差异基因显著富集的代谢通路主要为:碳代谢、柠檬酸循环、芳香化合物降解、乙醛酸代谢。qPCR结果表明在木屑处理条件下基因mnp2、mnp3、lip9、lip2、laccase1和nadp的表达量明显上调;mnp10 s、mrp、cyp450-1、GroES1和GroES2的表达量明显下调,qPCR与转录组测序结果在表达量差异倍数上存在较小偏差,但整体趋势一致,可以证明转录组测序结果是正确可靠的。【结论】偏肿革裥菌降解木材与碳代谢、芳香化合物降解等通路密切相关;与木质素分解等生物过程密切相关。根据基因功能注释的结果得到11个与白腐菌降解木质素相关的重要差异表达基因。  相似文献   

5.
【目的】白花泡桐Paulownia fortunei (Seem.) Hemsl.为中国南方重要的尾矿造林树种。为了揭示泡桐根系受重金属胁迫后的转录调控机制,明确泡桐根系响应重金属胁迫的相关基因和重要通路。【方法】以生长在铅锌矿、南方红壤的白花泡桐根为实验材料,进行高通量测序,将组装的基因序列在Nr、Nt、Pfam、KOG/COG、SwissProt、KEGG和GO数据库中进行基因功能注释,同时对在红壤、铅锌矿中差异表达的泡桐根部基因进行了分析。【结果】1)经过测序共得到366 701 960条reads序列,总碱基数为53.90 Gb,GC平均含量达44.58%。将测序所得reads再经Trinity软件组装后得到126 061条基因序列,其中96 133条序列获得了注释信息,占总数的76.25%。2)注释到Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO数据库的基因序列数分别为63 938、64 685、68 840、29 886、66 433、28 747、68 840条。3)相对于红壤生长条件,铅锌矿胁迫时泡桐根部分别有154个基因上调和4 143个基因下调表达。4)差异表达基因的GO富集性分析发现,这些基因的功能主要集中于结合(Binding)、细胞器(Organelle)、细胞蛋白代谢(Cellular protein metabolic process)。将差异表达基因在KEGG数据库中比对发现,差异基因主要富集于核糖体、内质网蛋白加工、剪接体、胞吞作用、RNA转运、吞噬代谢、mRNA监测等7个代谢通路。其中,核糖体是最主要的代谢途径。q RT-PCR所检测的6个差异基因表达模式与RNA-seq结果保持一致,证实了RNA-seq结果的可靠性。【结论】本研究提供了泡桐根部在铅锌矿和红壤条件下的转录组信息,并分析了泡桐根部转录组变化情况,为寻找泡桐根部响应重金属胁迫的基因打好基础。  相似文献   

6.
【目的】以楸树胚性愈伤组织为受体,建立有效的楸树遗传转化体系,为今后楸树性状的遗传改良奠定基础。【方法】通过农杆菌EHA105介导以胚性愈伤组织作为外植体进行遗传转化,通过正交试验获得最优的遗传转化条件,进而将外源基因转入到楸树基因组中。【结果】在1/2 MS培养基中添加不同梯度浓度的卡那霉素(Kana)进行选择压力筛选,在添加了60 mg·L~(-1)Kana的1/2 MS培养基中,楸树胚性愈伤组织的分化率为0.00%,存活率仅为5.71%,因此确定60 mg·L~(-1)为遗传转化的选择压。采用正交设计L18(37)进行农杆菌介导的楸树遗传转化试验,通过GUS化学组织染色统计瞬时表达率,正交试验直观分析和单因素方差分析结果表明:在预培养时间为2天,采用农杆菌菌株EHA105、菌液浓度OD600值为0.7、添加乙酰丁香酮(AS)浓度为300μmol·L~(-1)、侵染时间为10 min,共培养时间为5天的条件下,农杆菌介导的转化效率最高,且对转化效率影响最大的2个因素是乙酰丁香酮浓度和预培养时间。对浸染后的胚性愈伤组织进行8个月的筛选培养,共获得32个抗性组织团,对其中15个增殖较多的抗性愈伤组织进行PCR检测,表明86.67%的抗性组织团中有外源基因整合到楸树基因组中。内源激素水平会对植物体细胞胚分化产生影响,细胞分裂素(CTK)和脱落酸(ABA)促进体胚发生,生长素(IAA)和赤霉素(GA)对体胚发生有抑制作用。通过测定内源激素可知,转基因的抗性组织中内源CTK和ABA水平显著低于野生型的楸树胚性愈伤组织,而内源IAA和GA则显著高于野生型胚性愈伤组织,推测内源激素水平可能是转基因抗性组织体胚分化能力比较差的原因。【结论】建立了农杆菌介导的楸树胚性愈伤组织的遗传转化体系,对筛选获得的15个抗性愈伤组织进行PCR检测,其中13个抗性愈伤组织中有外源基因的整合。内源激素水平的变化可能是导致楸树转基因抗性愈伤组织难以分化的原因。  相似文献   

7.
为研究牡丹花型的分子机理,挖掘调控牡丹雌蕊瓣化的候选基因,揭示牡丹不同花型的分子机理,以牡丹‘黑海撒金’(tree peony ‘HEIHAISAJIN’)和‘璎珞宝珠’(‘YINGLUOBAOZHU’)为材料,采用Illumina Hiseq测序技术进行花瓣的转录组测序,通过序列的拼接、组装和过滤,得到牡丹的转录组;比较‘黑海撒金’和‘璎珞宝珠’中转录本特定基因的表达量,获得差异表达基因;将差异表达基因进行GO功能注释和KEGG代谢通路分类,获得与花发育相关的功能基因。通过de novo的拼接和组装,获得了49 191个unigenes;差异显著性分析得到2 735个差异表达基因(DEGs),其中1 082个为上调基因,1 653个差异表达基因下调。GO功能注释发现,DEGs主要分布在25个功能区,最显著富集的为90 S preribosome。KEGG代谢通路中显著富集的通路有13条,最显著富集的通路为Ribosome。对功能基因进行挖掘和比对,发现与开花相关的ABCDEF模型基因有3个,分别为agamous-like MADS-box protein 65(AGL65), floral homeotic protein APETALA 2(AP2)和EMBRYO SAC DEVELOPMENT ARREST 3(EDA3)。认为利用转录组测序技术,可以分析雌雄蕊发育正常和雌蕊瓣化的不同花型的牡丹花瓣的功能基因。3个ABCDEF模型基因中,AGL65和EDA3为首次在牡丹中发现的花器官发育基因。说明这3个基因很可能是调控牡丹雌蕊瓣化的关键基因,参与牡丹花型的发育。该研究系统地挖掘与花型相关的基因,并发现了新的可能调控牡丹花型基因的成员,不仅为调控牡丹花器官发育挖掘了新的重要功能基因,也为揭示牡丹花型发育的分子机理奠定了重要的基础。  相似文献   

8.
【目的】为探索出不同基因型楸树离体培养条件的差异,并分别建立相应的快繁技术体系,以期为今后楸树良种产业化生产和繁育提供理论借鉴和科学依据。【方法】以‘洛楸1号’‘朝霞楸’‘云朵楸’和‘鲁楸1号’4个楸树优良品种为试材,研究植物生长调节剂对诱导、增殖及生根培养的影响,并对4个品种的植株再生能力进行了比较。【结果】4个楸树品种对培养基所用的外源激素的要求不同,诱导阶段:6-BA质量浓度为1.0 mg/L时,‘洛楸1号’和‘鲁楸1号’的诱导率可达100%;6-BA质量浓度为2.0 mg/L时,‘朝霞楸’和‘云朵楸’的诱导率最高,依次为100%,81.82%。增殖阶段:同一增殖处理对楸树4个品种的增殖效果不同,1.0 mg/L 6-BA最适于‘洛楸1号’增殖,增殖系数为4.70;1.5 mg/L 6-BA最适于‘云朵楸’和‘鲁楸1号’增殖,增殖系数依次为3.38、5.68;6-BA 3.0 mg/L最适宜‘朝霞楸’增殖,增殖系数为5.49。生根阶段:相同质量浓度的NAA比IBA能更好地促进楸树4个品种生根,0.1 mg/L NAA最适合‘朝霞楸’生根,生根率为97.50%;0.2 mg/L NAA最适合‘云朵楸’和‘鲁楸1号’生根,生根率依次为76.67%、93.33%;0.4 mg/L NAA最适合‘洛楸1号’生根,生根率为96.97%。【结论】4个楸树品种在组织培养阶段对培养基所用的外源激素的要求不同,繁殖能力存在差异,应针对品种建立相应的快繁技术体系。  相似文献   

9.
欧洲云杉扦插生根进程中内源激素和多酚类物质变化   总被引:1,自引:0,他引:1  
【目的】研究欧洲云杉嫩枝扦插生根过程中的生根性状、插穗内的内源激素和多酚类物质含量的变化情况,探讨插穗内内源激素和多酚类物质对欧洲云杉扦插生根影响,旨在为欧洲云杉扦插繁殖机理研究提供科学理论依据。【方法】以5年生欧洲云杉嫩枝插穗为试验材料,在扦插后30,40,50,55,60,65,70,75和80天分别取20株插穗调查愈伤组织形成和根系发育情况,以及扦插后0,37,45,67和72天取插穗的针叶和45,67和72天取插穗基部或基部愈伤组织分析插穗内源激素和多酚类物质含量。【结果】欧洲云杉扦插30天后已有55%的穗条形成愈伤组织,50天愈伤组织全部形成,50~75天为愈伤组织分化生根的高峰期,生根率达到90%,平均生根数为10.7。之后生根数量不变,根系仍然在生长,且扦插后根系效果指数持续增高。扦插后至37天,IAA和ZT/GA3分别降低28.79%和52.35%;GA3,ZT/IAA和GA3/IAA分别升高55.02%,32.78%和67.97%。扦插后37~45天愈伤组织形成期,IAA和GA3分别降低25.75%和40.91%;ZT/GA3,ZT/IAA和GA3/IAA分别升高39.32%,23.75%和20.41%。不定根诱导期(45~67天),IAA由61.7 ng·100 g-1增加至79.8 ng·100 g-1,ZT/GA3增加13.84%;而GA3,ZT/IAA,GA3/IAA降低,分别降低16.27%,24.86%,35.26%。扦插后至67天,ZT的含量约为80 ng·100 g-1,67~72天以29.97%速率降低,降低为55.6 ng·100 g-1。对羟基苯甲酸在愈伤组织形成前(37天前)呈升高的趋势,由2.23 ng·100 g-1增加至7.19 ng·100 g-1。当进入不定根形成期,对羟基苯甲酸含量呈逐渐减小的趋势,减少至4.16 ng·100 g-1。儿茶酸和总酚酸含量在欧洲云杉枝插生根过程中均呈降低的趋势。扦插基部韧皮部的内源激素和多酚类物质的含量及比值的变化趋势基部同针叶内,只是含量及比值远远高于插穗基部韧皮部。植物的内源激素和多酚类物质多在幼嫩的叶和芽内合成,并向茎基部和其他部位运输。因此欧洲云杉扦插生根进程中,针叶的内源激素和多酚类物质含量远远高于插穗基部韧皮部内,尤其是67天针叶内IAA含量(79.8 ng·100 g-1)是基部韧皮部内(17.4 ng·100 g-1)是4.58~7.52倍。【结论】在欧洲云杉扦插生根进程中,内源激素和多酚类物质的此消彼长共同影响促进愈伤组织分化和不定根的形成。不定根诱导期IAA含量升高,而GA3,ZT和多酚类物质降低是促进插穗生根的重要原因。因此IAA是促进不定根形成的主要内源激素,GA3和ZT以及多酚类物质是不定根形成的抑制剂。  相似文献   

10.
通过对豫楸1号扦插生根过程中外部形态构造进行观察,内部氧化酶类(IAAO、POD、PPO)活性变化进行研究,结果表明;豫楸1号扦插生根类型属于皮部生根型;豫楸1号扦插生根可分为5个阶段,即:变化不明显期、愈伤组织形成期、愈伤组织膨大期、生根期、根生长期;催芽抽生嫩枝插条在扦插生根过程中IAAO、PPO活性均呈现升-降-升-降趋势,POD则呈现波浪式上升.3种氧化酶在生根过程中的作用既相互独立又相互联系,通过相互作用来共同影响豫楸1号生根.  相似文献   

11.
【目的】鉴定日本落叶松木质部发育相关基因,构建核心基因与木质部发育相关基因的共表达网络,为后期开展日本落叶松木材形成相关研究提供参考。【方法】对日本落叶松木质部、韧皮部和针叶3个组织进行二代和三代转录组测序,利用R软件的DEseq2包筛选木质部相对韧皮部和木质部相对针叶的差异表达基因,通过整合2组差异基因获得木质部特异表达基因,借助GO、KEGG及BLASTN等生物信息学分析手段探索基因功能,利用WGCNA分析构建木质部特异表达基因共表达网络。【结果】共获得2 596个木质部特异的高表达和低表达基因;GO分析结果显示这些基因在代谢过程、细胞过程、定位膜、细胞、细胞组件、催化活性、位点结合和转运活性等分类中显著富集; KEGG分析结果显示这些基因在淀粉和蔗糖代谢、类黄酮生物合成和代谢途径通路中显著富集,在苯丙烷代谢途径及淀粉和蔗糖代谢途径中分别富集到38个和196个基因;鉴定出木材形成相关基因,包括木质素合成相关基因PAL4、CCR1、C4H、HCT、COMT1、PER12、PER52、CYP98A3、LAC12和LAC17等,纤维素和半纤维素合成相关基因DEC、CEL1、Csl、CTL2和SPS3等; 2 596个木质部特异的高表达和低表达基因经WGCNA分析后筛选出与木质部发育相关基因关联度较高的17个核心基因。【结论】筛选的日本落叶松木质部发育相关基因参与半乳甘露聚糖合成、木葡聚糖合成、纤维素微纤丝形成、细胞壁纤维素合成、次生细胞壁形成过程、纤维伸长过程、调控合成木质素的碳代谢流、木质素生物合成及降解、木质素单体聚合、木质素单体甲基化和细胞程序化死亡等木材形成相关生物学过程;在共表达网络中筛选出的17个核心基因可作为今后研究的重点来探索其在木材形成过程中的具体功能。  相似文献   

12.
【目的】研究不同生长调节剂处理对金叶银杏硬枝扦插生根率和成活率的影响,探讨金叶银杏的生根机制,为金叶银杏苗木扦插快繁技术体系的建立提供技术支持和理论指导。【方法】通过NAA和IBA处理金叶银杏硬枝插穗,检测它们对插穗的生根状态、生根指标及IBA对扦插过程中插穗皮部可溶性糖、抗氧化酶、激素含量的影响,探究金叶银杏硬枝扦插繁殖技术和生根机理。【结果】1)金叶银杏插穗愈伤组织诱导期和形成期、不定根发生期和形成期分别在插后的20~26、26~42、42~53、53~79 d。2)800 mg·L^-1 IBA和400 mg·L^-1 NAA+400 mg·L^-1IBA(混合)处理的插穗愈伤组织和不定根出现期及生根率与根数都较其他相应处理的效果好,其中生根率分别达64.4%和51.1%;不定根数分别达8.6条和9.3条。3)插穗生根过程中(500 mg·L^-1 IBA处理)基部韧皮部的SOD、PPO活性在插后40、60 d达到高峰,均比对照提前20 d达到峰值;插穗的POD活性出现上升-下降-升高的趋势,插穗可溶性糖也出现升高-下降-升高的趋势,但时间点不一致;而淀粉的含量出现下降-上升的趋势。4)生根期间插穗基部韧皮部的IAA含量出现了2个峰值和一个谷值;而ZR含量在第40天达到峰值后下降;GA含量先下降后上升;ABA含量在插后的前期高后期低,且值都低于同期对照。IAA/ABA比值在插后的第40天(愈伤组织形成期)达到谷底,后又上升(不定根形成期)。IAA/GA在插后的40~60 d内快速上升,80 d后又开始大幅下降;IAA/ZR值在扦插愈伤组织形成期(40 d)呈下降趋势,到60 d时(不定根发生期)又急剧上升到峰值。【结论】高活性的SOD和POD有利于插穗初期愈伤组织的形成(40 d),高活性的POD与PPO有利于不定根的形成(60 d)。较高的IAA含量是保证愈伤组织形成(20~40 d)的必要条件,不定根形成期(60 d)需要较高的IAA/ZR、IAA/ABA、IAA/GA比值。本研究为金叶银杏扦插繁殖技术和生根机理的研究及金叶银杏苗木的快速繁殖生产提供技术支持。  相似文献   

13.
【目的】对短日照诱导的白花泡桐顶芽进行转录组测序分析,探究其顶芽死亡的分子机制,为解决泡桐“冠大干低”提供理论依据。【方法】在25℃恒温条件下,对白花泡桐1年生苗进行短日照(SD)处理,在高生长期(SDa)、高生长停止期(SDb)、顶芽死亡发生期(SDc)3个时期进行转录组测序,并利用荧光定量PCR(qRT-PCR)测定11个差异基因的表达量,同时结合转录组信息进行验证。【结果】白花泡桐顶芽3个时期转录组测序共得到57.47 Gb数据,使用DESeq2软件进行3个时期样品间比较,共筛选出差异基因44 397条,其中注释到7大数据库(NR、NT、GO、EggNOG、KEGG、UniProt、Pfam)的基因为37 076条(83.51%)。3个时期的差异基因在KEGG上主要富集在植物激素信号通路,对顶芽死亡发生的SDc时期植物激素信号通路上差异基因的分析得出:脱落酸(ABA)激素信号的响应因子ABF下调表达,乙烯(ETH)激素信号的响应因子ERF1上调表达,油菜素内酯(BR)激素信号上编码木葡聚糖内糖基转移酶的TCH4和细胞周期特异蛋白基因CYCD3上调表达,这些基因与大多数植物芽休眠过...  相似文献   

14.
【目的】研究杜仲良种嫩枝扦插不定根发育的解剖结构特征,探讨内源激素、氧化酶、营养物质的动态变化规律及作用,为进一步研究杜仲扦插不定根发育机制及调控技术提供参考。【方法】以‘华仲6号’杜仲当年生半木质化嫩枝为研究对象,通过石蜡切片技术对插穗生根部位进行解剖观察;利用高效液相色谱-质谱法(HPLC-MS/MS)测定生根部位IAA、GA3、ABA及ZR的含量;利用比色法测定IAAO、POD、PPO的活性;采用蒽酮法、考马斯亮蓝法和凯氏定氮法主要测定营养物质中可溶性糖、可溶性蛋白和全氮含量。【结果】1)杜仲不定根是由形成层外的薄壁细胞诱导分化形成,属于皮部诱导生根型。其生根过程可划分为诱导期(扦插0~12天)、启动期(扦插12~22天)、表达期(扦插22~32天)和伸长期(扦插32~53天)。在表达期可观察到插穗基部有幼小白色不定根突破皮层。2)经杜仲专用生根剂处理的插穗每根平均生根数量可达25.6根,比对照多约20根;平均根长为8.41 cm,约为对照组2倍;生根率为85.3%,提高60%。3)在杜仲扦插生根过程中IAA起到关键作用。POD和PPO活性先升后降,IAAO...  相似文献   

15.
【目的】研究美洲黑杨杂种F1的基因表达模式,从基因表达水平揭示杂种优势形成机制,为杨树杂种优势的深度开发利用提供有益参考。【方法】采用Illumina HiSeq 2000高通量测序技术对不同生长势美洲黑杨杂种F1(3个生长势超过双亲、2个生长势低于亲本)及其亲本进行转录组测序和差异比较。【结果】转录组测序共产生171 154 127条Reads(平均长度200 bp,约31.32 Gb),将处理后Reads与毛果杨参考基因组数据库比对,有61.89%的Reads可以与参考基因组匹配。超亲杂种F1 Vs亲本中筛选出342个基因显著差异表达(上调表达87个,下调表达255个);低亲杂种F1 Vs亲本共筛选出577个基因差异表达(上调表达146个,下调表达431个);超亲杂种F1 Vs低亲杂种F1中共筛选出486个基因显著差异表达(上调表达200个,下调表达286个)。筛选出377个对杂种优势产生具有重要作用的差异表达基因,其中,有4个差异基因在超亲F1 Vs亲本、低亲F1 Vs亲本及超亲F1 Vs低亲F1中为下调表达;72个下调表达差异基因在超亲F1 Vs亲本及低亲F1 Vs亲本2个对比组中均显著差异表达;有129个差异基因仅在超亲F1 Vs亲本及超亲F1 Vs低亲F1 2个对比组中显著表达,包括19个差异基因显著上调表达,110个差异基因显著下调表达;有172个基因仅在低亲F1 Vs亲本及超亲F1 Vs低亲F1中显著差异表达。功能注释及代谢途径分析结果表明,超亲F1 Vs亲本、超亲F1 Vs低亲及低亲F1 Vs亲本3个对比组中分别有167个、233个及280个差异显著基因能被功能注释,分别涉及46个、45个及51个生物学功能,在分子功能、生物学过程、细胞组分3种GO分类中,其中差异基因主要富集在"催化活性"、"胺的代谢过程"及"氧化还原酶活性"等功能中,参与碳水化合物代谢、氨基酸代谢、能量代谢途径及外来物质的降解和代谢途径。【结论】杂种优势的形成,可能是由于相关基因的显著差异表达,调控光合作用、物质代谢吸收等与生长紧密联系的代谢活动,进而促进生长优势的产生。  相似文献   

16.
【目的】从基因表达水平上,研究施肥引起杉木基因表达变化规律,为杉木施肥理论与MAS育种实践,提供科学依据。【方法】以开化1年生的杉木无性系开6扦插苗为研究对象,4种施肥处理,每处理三个重复,采用Illumina HiSeq4000高通量测序技术进行测序,对测序结果进行无参转录组分析。【结果】1)转录组测序共产生clean reads5.0E+07 nt到7.1E+07 nt,总拼接长度724341090 nt,通过Trinity组装,获得了74288个unigenes(基因),然后将组装序列在6个数据库(Nr,Swiss-prot,eggNOG,KEGG,Pfam,GO)进行BLASTX分析,获取功能注释信息;2)韦恩图揭示基因对不同施肥处理的响应是:在-P-N1-VS-WT比较组中,未施肥处理,有4650个特异表达基因,其中包含了若干耐性基因,其它比较组也获得了相应的结果。杉木施肥诱导一些基因的开启和上调,同时也导致一些基因表达的关闭或下调;不同处理间的表达差异基因数在不同施肥组间变化很大,显著差异表达基因从施磷与对照比较组的429个到施磷与施氮比较组的4942;3)差异表达极显著基因的热聚类分析结果,揭示同一比较组,不同处理间基因表达是互补的关系:同一基因要么高表达,要么低表达;4)GO富集与分类显示施肥对杉木影响显著的基因主要定位在叶绿体、细胞骨架、细胞膜、细胞核、细胞质上;5)GO富集分析的结果表明施氮(磷)肥,不仅可以促进氮(磷)的吸收与代谢,而且也能促进磷(氮)的吸收与代谢;6)对施磷肥与氨酰基-tRNA大分子化合物合成的生理生化过程进行了分析。基于以上研究结果:今后可对转录组分析获得的重要基因进行研究,其结果可用于指导杉木施肥和杉木营养遗传育种MAS选择。【结论】RNA-seq高通量测序技术,对于研究非模式植物(包括基因组比较大的针叶树)施肥分子机制,是一种快速而简便的方法。研究结果表明,施肥不仅激活了与N、P的吸收、转运和利用有关的基因表达,还下调了与生长发育和光合作用有关的基因表达。施肥促使杉木的生长发育向着适应环境、竞争资源和生长发育的方向发展。  相似文献   

17.
红缨海棠嫩枝扦插生根解剖学观察   总被引:1,自引:0,他引:1  
为探索插穗根原基诱导发生部位及不定根发育过程,以红缨海棠嫩枝插穗为研究对象,定期取样插穗基部制作石蜡切片,开展解剖学观察。结果表明:红缨海棠嫩枝扦插后,可由愈伤组织和皮部诱导产生不定根;解剖学观察扦插穗条内不存在潜伏根原基,插穗生根为诱导生根型;经NAA处理后的嫩枝插穗,根原基诱导产生于插穗基部愈伤组织以及穗条内的髓射线与皮层交界处、维管形成层处、髓射线与环髓带交界处等4个部位,根原基诱导及不定根形成时间不超过20 d。  相似文献   

18.
[目的]研究马尾松抗松材线虫病相关基因,为解析马尾松抗性机理和高抗马尾松早期选择提供理论依据。[方法]对高抗和易感2种马尾松基因型接种松材线虫,在接种后第1、15和30天取样进行转录组高通量测序,通过对高抗和易感马尾松差异基因识别以及富集分析,以筛选与抗松材线虫病相关的组成型差异基因。[结果]对高抗和易感马尾松接种松材线虫后的转录组进行比较,在接种后第1、15和30天分别获得2 866、679和1 657个差异基因,且在接种松材线虫后不同时间点间,共有差异基因相对较少。对差异基因进行GO富集分析,结果显示:在接种后第1、15和30天,最显著的生物学进程是氧化-还原过程,而GO项刺激反应、转录调节以及香叶基二磷酸代谢过程也显著富集。对这几类GO项相关基因进一步分析,发现接种后3个时间点GO项刺激反应中共包括26个R基因,除了2个R基因外,其它R基因表达皆为组成型,在接种松材线虫和对照间差异不显著,而GO项转录调节中仅2个差异基因被nr注释为ERF转录因子,其余为未知基因。接种松材线虫后,ERF转录因子在高抗马尾松上的表达量始终高于易感马尾松上的表达量,且在接种松材线虫和对照间表达量变化不显著,也为组成型基因表达。GO项香叶基二磷酸代谢过程中,GGPPS 3个基因也在高抗马尾松上具有更高表达量,为组成型基因表达。这些基因中TIR-NBS-LRR基因(c65785.graph_c0)、ERF转录因子(c78073.graph_c0)和3个GGPPS基因在高抗马尾松中表达量较高,而在易感马尾松中表达量较低,甚至为0,可作为开发分子标记的候选基因用于鉴定抗性马尾松。[结论]高抗和易感马尾松在接种松材线虫后第1天其表达量差异达到显著水平的基因最多,其中,LRR基因、ERF转录因子和GGPPS与马尾松的抗性相关,部分TIR-NBS-LRR基因、ERF转录因子和GGPPS有望被开发为鉴定高抗马尾松的分子标记。  相似文献   

19.
四倍体刺槐嫩枝插穗生根的解剖学观察   总被引:1,自引:0,他引:1  
通过对四倍体刺槐嫩枝插穗扦插前和扦插后的切片观察,结果表明:(1)在插穗的切口处有愈伤组织,在愈伤组织内未发现产生根原基;(2)四倍体刺槐嫩枝茎内无潜伏根原基,不定根由诱生根原基发育形成,诱生根原基源于髓射线细胞的分裂和分化。  相似文献   

20.
【目的】生长调节因子(GRFs)是一类植物特有的转录因子,调控植物生长发育的多个生物学过程。研究杨树组织和器官发育中GRFs的作用,尤其是对不定根形成的调控,不仅可以丰富根发育的理论,而且对于杨树的扦插繁殖具有实际应用价值。【方法】从银腺杨84K中分离了PtGRF1/2d基因和其启动子,通过对其miR396靶位点核苷酸进行同义突变,获得不受miR396调控的突变形式的mPtGRF1/2d,并将启动子和该突变形式分别构建至含有GUS报告基因的植物表达载体和过量表达载体,通过遗传转化分别获得PPtGRF1/2d∷GUS启动子驱动GUS转基因杨树和mPtGRF1/2d过表达转基因杨树。通过GUS染色分析PtGRF1/2d杨树启动子的表达特性,并对过表达mPtGRF1/2d杨树不定根的发生时间、数目和长度进行统计,利用qRT-PCR分析不定根发育早期相关转录因子的表达。【结果】PtGRF1/2d主要在根的中柱鞘和根尖位置表达,说明其参与了根的形成;过量表达mPtGRF1/2d基因影响了杨树不定根的发生、发育,导致了不定根发生延迟、数目和长度均减少,且差异均达到显著水平或极显著水平,表明PtGRF1/2d对不定根的发生和发育具有负调控作用。qRT-PCR分析显示,过表达mPtGRF1/2d杨树的不定根发育相关基因PtSCR,Pt AIL9,Pt BBM2,Pt PLT1.2和Pt WOX11b的表达量均被下调,表明PtGRF1/2d的过量表达抑制了根原基发生和不定根发育相关的关键调控因子的表达,影响了根原基的发生和不定根的形成,导致不定根数目和长度的变化,最终影响了杨树的生长。【结论】PtGRF1/2d作为不定根形成的负调控因子,位于不定根调控途径的上游,通过下调促进不定根形成的相关转录因子的表达来抑制根原基形成和不定根发育,导致不定根发生延迟、数目和长度减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号