首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于混合效应模型的杉木单木冠幅预测模型   总被引:8,自引:0,他引:8  
以湖南省黄丰桥国有林场103块样地共2461株杉木为例,建立单木冠幅模型.由于所调查数据是在不同立地条件下相同样地中重复观察得到,数据间存在明显相关性,为解决此问题,将考虑立地指数和样地对冠幅生长的随机影响,即建立嵌套2水平非线性混合冠幅模型.从12个常用林分模型中选出较好的冠幅直径模型作为构建混合模型的基础模型.除胸高直径外,还考虑其他17个林分或树木因子对冠幅的影响.通过指标AIC(akaike information criterion)和对数似然确定最佳形式参数随机效应组合类型,用指数函数、幂函数以及常数加幂函数3种形式的残差方差模型消除异方差,最后对混合模型和传统回归模型进行比较及评价.结果表明:逻辑斯蒂形式的冠幅直径模型[模型(13)]拟合效果较好,选择为基础模型;胸径、冠底高、树高和样地优势高是影响冠幅的主要因子;幂函数消除异方差效果最好;与立地指数相比,立地指数与样地的嵌套效应对冠幅影响更大;模型(15)的嵌套2水平比总体平均水平和立地指数水平预测精度高,相比于模型(13)有明显改进.本文主要为方法研究,对于其他树种可以用相似方法构建冠幅模型.  相似文献   

2.
【目的】对Kozak方程进行修正,采用树木易测因子为预测变量,构建人工樟子松树冠外部轮廓预估模型,为研究树木生理和树木竞争提供依据,为模拟单木树冠表面积和树冠体积奠定基础。【方法】基于黑龙江省14块固定样地70株人工樟子松解析木907个最大枝条数据,以Kozak方程基本形式为基础并对其进行修正,选出构建人工樟子松树冠外部轮廓基础模型的最优模型形式。在最优模型基础上,建立分别考虑样地效应、样木效应及同时考虑样地和样木效应两水平的非线性混合效应模型。利用R软件的nlme软件包求解非线性混合效应模型参数,采用AIC、BIC、-2LL对混合效应模型中不同随机效应参数组合形式、不同随机效应矩阵、方差-协方差矩阵和方差函数进行比较,选出最优模型形式,并对人工樟子松外部轮廓随树木因子的变化规律进行探讨。以林分密度为哑变量,构建不同密度的人工樟子松树冠外部轮廓预估模型。【结果】人工樟子松树冠外部轮廓预估模型因子包含胸径(DBH)、冠长率(CR)和高径比(HD)。与基础模型相比,分别考虑样地效应、样木效应的混合模型能够显著提高模型拟合效果,外部轮廓模型差异主要来源于样木效应。以样木为单水平的混合效应模型中,a2、a6为随机参数,对角矩阵为方差-协方差矩阵形式,ARMA(1,1)为解释组内方差的矩阵,采用幂函数消除异方差的模型形式为最优模型。同时考虑样地和样木效应两水平混合模型的拟合效果较单水平混合模型有所提高。以两水平混合模型的固定效应部分模拟外部轮廓与树木因子之间的关系,在分别固定另外2个变量的情况下,树冠半径随着DBH、CR增大均逐渐增大,树冠上半部分半径随着HD增大而增大,下半部分半径随着HD增大而减小。外部轮廓拐点的变化范围为0.6250~0.9170,拐点平均位置为0.8413,随着林木在林分中被压强度增大,拐点位置向树冠基部移动。密度小于1000株·hm^-2林分中单木的冠形与1000~2000株·hm^-2和大于2000株·hm^-2林分中单木的冠形区别很大。【结论】修正后的Kozak模型满足梢头处半径为0、在整个树冠范围内存在拐点且拐点唯一的特性,能够对人工樟子松树冠外部轮廓进行合理模拟及预测。两水平非线性混合效应模型可显著提高模型拟合效果,能够在树冠外部轮廓模型中应用。  相似文献   

3.
以吉林省汪清林业局184块样地中的10 111株蒙古栎为例,首先选用线性函数、Richards函数、Logistic 函数、指数函数等7种常用函数形式,分析4个因变量(后期胸径、后期胸高断面积、直径增量和胸高断面积增量)与前期胸径的影响,确定一个用于构建混合效应模型的基础模型。然后确定同时考虑林场效应和林场与样地交互效应时基础模型中最优的形式参数构造形式,利用逐步回归方法确定模型中所包含的林分变量,并分析和比较用来消除异方差的3种常用残差方差函数(指数函数、幂函数和常数加幂函数),最后检验模型预测效果。结果表明:Wykoff模型且因变量为后期胸高断面积拟合效果较好,故作为基础模型;除前期胸高直径(D)外,当考虑坡度正切(ST),对象木胸高直径与样地算术平均直径的比(RAD),样地胸高总断面积(TBA),样地中大于对象木直径所有树木的胸高断面积和(GSBA),对象木胸高断面积与样地算术平均胸高断面积的比 (RABA)和对象木胸高断面积与样地胸高总断面积的比(RBA)等林分变量时能进一步提高模型预测精度;对于残差方差,指数函数、幂函数和常数加幂函数都能消除异方差,但幂函数效果最好;当模型同时考虑林场效应和林场与样地交互效应时预测精度最高。  相似文献   

4.
【目的】基于异速生长模型,构建兴安落叶松和樟子松立木材积模型,分析材积模型的误差结构和误差函数。【方法】采用Ballantyne(2013)提出的似然分析法判断兴安落叶松和樟子松立木材积模型的误差结构。为了对比,利用S-PLUS软件的广义非线性GNLS模块拟合非线性模型。针对模型拟合产生的异方差现象,采用误差方差函数(固定方差、指数函数、幂函数和常数加幂函数)消除异方差。采用确定系数(R2)、均方根误差(RMSE)、绝对误差(Bias)和平均相对误差(MRE)对立木材积模型精度进行综合比较分析。【结果】1)经似然分析法判断,兴安落叶松和樟子松立木材积模型的误差结构是相乘的。2)为了描述立木材积模型构建过程中产生的异方差现象,将固定方差、指数函数、幂函数和常数加幂函数加入到立木材积模型中,所有方差函数都能降低材积模型的异方差性。幂函数消除兴安落叶松材积模型的异方差效果最好,常数加幂函数消除樟子松材积模型的异方差效果最好。3)非线性(相加误差结构)及线性(相乘误差结构)拟合和检验统计量的比较表明,对于两树种,相加和相乘立木材积模型拟合评价指标非常接近,具有相加误差结构的立木材积模型的拟合和检验精度略高于相乘误差结构的立木材积模型。【结论】兴安落叶松和樟子松立木材积模型的误差结构是相乘的。根据非线性及线性模型的拟合和检验评价指标对比发现,对数转换的线性模型并没有表现出绝对优势,而非线性回归却略优于对数转换的线性回归。本文并没有给出绝对和一致的结论,如果模型的预测是最重要的,建议对比非线性和对数转换的线性模型,选择精度较高的误差结构。针对兴安落叶松和樟子松立木材积模型的详细对比分析,建议选择非线性回归分析,即相加的误差结构。  相似文献   

5.
【目的】基于湖南省湘西地区第七、八、九次(2004—2014年)全国森林资源连续清查数据,构建了马尾松单木断面积预估模型,以期为该研究区域马尾松的生长和经营提供科学依据。【方法】林业数据常常具有层次结构、重复测量等特点,不满足传统回归分析中要求的独立、正态分布和等方差的基本假设,因而会得到有偏的参数估计。为解决这一问题,采用了线性混合效应方法来构建模型。此外,还引入了自相关矩阵和异方差函数来描述样地内的自相关性和异方差。最后,根据赤池信息准则(AIC)、贝叶斯信息准则(BIC)、对数似然值(Log-likelihood)以及似然比检验(LRT)确定最终的模型。【结果】期初胸径的倒数(1/DBH)、每公顷断面积(BA)、对象木胸径与林分平均平方胸径之比(RD)以及海拔(EL)对于马尾松单木断面积的生长有显著的影响。在参数效应确定过程中,除海拔外,其余变量参数均为混合参数时模型有最好的表现。在3种随机效应方差-协方差结构中,广义正定矩阵表现最好。与指数函数和常数加幂函数相比,幂函数更好地模拟了模型误差的方差结构。由于引入自相关结构后模型未收敛,因此自相关结构未定义。【结论】与基于最小二乘法的基础模型相比,考虑层次结构的混合效应模型显著地改善了模型的表现,所构建的模型有一定的生物学意义和统计可靠性。  相似文献   

6.
【目的】基于节子分析技术构建落叶松人工林树冠基部高动态预测模型,分析落叶松树冠衰退规律及其影响因素,为制定合理的经营措施提供理论依据。【方法】以2007年设立的8块落叶松人工林标准地获取的40株解析木数据为基础数据,采用节子分析技术,得到树冠基部高随年龄的动态变化数据,应用传统线性模型、理查德和逻辑斯蒂非线性模型构建落叶松树冠基部高动态模型。【结果】传统线性模型、理查德和逻辑斯蒂非线性模型可较好拟合树冠基部高动态变化过程,模型参数均具有统计意义(P0.01),以理查德方程为基础模型构建的树冠基部高模型拟合效果最好,加入权重因子可消除异方差,降低估计参数标准误,提高预测精度,模型的确定系数(R~2)为0.904,绝对误差(Bias)和均方根误差(RMSE)分别为0.002和1.251,最优落叶松树冠基部高模型形式为HCB=(3.146+0.036CCF+0.225Bas+0.788HT-0.481CL)(1-e~(-0.086 t))~(4.278)。【结论】树冠基部高动态变化过程与林分发育规律一致,符合"S"形生长曲线,可通过树冠竞争因子(CCF)、林分断面积(Bas)、调查当年的树高(HT)和冠长(CL)解释,解释率达90.4%。树高、树冠竞争因子和林分断面积增大会导致树冠基部高上升,加速落叶松树冠衰退。竞争对树冠的影响较敏感,落叶松人工林10~41年间,树冠竞争因子大(187.33)的林分冠长率从75%下降到36%,而树冠竞争因子小(105.82)的林分冠长率从75%下降到40%;落叶松人工林树冠基部高平均每年上升0.66 m。本研究构建的树冠基部高动态模型可较好模拟落叶松人工林树冠基部高动态变化过程,利用单木和林分变量能够解释落叶松人工林树冠衰退趋势。通过检验验证,基于节子分析技术获取的树冠基部高数据构建的动态模型精度较高,可作为一种获取长期树冠动态变化数据的有效手段。  相似文献   

7.
【目的】构建树冠最大外部轮廓非线性混合效应模型和非线性分位数回归模型,为准确预测树冠生长发育规律及预估生产力提供科学依据。【方法】以河北省塞罕坝机械林场华北落叶松人工林为研究对象,基于58株解析木数据和1 789个枝条解析数据,利用幂函数、修正Kozak方程、修正Weibull方程选取基础模型,构建华北落叶松人工林树冠外部轮廓非线性混合效应模型和非线性分位数回归模型。【结果】在幂函数、修正Kozak方程和修正Weibull方程中,幂函数拟合树冠外部轮廓效果较好,作为树冠外部轮廓基础模型;林分年龄(Age)、冠长(CL)、胸径(DBH)、树高(HT)、冠高比(CHR)、高径比(HDR)对树冠外部轮廓影响较大。在混合效应模型中,两水平混合效应模型优于单水平混合效应模型,可明显提高模型拟合精度,HDR相关的参数a6考虑样地效应,相对着枝深度(RDINC)、CHR相关的参数a4、a5考虑样木效应,模型确定系数(R2)为0.873,均方根误差(RMSE)为0.319 m,平均相对误差(MRE)为6.642 m。在分位数回归模型中,当分位数q=0.90时模型曲线最接近树冠最大外部轮廓,R2为0.672。【结论】混合效应模型拟合精度较高,可准确描述树冠最大枝条的平均趋势。分位数回归模型可确定树冠最外部轮廓,在预测条件均值之外的研究中发挥重要作用。  相似文献   

8.
【目的】分析杉木单木枯损率与初植密度、竞争和气候因子的关系,为杉木科学经营管理提供决策依据。【方法】以江西杉木密度试验林为研究对象,选取常用的logit、probit和cloglog 3种二分类变量数据结构模型构建杉木单木枯损率基础模型,并进行选择。以选择出的最优模型为基础,引入样地和样木的随机效应构建杉木单木枯损率混合效应模型。【结果】logit模型的AIC值最小(4 700.419),probit模型次之,cloglog模型最差。考虑样地和样木两水平随机效应的混合效应模型模拟精度最高,其AUC值为0.966 8。初植密度、林分优势高越大,杉木单木枯损率越高;相对直径d/D_g越大,杉木单木枯损率越低;气候越干旱,杉木单木枯损率越高;温度升高,杉木单木枯损率减小。【结论】考虑样地和样木两水平的logit模型能够较好分析杉木单木枯损率与初植密度、竞争、立地和气候因子的关系,并且随着气候干旱发生,杉木单木枯损率提高。  相似文献   

9.
【目的】揭示油松树干横截面面积年增长量(RAI)的垂直分布特征和主要控制机制,验证Cortini等(2013)建模方法和模型形式在油松上的应用效果,确定基于RAI模拟预测材积年增长量和单木叶生物量的理想模型和树干位置。【方法】在9个不同年龄和竞争状态的油松林内选取27株10~98年生样木,于不同树干位置截取312个圆盘测算并分析各样木的RAI垂直分布模式,比较其与各理论模式的异同,揭示相关机制;基于Cortini等(2013)建模方法和模型形式构建油松RAI垂直分布模型,根据拟合优度等验证并评价其应用效果;在不同RAI垂直分布模式和整体水平,比较分析不同树干位置RAI与全树干水平的差异及与材积年增长量和单木叶生物量的关系,确定理想模型和树干位置。【结果】油松RAI垂直分布包括2种模式,差异主要源自树干中间区,有效树冠区和膨大区RAI分布分别与水分传输和机械支持的理论模式相近,而中间区RAI分布与各理论模式的异同因样木而异;RAI垂直分布模型可解释其垂直变异的82.76%;不同模式和整体水平,有效树冠基部RAI与全树干水平的差异均小于其他位置,胸高处RAI与单木叶生物量的关系均优于其他位置,而与材积增长量的异同因模式而异,或优于其他位置或略差于理想位置。【结论】水分传输和机械支持需求分别决定有效树冠区和膨大区的RAI垂直分布,二者的相对重要性及生物环境等因子共同决定树干中间区的分布;Cortini等(2013)建模方法和模型形式在油松上的应用效果良好;有效树冠基部对全树干水平的代表性较高,在胸高处测算RAI并据此预测材积年增长量是有效但存有缺陷的方法,对单木叶生物量的模拟预测效果良好。  相似文献   

10.
随着激光雷达和立体影像航天航空遥感技术的快速发展,目前,我国虽然具备了快速获得林分平均高、郁闭度等相关信息的能力,但缺少利用林分平均高和郁闭度来准确估测森林生物量和蓄积量的模型,这严重影响了激光雷达和立体影像航天航空遥感技术的推广应用。为了对模型的构建进行探研,利用湖南湘西地区地面调查数据中52块杉木样地的林分平均高、郁闭度、株数等数据,通过因子变量组合不同的自变量形式,并分别构建多个不同函数形式的杉木地上生物量、蓄积量反演模型,用决定系数R~2对模型进行评价。结果表明,基于杉木林分平均高、郁闭度构建的因子变量组合与地上生物量、蓄积量之间有紧密的联系。其中:以e为底数的对数形式变量ln(C×HH~2)作为解释变量的杉木地上生物量模型、蓄积量模型拟合效果最佳;指数函数模型能够精确地表达自变量与地上生物量、蓄积量之间的关系;与一次函数模型、幂函数模型、对数函数模型相比,指数函数模型的拟合效果更佳。对杉木林分平均高、林分郁闭度与地上生物量、蓄积量之间的关系进行了有效探究,构建了杉木地上生物量模型、蓄积量模型,以期为建立林分平均高和郁闭度因子估测其它树种的地上生物量和蓄积量模型提供参考依据。  相似文献   

11.
【目的】分析东北地区10种主要造林树种幼龄期各组分生物量分配特征,建立并筛选单树种和全树种最优生长模型,为该地区森林生物量尤其是幼龄林生物量估算提供模型参考。【方法】在吉林省舒兰市生物多样性与生态系统功能控制试验样地内,2021年7―8月份选取长势良好的植株进行全株取样,每个树种选取15~21株个体,共计200株。测量根系、茎干、叶片各器官生物量及其分配比例,并计算地上部分以及整株生物量。以基径和树高为自变量,以根系、茎干、叶片各器官和地上部分及整株生物量为因变量,建立一元线性、多元线性、幂函数等形式的回归方程,构建单树种和全树种生物量模型,并通过决定系数、参数显著性以及赤池信息标准(AIC)等指标筛选最优模型。【结果】1)10个树种的生物量总体呈现出茎干生物量占比最高(45%)、根系生物量次之(35.5%)、叶片生物量最低(19.5%)的分配格局。随着基径增长,茎干生物量占比呈上升趋势,叶片生物量占比呈下降趋势,根系生物量占比变化不明显。2)10个树种的生物量最优模型均以幂函数形式为主,单树种生物量模型以Y=a(D2H)b和Y=aD  相似文献   

12.
【目的】基于无人机数据采用3种分层方案构建冠层盖度-乔灌木地上部分生物量模型以及基于Landsat8 OLI数据采用3种分层方案构建不同光谱指数-乔灌木地上部分生物量模型,对比分析不同分层方案的乔灌木地上部分生物量模型精度,以期为基于遥感数据的干旱区人工林乔灌木地上部分生物量高精度反演提供理论依据。【方法】在毛乌素沙地实地调查102块30 m×30 m样地,基于高分辨率无人机影像,利用面向对象的机器学习算法获取乔灌草植被覆盖度信息,采用3种分层方案(不分层、基于乔木和灌木2种植被类型分层、基于5个树种分层)构建冠层覆盖度-乔灌木地上部分生物量模型。基于Landsat8 OLI影像,使用6种光谱指数(NDVI、RVI、MSAVI、TCG、NDMI、NIRv),结合无人机影像解译草本植被覆盖度,采用3种分层方案(不分层、有无草本植被样地分层、3个草本植被覆盖度等级样地分层)构建不同光谱指数-乔灌木地上部分生物量模型。【结果】不分层的冠层覆盖度-乔灌木地上部分生物量模型鲁棒性最差(R2=0.22,n=102),且估算精度最低(RMSE=14.98 t·hm-2...  相似文献   

13.
【目的】探讨林分乔木层生物量的估算方法,为大区域、大尺度森林生物量的估算提供理论依据。【方法】利用1990—2010年5期大兴安岭东部天然落叶松林固定样地数据,选择基于林分变量的林分生物量模型和基于林分蓄积量的林分生物量模型作为林分乔木层生物量估算的方法,利用似然分析法去判断2种模型的误差结构(相加型和相乘型),并采用聚合型可加性生物量模型建立其林分生物量模型,模型参数估计采用非线性似乎不相关回归模型方法。采用"刀切法"评价所建立的林分生物量模型。【结果】经似然分析法判断,2种模型的误差结构是相乘型的,对数转换的线性回归更适合用来拟合林分生物量数据;2种模型的调整后确定系数R2a0.94,平均相对误差ME为0%~5%,平均相对误差绝对值MAE15%;所建立的2种可加性林分生物量模型的预测精度在98%以上。【结论】虽然基于林分蓄积量的林分生物量和基于林分变量的林分生物量模型形式不同,但二者都具有较好的预测精度;就本研究而言,2种估算林分生物量的方法都能对大兴安岭东部天然落叶松林林分生物量进行很好地估算。  相似文献   

14.
【目的】在多树种多层次针阔混交林中,基于贝叶斯混合效应模型法构建树高与胸径关系的混合效应模型,以提高预测模型参数稳定性,为揭示混交林多树种生长规律、资源分配差异及森林质量精准提升提供科学依据。【方法】以河北省塞罕坝机械林场华北落叶松和白桦针阔混交林为研究对象,基于112块标准地(30 m×30 m)调查数据,选取6个包含不同林分因子的理论方程作为构建混交林不同树种树高与胸径关系的基础模型,选择出拟合精度较高的模型,分别采用两水平非线性混合效应模型法和贝叶斯混合效应模型法构建立包含哑变量的多树种树高与胸径关系模型。【结果】包含林分优势高和林分断面积组合变量的Richards方程拟合效果最好,模型确定系数(R~2)、均方根误差(RMSE)和绝对误差(Bias)分别为0849 5、2378 6和0365 4;贝叶斯混合效应模型法拟合精度略高于传统非线性混合效应模型法:基于传统非线性混合效应模型法的华北落叶松树高与胸径关系模型的RMSE和Bias分别为0930 4和0103 4,白桦树高与胸径关系模型的RMSE和Bias分别为0982 7和0112 6;基于贝叶斯混合效应模型法的华北落叶松树高与胸径关系模型的RMSE和Bias分别为0910 5和0096 8,白桦树高与胸径关系模型的RMSE和Bias分别为0963 3和0100 2。【结论】基于贝叶斯混合效应模型法构建的非线性混合效应模型,充分考虑混交林多树种树高与胸径关系模型参数的不确定性,模型预测效果更具可靠性和稳定性。  相似文献   

15.
【目的】基于3-PG模型预测长白落叶松生物量生长变化,为长白落叶松林分生长规律研究提供依据。【方法】以5块长白落叶松密度试验林连续28年监测数据和24块长白落叶松固定样地3期调查数据为基础,结合各组分(叶、干和根)生物量计算公式,获得每块样地不同调查时间的密度、胸径、蓄积和各组分生物量。根据密度试验林数据校正模型生理参数,结合立地参数和气象参数,通过参数率定、迭代拟合与敏感性分析方法确定长白落叶松3-PG模型的生理参数。采用决定系数(R~2)、平均误差(ME)、平均绝对误差(MAE)、平均相对误差(MRE)和均方根误差(RMSE)评价模型预测能力。选取冠层量子效率(alpha)和初级生物量分配到根的最小值(pRn)进行敏感性分析,并预测肥力等级(FR)为0.2、0.4和0.6时长白落叶松生物量生长变化趋势。【结果】1) 3-PG模型预测值与实测值之间R~2在0.77以上;除叶干生物量比为25.6%外,其他各指标的MRE绝对值均在10.97%以内,预测结果较可靠; 2) alpha和pRn具有较高敏感性,是模型的关键参数; 3)模型预测不同FR下的长白落叶松生物量变化符合树木生长机理过程,且各组分生物量随FR增加而增加。【结论】基于地面数据的参数率定后,3-PG模型能够很好模拟长白落叶松生物量生长变化,可作为一种有效的森林经营预测工具。对于长白落叶松3-PG模型,冠层量子效率(alpha)和初级生物量分配到根的最小值(pRn)是影响预测结果的关键参数。  相似文献   

16.
【目的】研究不同抽样方法对立木材积方程预测精度的影响,为各地编制不同树种材积表及构建立木材积方程提供基础数据抽样技术依据。【方法】以兴安落叶松立木材积方程为例,设计均匀、正态、右偏和左偏4种抽样方法,根据不同数据类型,利用SAS软件中proc surveyselect模块的简单随机抽样(SRS)并结合条件语句对数据进行分径阶抽样。采用Shapiro-Wilk对不同抽样方法下的胸径统计量进行正态性检验。以异速生长方程为基础材积模型,利用S-PLUS软件的广义非线性GNLS模块对模型进行拟合。采用指数函数、幂函数和常数加幂函数对4种立木材积拟合过程中产生的异方差现象进行校正。利用确定系数(R~2)、均方根误差(RMSE)、平均误差绝对值(MAB)和相对误差绝对值(MPB)对立木材积方程精度进行综合比较分析。【结果】1)指数函数、幂函数和常数加幂函数均能消除4种立木材积方程异方差的影响,加入变量为V^的幂函数消除异方差的效果最好。2)拟合结果表明,相对于均匀模型,正态模型的RMSE下降31.6%,右偏模型的RMSE下降23.1%,左偏模型的RMSE下降33.7%。3)分径阶检验表明,径阶分布在12~28 cm、36~40 cm和44~48 cm时,左偏模型的MAB和MPB均小于均匀、正态和右偏模型,即左偏模型在11组径阶中有6组径阶的MAB和MPB均最小;径阶分布在12~32 cm和44~48 cm时,右偏模型的MAB和MPB均小于均匀和正态模型,即右偏模型在11组径阶中有6组径阶的MAB和MPB均最小;径阶分布在12~32 cm和40~44 cm时,正态模型的MAB和MPB均小于均匀模型,即正态模型在11组径阶中有6组径阶的MAB和MPB均最小。【结论】左偏模型的预测精度比均匀、正态和右偏模型高,右偏模型的预测精度比均匀和正态模型高,正态模型的预测精度比均匀模型高,总体模型检验精度顺序为左偏模型右偏模型正态模型均匀模型。  相似文献   

17.
基于混合效应的人工落叶松树冠轮廓模型   总被引:3,自引:0,他引:3  
【目的】以林木易测因子为预测变量,构建黑龙江省人工落叶松树冠最大外部轮廓及内部轮廓(未着叶部分)的预估模型,为进一步估计人工落叶松树冠表面积、树冠体积和树冠生物量提供依据。【方法】基于佳木斯市孟家岗林场49株解析木的枝解析数据,树冠外部轮廓模型采用分段回归技术,构建带有约束条件并满足生物学意义的连续性分段曲线模型,即在梢头处树冠半径为"0",在整个树冠内外部轮廓的拐点的存在是唯一的,且在拐点处树冠半径达到最大值;内部轮廓直接采用线性模型进行模拟。分析模型参数与林木变量之间的相关性,将关系密切的树木变量或变量组合引入到模型中并选出最优模型,以此作为基础模型分别建立单水平的外部轮廓及内部轮廓的混合效应模型,利用混合模型的固定效应部分对外部轮廓及内部轮廓进行模拟。【结果】以林木因子胸径、高径比、冠长及冠长率构建的分段抛物线模型能准确预估树冠的外部轮廓形状,利用胸径、高径比及冠长能有效预测树冠的内部轮廓形状。基于模型的拟合优度及检验指标,采用单水平(样地)混合模型能够显著提高模型的预测精度,外部轮廓混合效应预估模型的决定系数(R~2)、均方误差根(RMSE)和平均偏差(Bias)分别为0.914 2、0.232 7 m和0.001 2 m,内部轮廓混合效应预估模型的R~2、RMSE和Bias分别为0.723 5、0.147 0 m和-0.000 034 m。与基础模型相比,混合模型的R~2都有所提高,RMSE、Bias都有所降低。在其他变量保持不变的条件下,外部轮廓半径分别随着胸径、冠长率的增大而增大,随着高径比、冠长的增大而减小;内部轮廓半径均随着胸径、高径比及冠长的增大而增大。【结论】具有生物学意义的分段抛物线模型和线性模型分别能够有效描述人工落叶松树冠外部轮廓及内部轮廓的形状变化特征,加入混合效应后能够提高模型的拟合精度并改善组内的方差异性特征,基于混合效应模型中的固定效应部分,能够合理地对树冠外部轮廓及内部轮廓进行模拟,分段抛物线模型能够灵活地反映拐点在树冠内的移动规律线,简单的线性模型能够对内部轮廓进行准确预估。  相似文献   

18.
临安杉木生物量估算模型及其通用性研究   总被引:2,自引:0,他引:2  
采用多种生物量测算模型对临安区杉木Cunninghamia lanceolata的幼龄林、中龄林、近熟林、成熟林的单木各器官和全株杉木的生物量进行估算,从而得到多个生物量估算模型和通用性最佳的模型。拟合结果表明,24种生物量模型均能较好的模拟杉木单木生物量,其中以幂函数模型的拟合效果最好,指数函数模型次之,最后是多项式模型;杉木生物量的最优模型是基于幂函数的5个分器官的模型和1个全株模型。研究结果表明,在通用性方面,杉木幼龄林生物量模型效果不佳,近熟林和成熟林模型效果次之,中龄林效果最好,可用于大范围不同龄组杉木生物量的估算。  相似文献   

19.
气候敏感的马尾松生物量相容性方程系统研建   总被引:1,自引:0,他引:1  
【目的】构建气候敏感的马尾松生物量相容性方程系统,分析气候因子对马尾松各分项生物量的影响,为森林碳汇监测和森林可持续经营提供技术支撑。【方法】基于150株马尾松单木生物量数据,采用非线性联立方程组法构建气候敏感的马尾松生物量相容性方程系统,各分项生物量(干材、干皮、树枝、树叶和地上总生物量)选用以直径和树高为自变量的二元生物量方程作为基础模型,利用一阶交叉验证法对所构建的生物量相容性方程系统进行评价。【结果】与传统未考虑气候因子的各分项生物量模型相比,气候敏感的马尾松生物量相容性方程系统预测精度明显提高,且该生物量相容性方程系统可定量描述不同气候带亚区生物量的差异程度,保证干材、干皮、树枝和树叶与地上总生物量相容。【结论】气候敏感的马尾松生物量相容性方程系统能有效分析气候因子对各分项生物量的影响,可应用于其他树种的生物量预估。  相似文献   

20.
【目的】建立湖南省楠木次生林林分断面积与蓄积相容性生长收获预估模型,为林分的生长预测和经营决策提供理论依据。【方法】以湖南省1989—2014年6期一类清查样地中的楠木次生林为研究对象,建立其林分断面积和蓄积生长的联立方程组,在此基础上,加入样地效应,构建基于混合效应的联立方程系统。【结果】基础模型包括3个含林分变量的内生变量,模型M1、G2、M2拟合的确定系数(R2)分别为0.860、0.907、0.778;相比基础模型,混合效应模型不仅在R2上有所提高(0.960,0.913,0.915),其平均误差(Bias)和均方根误差(RMSE)也有明显的降低;对比残差分布图,发现混合效应模型拥有分布范围更小、分布更均匀的残差值;通过对比混合效应模型不同模拟的AIC、BIC值,同时结合似然比(LRT)检验,确定了M1、G2和M2的随机参数分别为(β1,β3)、(β6)和(β1,β3,β6)。【结论】基于混合效应的湖南楠木次生林相容性联立方程系统能够提高模型的精度与适用性,更准确地预估该林分的生长与收获,为其经营管理提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号