首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
【目的】基于扫描热显微镜(STh M)对木材细胞壁横切面和径切面进行扫描,研究木材微观尺度的导热特性,以获得木材细胞壁微观组成和构造对导热特性的影响机制。【方法】使用钻石刀对北美红栎试样进行显微切片以获得足够光滑的试样表面,制备符合扫描热显微镜和显微拉曼光谱测试要求的试样。采用扫描热显微镜的热传导对照模式对北美红栎纤维细胞区进行扫描成像。【结果】STh M测试结果表明,STh M探针在横切面对木材细胞壁进行扫描时,细胞壁胞间层和角隅区域的STh M探针电流强度明显低于S2层,即细胞壁胞间层和角隅区域的导热能力显著低于S2层;而在径切面,STh M探针扫描后细胞壁S2层和胞间层及角隅区域的探针电流差异不明显,即S2层、胞间层和角隅区域的导热能力未表现出明显差异。显微拉曼光谱测试结果表明,相比S2层,胞间层和角隅区域拉曼谱图中归属木质素的特征峰强度相对归属纤维素的特征峰明显要强。选用归属木质素的1 520~1 680 cm-1波数范围对细胞壁进行拉曼成像,成像结果显示木质素在细胞壁胞间层和角隅区域含量高。【结论】木材细胞壁S2层、胞间层和角隅区域的导热能力在横切面表现出明显差异,而在径切面差异不明显。木材细胞壁在横切面表现出S2层导热能力强的原因,主要是由细胞壁不同壁层的空间构造特征差别造成的。S2层纤维素含量高,纤维素结构单元微纤丝排列接近平行于细胞轴向,由此在横切面施加热量后热量在S2层顺纹传递,而胞间层和角隅区域木质素含量高,在此两区域化学成分排列呈无序状态,因而表现出S2层导热能力强。当STh M探针从径切面施加给细胞壁热量后,热量在S2层中的传递近似垂直于微纤丝,即热量从横切面的顺纹传递转变为横纹传递,由此造成横切面S2层导热能力强的条件消失,进而在径切面S2层与胞间层和角隅区表现出的导热能力基本一致。STh M技术揭示了木材细胞壁中纤维定向排列结构对细胞壁不同壁层导热性能的影响,该技术可以有效用于研究木材微观导热性能与结构。  相似文献   

2.
农林生物质可再生资源的高值转化利用已成为许多国家的重要发展战略和科学研究的热点。目前农林生物质利用技术已经取得了一定的进步,但总体上其转化成本仍然较高,实现木质纤维大规模生产燃料、生物基化学品和材料仍然困难。木质纤维细胞壁的复杂结构及组分分布不均一性是农林生物质难以高值利用的根本原因,其中细胞壁主要化学组分的微观分布及其在生物质转化过程中的降解机理阐释是木质纤维高效利用研究领域亟须解决的瓶颈问题。笔者系统阐明了农林生物质细胞壁超微结构及其主要组分在细胞壁各形态区的区域化学分布特点,并综述了两者在预处理过程中的变化及预处理破除细胞壁顽抗性的机理,为农林生物质进一步高值转化为燃料、化学品等大规模工业化生产提供重要的理论依据。  相似文献   

3.
2种广东丛生竹炭性能的研究   总被引:1,自引:0,他引:1  
利用广东小叶龙竹和马来甜龙竹2种丛生竹,在砖土窑设备中炭化制取竹炭。测试分析其基本理化性能,进行甲醛、苯等有害物质吸附特性试验,并用扫描电子显微镜分析其微观结构。研究结果表明:(1)2种丛生竹炭的基本理化性能差异不明显,但小叶龙竹炭比表面积是马来巨竹炭的3倍,相差比较大。(2)2种竹炭对甲醛、氨、苯和甲苯都具有吸附功能,但吸附的回归方程不同,吸附效果小叶龙竹炭比马来巨竹炭好。(3)经电子扫描电镜观测2种竹炭的微观结构是有差异的。  相似文献   

4.
刺竹炭和毛藤竹炭的性能研究   总被引:3,自引:0,他引:3  
利用刺竹(Bambusa blumeana Schult.f)和毛藤竹(Dinochloa puberula)2种竹材,在炭化窑中制备竹炭,测定其基本理化性能,进行甲醛、苯等有害物质吸附试验,并用扫描电子显微镜观察其微观结构。结果表明:(1)2种竹炭的基本理化性能有差异,刺竹炭比表面积是毛藤竹炭的2倍多;(2)2种竹炭对甲醛、氨、苯和甲苯均有吸附功能,吸附效果刺竹炭优于毛藤竹炭;(3)从扫描电子显微镜图中可知2种竹炭的微观结构有差异。  相似文献   

5.
研究了不同醇解剂(乙二醇和一缩乙二醇)以及乙二醇用量对再生聚氨酯泡沫(PUF)的影响.结果显示乙二醇比一缩乙二醇有更好的醇解性能,而且随着乙二醇用量的增加,再生PUF的黏度值减小.用木质素磺酸盐(LS)和再生PUF制备网络型PUF材料,并对其微观结构、导热系数和压缩性能进行了表征.结果显示,LS/再生PUF网络型PUF材料导热系数随着再生PUF量的增加呈上升趋势,原因是随着再生PUF量的增加,胞体中薄膜的开孔率提高,降低了材料的保温性能.压缩强度(σ10)在38.4~544kPa之间,扫描电镜(SEM)图显示再生PUF量的增加影响了胞体骨架厚度和胞体结构.  相似文献   

6.
微观力学表征技术的发展及其在木材科学领域中的应用   总被引:1,自引:0,他引:1  
微观力学表征技术是表征材料微纳米力学性能的重要技术手段,目前已被广泛用于表征材料的超微构造和解析材料的力学行为。随着材料科学研究尺度缩小,微观力学表征技术逐步从纳米向超纳米、从分子向超分子甚至粒子水平发展。按照试样信息的不同方式,微观力学表征技术主要包括纳米力学测试技术(探针技术)和超纳米力学测试技术(显微镜技术);其中,纳米力学测试技术包括准静态纳米压痕技术、动态纳米压痕技术和动态模量成像技术,超纳米力学测试技术包括原子力显微镜技术和基于原子力显微镜技术的新型微观力学表征技术。木材是一种多孔状、层次状、各向异性的非均质天然高分子复合材料,其超微结构是细胞壁由不同厚度的层次组成。细胞壁是决定木材和木质纤维材料性能的主要因素,是木材的实质承载结构;细胞壁的力学性能是由壁层结构、化学组成的分布与结合方式决定的。开展木材和改性木材细胞壁纳观尺度的力学性能、分布及影响对实现木基复合材料的高效设计具有重要意义。自Wimmer等首次将纳米压痕技术应用于天然木材细胞壁微观力学后,国内外学者主要采取准静态纳米压痕测量技术和动态纳米压痕测量技术对不同树种木材以及化学改性和生物改性木材细胞壁的硬度、弹性模量、蠕变特性与黏弹性等力学性能进行了研究。木质材料界面作为纳米级厚度的界面相或者界面层,不仅影响木质材料的强度、刚度,而且影响木质材料的断裂韧性等。界面力学是决定木基复合材料整体力学性质的关键,是引起材料变形、强度下降的主要原因。研究界面的属性和特征对于木基复合材料整体属性的评价以及结构的优化设计有一定参考价值,研究内容涉及有胶合界面、纤维增强聚合物界面以及木制品涂层的微观力学。随着研究尺度逐渐缩小,微观力学表征技术趋向高分辨率及数据定量化,如今已能在纳米级分辨率下进行力学信息成像,为木材科学领域的研究提供了方便。微观力学表征技术在木材科学领域中的应用尚具有较大潜力,但仍有较多方向尚未涉及,还应在以下3方面展开研究:一是需要开展微观力学技术在木材科学领域应用的标准化研究,规范测试过程,确保测试结果的可靠性和一致性;二是建立木质材料宏观到微观的完整力学体系,从本质上剖析木质材料的力学行为,在纳米尺度上表征木质材料的性质和失效机制;三是随着木材科学领域研究的深入,需建立微观力学与微观化学、微观物理、微观环境学的联系,丰富木材及木基复合材料在微纳尺度的研究。  相似文献   

7.
随着人类对环境污染和资源危机等问题认识的不断深入,开发利用廉价、可再生、可降解的天然高分子材料日益受到重视。木质素是总量仅次于纤维素的第二大天然高分子材料,是自然界中唯一能提供可再生芳基化合物的非石化资源,木质素及其分子结构研究备受关注。木质素主要由愈创木基(G)、紫丁香基(S)和对羟基苯基(H)3种基本结构单元组成,其存在不仅能够增强植物细胞壁的机械强度,同时也能够防止微生物对细胞壁的侵害,使木质化的植物直立挺拔,不易腐朽。在植物细胞壁中,木质素和半纤维素以共价键形式结合,构成木质素-碳水化合物复合体,其与纤维素微纤丝交联在一起,形成了一个复杂的三维网络结构,这一结构被认为是植物细胞壁天然的抗降解屏障。在生物炼制过程中,木质素在木质纤维原料细胞壁中的分布特点直接影响生物质的转化效率,因此,在原位状态下研究植物细胞壁木质素分子结构、微区分布以及细胞壁水平的溶解规律具有重要意义。在传统湿部化学中,定性或定量研究木质素分子结构普遍采用的是磨木木素和克拉森木素,这2种方法都需要对木质素样品进行物理或化学预处理,不可避免地会改变木质素样品天然状态下的分子结构。尽管传统的光学和电子显微技术能够提供木质素的微区分布信息,但是样品通常需要染色处理,且制样过程繁琐。相比较而言,显微拉曼光谱技术因其无损、快速、高分辨率和高灵敏度等特点在研究大分子结构、区域化学等方面具有得天独厚的优势。本文首先对G、S、H型木质素模型物拉曼光谱特征峰及这些结构单元在生物质原料中的特征峰进行归属,并简要介绍影响木质素拉曼光谱的因素,在此基础上综述该技术在植物细胞壁木质素微区分布和生物质预处理过程中木质素溶解规律等方面的研究进展,最后对该技术在木质素研究领域的发展方向进行展望,以期为植物生理学和生物炼制研究领域,尤其是设计高效的生物质预处理工艺提供新思路和新方法,进而拓宽该技术在生物大分子研究中的应用范围。  相似文献   

8.
以阔叶材橡木为对象,研究热解过程中木材组成结构与微观力学性能的转变特征。分别使用傅里叶红外光谱技术(FTIR)、X射线衍射技术(XRD)和纳米压痕技术(NI)分析热解过程中木材化学组成成分、微纤丝结构和细胞壁微观力学性能的转变。研究结果表明,热解温度达到325℃时木材化学组成与微纤丝结构都发生了显著转变,木材化学成分中的纤维素和半纤维素已基本裂解完毕,木质素结构仍有存在,且已有碳素材料特征峰出现;对应XRD图谱分析,由于纤维素的热解,325℃时细胞壁微纤丝构造引起的衍射峰已经消失。NI研究发现热解温度达到300℃时,橡木纤维细胞壁微观力学性能变化显著,弹性模量从未热解处理的(16.6±1.39)GPa下降至(5.78±0.30)GPa。细胞壁硬度与未热解处理木材的(0.46±0.045)GPa相比,当热解温度为250℃和300℃时,硬度值略有上升,分别为(0.54±0.049)和(0.52±0.024)GPa;同时发现300℃热解后木材细胞壁弹性模量和硬度数值的分散度变小,认为是因细胞壁组成与结构变得均一化所造成。  相似文献   

9.
随着经济的发展和社会的进步,人们对具有长的循环寿命、高的功率密度和绿色廉价的能源设备的需求逐渐增加,基于生物质活性炭的超级电容器近年来备受关注。然而,生物质基活性炭的电化学性能仍然缺少竞争力,此外,对其微观结构的控制也是较大难题。笔者以糠醛渣为原料,KOH为活化剂,在氩气氛围下通过两步炭化的方法制备三维多孔炭材料,并将制备的多孔炭用做超级电容的电极材料。通过SEM、TEM、Raman、XPS、XRD等手段系统分析表征了所获多孔炭材料的形貌、结构、组成,并探讨活化剂的比例对糠醛渣多孔炭结构性能的影响。研究结果表明:当KOH和糠醛渣的质量比为3∶1时,所制备的多孔炭材料比表面积为2 164.3 m~2/g,具有良好的电容性能(当电流密度1 A/g时,比电容为235.6 F/g)、倍率性能和循环稳定性(当循环充放电10 000次后,比电容仍能保留96%以上)。本研究从生物精炼废弃物中制备了性能优异的超级电容器用活性炭,为降低高性能超级电容器成本,实现生物质的高值化应用提供新思路。  相似文献   

10.
为减少地热供暖过程中的能源损耗,提高传热效率,开展木质导热材料的强化导热机理及性能研究。该研究以木质材料为主要原料,碳素材料为导热材料,采用纳米发热技术和人造板制造技术相结合的工艺制备导热木质复合材料,重点研究木质导热材料的工艺优化,强化导热机理及材料导热性能。研究表明:1)当石墨填充量15%、石墨粒径2 500目、偶联剂为钛酸酯时制备的导热材料其各项力学性能指标均达到国标GB/T 11718—2009《中密度纤维板》的要求。2)最优工艺条件下材料的导热系数为0.266 W/(m·K),与普通木质复合材料的导热系数0.045 W/(m·K)相比,增大了约5倍左右。3)相同热流量的条件下,热量传递至普通木质材料表面温度为41.5℃;传递到导热材料温度为47.95℃。因此,导热材料较普通材料的导热性能有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号