首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.  相似文献   

2.
Greenhouse-cultured, container-grown ponderosa pine (Pinus ponderosa var. scopulorum Engelm.), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and Engelmann spruce (Picea engelmannii (Parry) Engelm.) were cold acclimated and deacclimated in growth chambers over 19 weeks. Stem cold hardiness, total new root length at 14 days and days to bud break were measured weekly. Relationships among cold hardiness, root growth potential (RGP) and bud dormancy suggest that cold hardiness, which can be measured quickly, could provide a useful basis for estimating the two other parameters. During cold acclimation, there was a lag period in which stem cold hardiness remained at -15 degrees C and RGP was at a minimum, in all three species. Douglas-fir and Engelmann spruce buds remained fully dormant during this lag period. Ponderosa pine buds had no chilling requirement for the loss of dormancy, and reached quiescence during the lag period. Immediately following the lag period, as stem cold hardiness progressed to -22 degrees C, RGP increased to a high plateau in all three species, and Douglas-fir and Engelmann spruce buds approached quiescence. Cold deacclimation and bud development began immediately on exposure to warm, long days, but RGP remained high until stem cold hardiness returned to approximately -15 degrees C. At bud break, cold hardiness and RGP were at the minimum.  相似文献   

3.
Populus euphratica Olive is the only tree species that can grow in the saline land and also survive cold winters in northwest China, and it plays a very important role in stabilizing the vulnerable ecosystem there. A cell suspension culture was initiated from callus derived from plantlets of Populus euphratica. Cold acclimation was induced (LT50 of-17.5 ℃) in cell suspension at 4-5 ℃ in the dark for 30 days and the freezing tolerance increased from LT50 of-12.5 ℃ in nonacclimated cells to LT50 of-17.5 ℃ in cold-acclimated cells. Microvacuolation, cytoplasmic augmentation and accumulation of starch granules were observed in cells that were cold-acclimated by exposure to low temperatures. Several qualitative and quantitative changes in proteins were noted during cold acclimation. Antibodies to carrot extracellular (apoplastic) 36 kD antifreeze protein did not cross react on immunoelectroblots with extracellular proteins in cell suspension culture medium of Populus euphratica, indicating no common epitopes in the carrot 36 kD antifreeze protein and P euphratica extracellular proteins. The relationship of these changes to cold acclimation in Populus euphratica cell cultures was discussed.  相似文献   

4.
We investigated responses of northern and southern ecotypes of silver birch (Betula pendula Roth) to exogenous abscisic acid (ABA) under controlled environmental conditions to determine the role of ABA in cold acclimation and dormancy development. Abscisic acid was sprayed on the leaves and changes in freezing tolerance, determined by the electrolyte leakage test, and bud dormancy were monitored. Applied ABA induced cold acclimation but had no effect on growth cessation in seedlings grown in long day conditions (LD, 24-h photoperiod at 18 degrees C). It enhanced freezing tolerance and accelerated growth cessation in seedlings grown in short day conditions (SD, 12-h photoperiod at 18 degrees C), and slightly enhanced freezing tolerance in seedlings grown at low temperature (LT, 24-h photoperiod at 4 degrees C) in both ecotypes. There were distinct ecotypic differences in ABA-induced cold acclimation and dormancy development. The northern ecotype was more responsive to applied ABA than the southern ecotype, resulting in more rapid development of freezing tolerance in all treatments, and earlier dormancy development in SD. When plants were grown in a photoperiod just above the critical photoperiod for the ecotype (defined as the longest photoperiod that induces growth cessation), applied ABA caused growth cessation and dormancy development. Compared with ABA-treated seedlings grown in SD, dormancy development was delayed in ABA-treated seedlings exposed to a near-critical photoperiod, but even in this treatment dormancy developed faster in the northern ecotype than in the southern ecotype.  相似文献   

5.
Interspecific hybrids between eastern white pine (Pinus strobus L.) and Himalayan blue pine (P. wallichiana A. B. Jacks.) were developed in Ontario, Canada, to introduce blister rust (Cronartium ribicola Fisch.) resistance genes to P. strobus. There is concern that introducing blister rust resistance has resulted in reduced cold hardiness of the progeny compared with non-hybridized eastern white pine. To test the efficacy of backcrossing with P. strobus to improve cold hardiness, 1-year-old seedlings from hybrid crosses differing in P. strobus genome composition were artificially freeze-tested. In Experiment 1, unhardened seedlings were allowed to acclimate to progressively lower temperatures in a growth room, whereas in Experiment 2, seedlings were hardened outdoors under natural weather conditions in Sault Ste Marie, Ontario. Needle cold injury was determined by calculating relative electrical conductivity based on post-freezing electrolyte leakage. Results indicated that needle fascicles from unhardened seedlings of all genotypes in the greenhouse tolerated -5 degrees C for 3 hours with little or no injury. Cold hardiness increased in parallel with declining growth room minimum temperature over the 7-week period of hardening. Cold hardiness was improved for hybrid crosses with increased Pinus strobus genome composition in Experiment 2, but the results were less conclusive in Experiment 1.  相似文献   

6.
In order to understand the content changes of endogenous hormones in lateral buds of Populus yunnanensis during different seasons, the lateral buds collected from stems of three-year old cuttings of P. yunnanensis were used as materials, contents of ABA, IAA and ZR in the lateral buds in the autumn, winter and spring were detected by enzyme-linked immunosorbent assays (ELISA). The results indicated that the contents of ABA and IAA were first decreased and then increased while the contents of ZR increased gradually, and the values of the three kinds of endogenous hormones reached maximum in spring. The content of each endogenous hormone among different seasons was different significantly. However, the ratio changes of ZR/ABA, ZR/IAA and ZR/(ABA+IAA) were first increased and then decreased, and all reached the maximum in winter, which were significantly higher than that in autumn and srping.  相似文献   

7.
Container-grown seedlings of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton) in their first year of growth were overwintered outdoors. Tolerance of roots and stems to freezing was compared from late summer to the following spring. Mitotic activity in the apical bud was related more closely to air temperature than to bud dormancy as defined by days to bud break. In all species, stem hardening was observed before days to bud break reached a maximum. Dormancy release (days to bud break equal to zero) of yellow birch coincided with loss of stem hardening in the spring. Roots hardened more slowly, had a lower frost tolerance than stems in fall and winter, and dehardened earlier than stems in the spring. There were differences in stem and root hardiness among the species, with yellow birch being the most tolerant, followed by sugar maple and red oak. Primarily because of root sensitivity to frost, winter was a critical period for all three species, but particularly for red oak.  相似文献   

8.
Larch (Larix decidua Mill.) seedlings of a low altitude (600 m) Austrian provenance were raised outdoors and acclimated in chambers for 14 to 24 days during August and September at either 8 degrees C and an atmospheric saturation vapor pressure deficit (DeltaW) of 2.5 Pa kPa(-1), or 24 degrees C and a DeltaW of 6.2 Pa kPa(-1). Subsequently, their rates of photosynthesis, dark respiration and transpiration were measured at temperatures between 5 and 30 degrees C with DeltaW either maintained below 10 Pa kPa(-1) or allowed to increase with temperature up to 38 Pa kPa(-1). Below 15 degrees C the photosynthetic rate of cold-acclimated plants was higher, but above 15 degrees C it was lower, than that of warm-acclimated plants. Temperature acclimation caused a greater shift in the temperature optimum for photosynthesis when DeltaW was kept small than when it was allowed to increase with temperature. When DeltaW was kept small, leaf conductance of cold-acclimated plants, unlike that of warm-acclimated plants, did not increase with temperature above 15 degrees C. When DeltaW increased with temperature, leaf conductance of cold-acclimated plants decreased more rapidly with temperature than that of warm-acclimated plants. Low temperature acclimation increased the rate of photosynthesis below 15 degrees C without affecting leaf conductance, which indicates that there was an adaptation in leaf internal processes. Further evidence of a metabolic adaptation to acclimation temperature is that dark respiration of cold-acclimated plants was twice that of warm-acclimated plants at all temperatures.  相似文献   

9.
Annual cycles of change in bud morphology, bud burst ability, abscisic acid (ABA) concentration, and starch and water content were studied in mid-crown terminal buds of short shoots and underground basal buds of Betula pubescens Ehrh. In particular, we investigated the roles of ABA and bud water content in the regulation of bud growth. Basal buds differed morphologically from terminal buds of short shoots in that their leaf initials did not develop into embryonic foliage leaves and their total size did not increase significantly during summer. Bud burst ability, measured by forcing detached short shoots and stumps under controlled conditions, was maintained in the basal buds throughout the year, whereas the terminal buds of short shoots remained dormant until October, thereafter their bud burst ability increased gradually and reached a maximum in March-April. The ABA concentration of the basal buds was relatively constant throughout the sampling period (1-3 micro g g(DW) (-1)), whereas that of the terminal buds of short shoots, which was much higher (5-10 micro g g(DW) (-1)), showed a distinct seasonal cycle with a maximum from August to November. Bud ABA concentration decreased during the first 10 days of forcing, especially in basal buds. In both bud types, the amount of starch increased toward the autumn, declined in November, and was negligible in the terminal buds of short shoots between January and March, but in April, the amount was high again in both bud types. Water content varied characteristically in both bud types, although more distinctly in the terminal buds of short shoots, with an increase in spring before bud burst and a decrease during the summer until September. The significant morphological and physiological differences between the mid-crown terminal buds of short shoots and the underground basal buds may partly explain the characteristic growth habit of the basal buds and their development into coppice shoots after cutting the tree. The results also indicate a role for ABA in maintaining dormancy of the terminal buds of short shoots and emphasize the relationship between tissue water status and ABA concentration.  相似文献   

10.
It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation in an extremely winter hardy tree species under natural conditions, lending support to the hypothesis that FA-regulated PM H+-ATPase activity is involved in the cellular response underlying cold acclimation and de-acclimation.  相似文献   

11.
Patterns of water relations, xylem sap abscisic acid (ABA) concentration ([ABA]) and stomatal aperture were compared in drought-sensitive black walnut (Juglans nigra L.) and black willow (Salix nigra Marsh.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.). Strong correlations among reduction in predawn water potential, increase in xylem sap [ABA] and stomatal closure were observed in all species. Stomatal response was more highly correlated with xylem [ABA] than with ABA flux. Xylem sap pH and ion concentrations appeared not to play a major role in the stomatal response of these species. Stomata were more sensitive to relative changes in [ABA] in drought-sensitive black walnut and black willow than in sugar maple and white oak. In the early stages of drought, increased [ABA] in the xylem sap of black walnut and black willow was probably of root origin and provided a signal to the shoot of the water status of the roots. In sugar maple and white oak, leaf water potential declined with the onset of stomatal closure, so that stomatal closure also may have occurred in response to the change in leaf water potential.  相似文献   

12.
采用酶联免疫吸附法(EL ISA)和细胞石蜡切片法,研究光皮桦离体培养形态建成过程中芽原基、根原基形成、发育的特点以及光皮桦离体培养形态建成过程中5种内源激素含量的变化规律,阐明光皮桦离体培养过程中芽原基、根原基形成、发育的过程、特点以及内源激素的变化对离体培养形态建成过程中所起的调控作用,为建立高效的光皮桦离体培养体系提供科学依据.结果表明:在光皮桦离体培养形态建成过程中,芽原基起源于皮层的薄壁细胞,根原基起源于韧皮部内;在芽和根的形态建成过程中,外源激素的添加使光皮桦某些内源激素发生了变化,从而对芽和根的形态建成起调控作用;内源激素ZR、ABA、IAA,iPA的增加对芽的形成、发育起到促进作用;内源激素IAA、ABA,iPA的增加对根的形成、发育起到促进作用.  相似文献   

13.
We used photosynthetic light response curves to measure and model the responses of two provenances of 3-year-old black spruce (Picea mariana (Mill.) BSP) seedlings to severe artificial frost treatments applied at 2-week intervals during cold acclimation. Black spruce seedlings responded to cold acclimation with long-term suppression of photosynthetic capacity (Amax) and apparent quantum-use efficiency (alpha'). Short-term reductions in both photosynthetic parameters following frost treatments were dependent on the extent of cold acclimation of the seedlings and the severity of the frost treatments. Large reductions in Amax in response to the frost treatments were observed in seedlings that had undergone little cold acclimation and these reductions were associated with an irreversible reduction in alpha'. Such seedlings recovered only partially during the subsequent 23 days, whereas seedlings in most other treatments showed complete recovery of Amax after 13 days. The impact of frost treatments on Amax and alpha' did not vary with seedling provenance. We propose an algorithm that predicts the combined effects of cold acclimation and severe freezing temperatures on the extent of the suppression of A(max) during autumn. The algorithm is based on (1) the maximum Amax observed during the growing season, (2) the accumulation of cold degree-days, based on a minimum nocturnal temperature < 5 degrees C, and (3) the severity of freezing temperatures during autumn. The parameters developed in the algorithm showed that cold acclimation of black spruce seedlings had a greater impact on the reduction of Amax in autumn than did the severe frost treatments. Mean Amax of seedlings subjected to artificial frosts showed a strong correlation with values predicted by the algorithm (r2 = 0.91).  相似文献   

14.
落叶松幼苗顶芽萌发过程中内源激素含量的变化   总被引:2,自引:0,他引:2  
白冰  于涛 《林业科技》2005,30(4):8-10
对落叶松幼苗项芽萌发过程中内源激素含量变化的研究结果表明:吲哚乙酸(IAA)、赤霉酸(GA3)、脱落酸(ABA)、玉米素核苷(ZR)在项芽或新梢中含量较高,而新梢形成期幼苗根中IAA、GA3及ZR含量均显著高于其它时期的幼苗,而其ABA含量则与其它时期幼苗无显著差别;项芽将萌发期幼苗叶片中的IAA、GA1及ZR含量高于其它幼苗。  相似文献   

15.
Dehydrins are proteins associated with conditions affecting the water status of plant cells, such as drought, salinity, freezing and seed maturation. Although the function of dehydrins remains unknown, it is hypothesized that they stabilize membranes and macromolecules during cellular dehydration. Red-osier dogwood (Cornus sericea L.), an extremely freeze-tolerant woody plant, accumulates dehydrin-like proteins during cold acclimation and the presence of these proteins is correlated with increased freeze tolerance (Karlson 2001, Sarnighausen et al. 2002, Karlson et al. 2003). Our objective was to determine the location of dehydrins in cold-acclimated C. sericea stems in an effort to provide insight into their potential role in the freeze tolerance of this extremely cold hardy species. Abundant labeling was observed in the nucleus and cytoplasm of cold-acclimated C. sericea stem cells. In addition, labeling was observed in association with plasmodesmata of cold-acclimated vascular cambium cells. The unique association of dehydrin-like proteins with plasmodesmata has not been reported previously.  相似文献   

16.
Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.  相似文献   

17.
We studied the influence of temperature and near- and sub- optimal mineral nutrition of black spruce seedlings (Picea mariana [Mill.] B.S.P.) during their second growing period on bud set, bud development, growth, mineral content and cold tolerance. Bud break and growth after bud break were also studied. Seedlings were grown for 106 d in growth chambers under three temperature regimes in combination with three concentrations of a fertilizer. They were then cold hardened for 56 d and dehardened for 66 d.Under these near- and sub-optimal N levels, bud formation occurred during the growing season. Bud formation was accelerated with decreasing fertilization, but was not affected by temperature treatments. Needles from seedlings with 0.64% N (dry mass basis) before hardening did not harden. Those with 0.87% N showed a lesser degree of hardiness than those with 1.28% N. Stem diameter increased at the beginning of the hardening period. During this acclimation period, shoot dry mass decreased with time at a constant rate and at the same rate over time for all treatments whereas root dry mass was more variable. Total number of needle primordia was low and no difference was observed among growing conditions. Bud break was similar in all treatments. Following bud break, shoot height and stem diameter increases were small but their magnitude varied with the nutritional regimes applied during the previous growing period. During hardening, nitrogen concentration of shoot tissues first increased and then decreased; phosphorus concentration first increased and then remained stable; potassium concentration remained stable. Concentration of these three elements generally decreased in the roots during this hardening.  相似文献   

18.
核桃幼树内源激素与生长势的关系   总被引:5,自引:0,他引:5  
激素在果树生长发育过程中起着重要调控作用,基因通过激素控制植株高矮(曾骧,1992).对苹果(Maluspumila)、李(Prunus salicina)、桃(Prunus persica)等果树内源激素与生长势的关系已有一些报道(王丽琴等,2002;周怀军等,2002;孙艳香等,2001),但在核桃上有关研究尚少.本试验以核桃(Juglans regia)不同品种的嫁接植株及实生苗为试材,探讨内源激素与树体生长势的关系,为选择核桃矮化砧木提供理论依据.  相似文献   

19.
Previously, we showed that an apparent cell wall-plasma membrane interaction in xylem ray parenchyma differed between cold acclimated and non-acclimated red-osier dogwood (Cornus sericea L.) (Ristic and Ashworth 1994). For the present study, a calcium chloride extraction method was used to identify cell-wall-associated xylem proteins that accumulated during periods of cold acclimation. A 24-kDa protein represented the predominant protein in both total protein and CaCl2 extracts during cold acclimation of field-grown plants. Two-dimensional gel electrophoresis separated the 24-kDa protein into four basic isoforms. The most abundant and basic isoform had a high glycine content. In-gel digestion of this basic 24-kDa isoform generated three partial peptide fragments, of which one exhibited homology to the dehydrin protein family. An anti-dehydrin polyclonal antibody cross-reacted with the 24-kDa protein, providing further evidence that this protein is related to dehydrins. The 24-kDa protein began to accumulate in late August, reached a maximum in midwinter, declined during the spring months and was absent in early summer.  相似文献   

20.
We hypothesized that photoinhibition of shade-developed leaves of deciduous hardwood saplings would limit their ability to acclimate photosynthetically to increased irradiance, and we predicted that shade-tolerant sugar maple (Acer saccharum Marsh.) would be more susceptible to photoinhibition than intermediately shade-tolerant red oak (Quercus rubra L.). After four weeks in a canopy gap, photosynthetic rates of shade-developed leaves of both species had increased in response to the increase in irradiance, although final acclimation was more complete in red oak. However, photoinhibition occurred in both species, as indicated by short-term reductions in maximum rates of net photosynthesis and the quantum yield of oxygen evolution, and longer-term reductions in the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (dark-adapted F(v)/F(m)) and the quantum yield of PSII in the light (phi(PSII)). The magnitude and duration of this decrease were greater in sugar maple than in red oak, suggesting greater susceptibility to photoinhibition in sugar maple. Photoinhibition may have resulted from photodamage, but it may also have involved sustained rates of photoprotective energy dissipation (especially in red oak). Photosynthetic acclimation also appeared to be linked to an ability to increase leaf nitrogen content. Limited photosynthetic acclimation in shade-developed sugar maple leaves may reflect a trade-off between shade-tolerance and rapid acclimation to a canopy gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号