首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
用锥形量热法研究了膨胀型阻燃剂对低密度聚乙烯燃烧和发烟性能的影响.结果表明:当膨胀型阻燃剂引入低密度聚乙烯时,热释放速率峰值从466kW·m^-2下降为244kW·m^-2,总热释放量从91.05MJ·m^-2降低为77.09MJ·m^-2;在整个燃烧过程中,质量损失速率明显降低,残重显著增加.有效燃烧热分析结果表明:膨胀型阻燃剂对低密度聚乙烯的阻燃作用主要是凝聚相阻燃机理;膨胀型阻燃低密度聚乙烯与未阻燃低密度聚乙烯相比,烟释放速度峰值相当,但前者的总烟释放量大;在低密度聚乙烯中引入膨胀型阻燃剂燃烧时尾气中CO浓度增大,CO2浓度降低.CONE研究结果表明:膨胀型阻燃剂对低密度聚乙烯具有显著的阻燃作用,但在阻燃的同时使其发烟量和CO量增大.  相似文献   

2.
制板因素对FRW阻燃中密度纤维板性能的影响   总被引:1,自引:0,他引:1  
制板因素对阻燃中密度纤维板(MDF)各项性能的影响至关重要.根据前期试验,选取阻燃剂施加量和热压温度两个主要的制板影响因素,分别探讨了该因素对FRW阻燃中密度纤维板物理力学性能和阻燃性能的影响.研究结果表明:阻燃剂施加量对FRW阻燃中密度纤维板的物理力学性能影响较小,并且所有物理力学性能指标均达到并超过了中密度纤维板国家标准GB/T11718-1999的要求;而阻燃剂施加量对FRW阻燃中密度纤维板的阻燃性能影响较大,氧指数与阻燃剂施加量之间具有显著的相关性.热压温度除对FRW阻燃中密度纤维板的几个指标略有影响外,对其他的物理力学性能指标和氧指数几乎无影响.  相似文献   

3.
微胶囊红磷在木塑复合材料中的阻燃研究   总被引:1,自引:0,他引:1  
以红磷为囊心,氢氧化镁为囊材,通过沉淀法制备氢氧化镁包覆红磷。采用XPS、SEM、TEM、TGA等对其进行表征。经测定,当微胶囊红磷中氢氧化镁含量为30%时,包覆率达到85.5%。同时考察了微胶囊红磷对木塑复合材料阻燃性能的影响。当微胶囊红磷的添加量为8%时,木塑复合材料的垂直燃烧性能达到UL94Ⅴ-0级,其氧指数(LOI)从23提高至28,这表明氢氧化镁与红磷发挥了很好的阻燃作用,并具有明显的协同效应。  相似文献   

4.
在纤维中添加非卤膨胀型阻燃剂,采用正交试验法压制阻燃中密度纤维板,并测定其物理、力学性能及阻燃性能;通过分析,得出了板厚12mm、密度0.85g/cm~3、脲醛树脂施加量10%的新型阻燃中密度纤维板的最佳热压工艺参数为:热压温度165℃、热压时间10min、板坯含水率13%、阻燃剂添加量7%。  相似文献   

5.
以苯酚(4.26 mol)、多聚甲醛(7.28 mol)、甲醛(1.24 mol)为原料,NaOH为催化剂,采用逐步共缩聚的合成工艺,制备高固含量甲阶酚醛树脂,选择3种环保型无卤阻燃剂(APP、MP、LM-NPP 8081)复合酚醛树脂制备酚醛泡沫,通过测试泡沫力学性能、阻燃性能、易碎性、耐热性能和导热性能等,研究阻燃剂的种类及添加量对酚醛泡沫性能影响.结果表明:3种阻燃剂都能明显提高泡沫的阻燃性,对泡沫的耐热性能和导热系数的影响不是很显著.当阻燃剂添加量为8%时,阻燃剂复合的酚醛泡沫的机械性能较优,并且MP复合酚醛泡沫的综合性能较好,此时MP复合泡沫的氧指数为55.22%,压缩强度为0.30 MPa,弯曲强度为0.28 MPa,掉渣率为34.40%,导热系数为0.045 W/(m·K),300℃残炭量87.50%,600℃残炭量61.12%.结果表明3种阻燃剂中MP是一种较适合酚醛泡沫体系的阻燃剂.  相似文献   

6.
磷氮系膨胀型阻燃剂阻燃性能的热重分析   总被引:3,自引:0,他引:3  
膨胀型阻燃体系因其高效低毒的特性而受到广泛的关注.研究了以二氨基双酚A、三氯氧磷和三聚氰胺为原料合成磷酰胺类磷氮系膨胀型阻燃剂的反应条件,并用热重分析和灼烧实验方法初步研究了它对杨木粉的阻燃特性.结果表明:用乙醚作分散介质,二氨基双酚A、三氯氧磷、三聚氰胺的摩尔比为1:3:8,回流时间5 h的条件下,磷氮系膨胀型阻燃剂的得率较高、产品质量好;热重分析表明,杨木粉经磷氮系膨胀型阻燃剂处理后,炭化阶段的峰温有所下降,活化能减小,速率常数变大,残余炭量由22.5%增加到36.3%,增加比例达到61.3%;灼烧实验表明,低于230 ℃时,经磷氮系膨胀型阻燃剂处理的杨木粉的灼烧失重大于对照样品,而在高于230 ℃以后,阻燃处理杨木粉的灼烧残余质量大于对照样品;经阻燃处理后350 ℃残余量由24.9%增加到38.4%,比对照样增加54.2%;600 ℃残余量由7.3%增加到22.3%,比对照样增加205%;灼烧残渣为黑色泡沫炭层,具有金属光泽.因此,该阻燃剂在受热时能有效地促使木材形成更多的木炭,并形成石墨样光泽的泡沫炭层.  相似文献   

7.
探讨了对刨花进行阻燃处理时,反应型阻燃剂的含量,施胶量及热压工艺等因素对阻燃刨花板的物理力学性能与阻燃性能的影响,提出了较好的工艺参数。  相似文献   

8.
采用杉木和泡桐为试材,对经过KY-FW阻燃剂处理的木材与未经处理的木材进行对比研究,分析KY-FW阻燃剂对木材力学性能的影响.结果表明,木材经KY-FW阻燃剂处理后,除冲击韧性降低外,其它主要力学性能指标(如抗弯强度、顺纹抗压强度及硬度)都有所提高.KY-FW阻燃木材的力学性能达到了一级水基型阻燃剂标准规定的相应指标.  相似文献   

9.
分析探讨了无机阻燃剂处理中密度纤维板的机理、应用工艺、产品性能。研究结果表明,该阻燃剂对中纤板阻燃效果高,有关指标达到了国家相关标准,但该阻燃剂对板子物理力学性能,特别是吸水厚度膨胀性能的影响较大。  相似文献   

10.
采用三聚氰胺聚磷酸盐(MPP)和二乙基次膦酸铝(ADP)为阻燃剂,通过无纺气流铺装和热压工艺制备阻燃竹纤维增强聚丙烯复合材料,探讨了阻燃剂MPP和ADP的配比对复合材料力学和阻燃性能的影响。结果表明:复合材料的拉伸强度和静曲强度随着阻燃剂的添加而明显下降,这是由于2种阻燃剂与基体材料之间界面相容性较差所致;单独添加阻燃剂时,弹性模量有所增加,而2种阻燃剂同时添加时,弹性模量有所下降。MPP与ADP复配使用比单独添加具有更好的阻燃效果。当MPP与ADP的质量比为2∶1时,复合材料的阻燃性能较优,其极限氧指数(LOI)达到31.2%,比无阻燃剂复合材料提高了65.1%,比单独添加MPP和ADP分别提高了17.7%和12.2%;其产生的炭层能够起到隔绝热量和氧气,同时阻止火焰传递,阻止可燃性气体挥发的作用,从而保护下方基材;其最大热释放速率和总热释放量分别为197 kW/m~2和52.1 MJ/m~2,分别比无阻燃剂复合材料降低了22.1%和21.9%;燃烧后的复合材料会产生大量残炭,其残炭率相比无阻燃剂复合材料提高了170.5%,有效地提升了复合材料的阻燃性能。  相似文献   

11.
研究了木塑复合材料阻燃改性中的3个重要因素,即木塑比例、阻燃剂种类和阻燃剂的添加量对其性能的影响。结果表明:木塑比例对材料的综合性能影响最大,木粉与塑料的比例提高时,材料的耐水性能提高,而材料的阻燃性能降低,静曲强度降低;在不同种类的阻燃剂对材料的阻燃性能改性实验中,复合磷氮类阻燃剂效果最佳;阻燃剂的添加实验表明,随着阻燃剂添加的量增加,材料的阻燃性能提高,内结合强度加大,而耐水性能降低。  相似文献   

12.
环氧桐油酸甘油单酯(EGTO)与三(2-羟乙基)异氰尿酸酯(THEIC)发生开环反应合成含氮杂环桐油基多元醇(PTOT),并以PTOT部分取代苯酐聚酯多元醇(PAPP)制备含氮杂环桐油基硬质聚氨酯沫塑料。采用FT-IR、~1H NMR、TG和万能试验机等测试手段对产物的结构和性能进行表征。研究结果表明:通过开环反应可以制备得到羟值为378.42 mg/g,黏度(25℃)为1.84 Pa·s,酸值低于0.8 mg/g,水分低于0.1%的PTOT。随着PTOT替代量的增加,泡沫的极限氧指数(LOI)增大,由19.7%上升至23.0%;而压缩强度和热稳定性呈现下降趋势,由0.85 MPa降至0.59 MPa,初始热分解温度由276.0℃降至273.5℃。添加适量的纤维素能够增强硬质聚氨酯泡沫塑料的压缩性能而保持其阻燃性能和热稳定性不降低。  相似文献   

13.
阐述火焰的概念,从火焰高度与长度、火焰颜色与温度、火焰热辐射与结构、火焰传播与火焰淬熄等方面对火焰特征进行综述。可利用火焰燃烧频率判断森林火灾是否发生,利用森林可燃物燃烧的火焰颜色进行火焰区域分割、提取并进行识别。影响森林燃烧火焰的主要因素是森林可燃物,其结构与组成等特征直接决定了燃烧蔓延及火焰特征。未来将聚焦森林燃烧火焰结构识别与特征提取。森林抚育能调整林分密度,优化林分结构,调控可燃物,提高森林抵御火灾能力。  相似文献   

14.
为提高增塑剂的阻燃性能,以可再生资源蓖麻油合成了一种蓖麻油基含硅阻燃增塑剂(Si-ECO),并将其应用到聚氯乙烯(PVC)中。首先将蓖麻油与三甲基氯硅烷反应得到中间体(Si-CO),再与双氧水、甲酸等进行环氧化得到最终产品。采用傅里叶红外光谱(FT-IR)和核磁共振氢谱(~1H NMR)对分子结构进行表征。将该蓖麻油基含硅增塑剂与PVC以及其他助剂进行共混注塑,得到不同含量Si-ECO的PVC树脂。以动态机械分析(DMA)、热重(TG)以及极限氧指数(LOI)等方法测试共混树脂的热力学性能和阻燃性能;以万能力学试验机表征力学性能。试验结果表明:随着Si-ECO阻燃增塑剂含量的增加,其热稳定性有所提高,同时残炭量也增加到4.72%;通过DMA分析可知,该蓖麻油基增塑剂Si-ECO与PVC具有良好的相容性,且能有效提高树脂的阻燃性能,体系的LOI从25.0增加到30.7,热释放速率(HRR)和总释放热(THR)分别为263.14 k W/m^2和29.5 MJ。以蓖麻油为基础合成具有阻燃功能的增塑剂具有广阔的发展前景。  相似文献   

15.
徐伟华 《林产工业》2022,59(2):13-16,27
以桉木粉、低密度聚乙烯(LDPE)和马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)为主要原料,采用熔融共混法制备木塑复合材料(WPC),并以γ-氨丙基三乙氧基硅烷改性纳米二氧化硅(Nano-SiO2)与有机磷阻燃剂(D-bp)为复配阻燃剂对其进行阻燃改性。通过锥形量热、热重分析(TGA)对WPC的阻燃性能、热性能进行分析。结果表明:当改性NanoSiO2与D-bp添加量分别为3%和7.5%时,协同阻燃WPC具有优异的综合性能,峰值热释放速率、总热释放量、峰值质量损失速率和峰值比消光面积分别为358.3 kW/m2、103.4 MJ/m2、0.123 g/s和693 m2/s,与未阻燃改性WPC相比分别降低25.7%、21.8%、51.6%和85.5%;失重5%的热分解温度和残炭率为276.2℃和17.9%,分别提高119℃和5.3%;拉伸强度也提高了61.8%。  相似文献   

16.
竹材阻燃处理除了利用阻燃剂处理外,还可以对其进行化学改性、纳米改性、炭化、机械添加、表面涂覆等处理。阻燃处理会对竹材物理力学性能、吸湿性及吸水性、胶合强度、涂饰性、阻燃剂成分的流失性等产生重要影响。文章综述了国内外竹材阻燃处理技术,分析了阻燃处理对竹材性能的影响,以期为推动竹质材料的安全、广泛应用提供参考及借鉴。  相似文献   

17.
胶原-单宁树脂对水体中Pb(Ⅱ)的吸附特性研究   总被引:1,自引:1,他引:0  
牛皮经胃蛋白酶水解后提取胶原,通过胶原-黑荆树单宁-醛反应制备了胶原-单宁树脂(C-TR)吸附材料,并系统研究了其对水体中Pb(Ⅱ)的吸附特性。结果表明,C-TR对Pb(Ⅱ)有较强的吸附能力。当温度为303 K、pH值为4.5、Pb(Ⅱ)溶液(100 mL)的初始浓度为1.0 mmol/L时,C-TR(100 mg)对Pb(Ⅱ)的吸附容量达到0.34 mmol/g。pH值对吸附容量的影响较大,最佳吸附pH值为4.5。C-TR对Pb(Ⅱ)的吸附平衡符合Freundlich方程,温度对吸附平衡影响不大。吸附动力学可用拟二级速率方程来描述。固定床吸附表明,当1.0 mmol/L的Pb(Ⅱ)溶液以30 mL/h的流速流过床层时,流出液的体积约为60 mL时达到穿透点。  相似文献   

18.
阻燃处理米槠热分解的热动力学分析   总被引:1,自引:0,他引:1  
将硼酸、硼砂混和制成均匀的阻燃剂,并以脲醛预缩液为载体,用于处理试材,并采用TG和DTA方法来分析经处理与未经处理的米槠热解时的热动力学特性,结果表明该阻燃体系能使米槠的热解温度降低,平均热解失重率降低、失重过程变缓,产炭量增加、在炭化阶段的失重变小。  相似文献   

19.
通过利用各元素之间的协效作用,在二氧化硅表面与氮、磷、硫元素发生接枝共聚制备成氮-磷-硫/二氧化硅(N-P-S/SiO2)复合阻燃剂,用来对竹基板材进行改性处理,研究其对板材的阻燃性能。结果显示,经N-P-S/SiO2复合阻燃剂处理的竹板材载药能力及阻燃性能均优于浸渍N-P-S处理的样品,随着时间的增加竹板材的载药量呈现出先上升后趋于稳定的变化趋势;TG/DTG结果显示,经N-P-S/SiO2复合阻燃剂处理的样品有较高的残炭量(32.1%)及热稳定性。  相似文献   

20.
以聚乙烯亚胺(PEI)为改性剂处理聚磷酸铵(APP)制备得到APP@PEI阻燃体系,并将其加入到脲醛树脂(UF)中,制备阻燃胶合板。研究了APP@PEI对UF胶黏剂理化性能的影响,并进一步探讨其对胶合性能及阻燃性能的影响。结果表明:APP、PEI和APP@PEI对UF的黏度、pH和固化时间均有影响。当APP添加量为10%时,UF的黏度由3.843 Pa·s上升至8.270 Pa·s,pH降至5.67,固化时间由91 s降至87 s;当PEI添加量为0.91%时,由于UF体系中支化和交联程度增加,黏度上升至41.433 Pa·s,pH和固化时间分别提升至9.91和116.3 s;而APP@PEI能降低对UF各项性能的影响,添加10%APP@PEI时UF的黏度、pH和固化时间分别为5.966 Pa·s、6.33和94.3 s。添加APP后,胶合板的胶合强度均低于Ⅱ类胶合板强度标准(0.7 MPa);添加PEI后,胶合板的胶合强度能够提升18%以上;APP@PEI添加量为10%时,胶合板的胶合强度达0.85 MPa,高于Ⅱ类胶合板强度标准要求。添加APP、PEI和APP@PEI对胶合板的阻燃性能有不同影响,单独添加PEI无法改善胶合板的阻燃性能,当APP和APP@PEI添加量为10%,15%和20%时,胶合板的极限氧指数(LOI)分别比未添加阻燃剂时提高0.8%,2.0%,2.5%和1.2%,2.2%,3.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号