首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
森林土壤化学性质与土壤酶活性典型相关分析   总被引:3,自引:0,他引:3  
高祥斌 《林业科技》2007,32(1):11-13
通过对岷江上游连香树、马尾松、桦树、云杉4类森林土壤土壤酶活性和土壤化学性质的研究,运用典范相关分析,证实过氧化氢酶与土壤有机碳的转化关系密切,土壤脲酶与土壤全N关系密切.  相似文献   

2.
了解与掌握森林养分循环的规律,对于制定森林经营和森林土壤管理措施均有重要意义。现参考有关资料文献、综述土壤中的N 素来源及其循环,森林的凋落物、根系枯落物和降水降尘等与森林养分循环的关系,并相应地谈谈有关营林问题。一、土壤中的 N 素来源及其循环N 素是生物的重要养分元素,是组成蛋白质的主要成分。在森林土壤中的 NH_4~+态  相似文献   

3.
以湘西北女儿寨小流域为研究对象,运用典范相关分析法研究退化侵蚀地植被恢复区土壤养分、微生物及酶活性之间的相互关系.结果表明:土壤养分综合因子中起主要作用的为N与P,土壤微生物综合因子中起主要作用的为细菌数量、微生物生物量C、微生物生物量N,土壤酶活性综合因子中起主要作用的为脲酶、多酚氧化酶、磷酸酶和转化酶;脲酶和多酚氧化酶的活性与土壤N,P的转化有关,而N,P的转化与微生物生物量C、微生物生物量N的累积有关;脲酶、多酚氧化酶及磷酸酶的活性对微生物生物量C积累有一定的促进作用,转化酶的活性对微生物生物量N积累有一定的抑制作用,脲酶活性有利于提高土壤N素含量,降低土壤P素水平,多酚氧化酶活性与土壤N素负相关;不同植被恢复群落不同土壤层次的养分、微生物及酶活性在各对典范变量上的聚集趋势可为植被恢复过程中的土壤健康诊断与立地类型划分提供一定的依据.  相似文献   

4.
通过对岷江上游4种(连香树、马尾松、桦树、云杉)森林土壤土壤酶活性和土壤化学性质的研究,运用典范相关分析了土壤酶活性和土壤化学性质这两组典型变量之间的关系。结果表明:过氧化氢酶与土壤有机碳的转化关系密切,土壤脲酶与土壤全N关系密切,为维护地力提高森林生产力提供了有关土壤生物化学活性方面的科学依据。  相似文献   

5.
指出了土壤中汞、砷的环境效应是一个重要的问题。系统地总结了土壤中重金属汞、砷的环境效应,整理了土壤中的重金属元素汞和砷主要的来源,并分析了影响土壤中汞、砷浓度及形态的主要因素。结果表明:总体上,土壤中的重金属汞、砷会通过迁移转化在生物体内富集,一方面会影响土壤中微生物新陈代谢和群落结构,另一方面,还会影响植物的生长和发育等。工农业活动、交通、燃煤和生活垃圾排放等人为活动是土壤中汞、砷的主要污染来源。土壤中汞、砷形态和迁移转化受到土壤理化性质如pH值、有机质含量、阳离子交换量、粘粒等及生物作用的显著影响。其环境效应与人类的生产生活密切相关,且来源广泛、影响因素多,仍需要持续重点地关注和研究。  相似文献   

6.
选择章古台地区三块典型樟子松(Pinussylvestrisvar.mongolica)人工固沙林为研究对象,采用实验室好氧培养法测定了不同土壤层次和在不同水分条件下的N矿化过程。结果表明:土壤0-60cm层N净矿化速率垂直变化范围为1.06–7.52mg·kg-1·month-1;土壤层次和含水量及其交互作用对土壤N净矿化速率的影响均达到差异显著(P<0.05);净矿化速率随着土壤层次的加深而明显下降,0-15cm层占总净矿化量的60.52%;半饱和与饱和含水量处理差异不显著,但均高于不加水处理。为此,在半干旱地区必须进一步加强开展调控生态系统N矿化、循环及其收支平衡影响因素的研究。图1表4参20。  相似文献   

7.
选择章古台地区三块典型樟子松(Pinus sylvestris var. Mongolica)人工固沙林为研究对象,采用实验室好氧培养法测定了不同土壤层次和在不同水分条件下的N矿化过程.结果表明:土壤0-60 cm 层N净矿化速率垂直变化范围为1.06-7.52 mg·kg-1·month-1;土壤层次和含水量及其交互作用对土壤N净矿化速率的影响均达到差异显著(P<0.05);净矿化速率随着土壤层次的加深而明显下降,0-15 cm层占总净矿化量的60.52%;半饱和与饱和含水量处理差异不显著,但均高于不加水处理.为此,在半干旱地区必须进一步加强开展调控生态系统N矿化、循环及其收支平衡影响因素的研究.  相似文献   

8.
4个尾巨桉幼林林地土壤生态化学计量特征   总被引:2,自引:0,他引:2  
以4个尾巨桉幼林林地土壤为研究对象,对土壤有机C、全N、全P、全K含量及其化学计量特征进行了研究。结果表明:土壤养分随着土层的加深而降低,土壤有机C和全N降幅较大,全P和全K降幅较小。4个林地土壤C/N比变化范围为7.95-21.78,平均值为12.36;土壤C/P比变化范围为23.85-57.52,平均值为40.85;土壤C/K比变化范围为3.61-13.09,平均值为9.05;土壤N/P比变化范围为1.24-7.36,平均值为4.30;土壤N/K比变化范围为0.18-2.37,平均值为1.05;土壤N/P比变化范围为0.16-0.35,平均值为0.25;土壤有机C与养分全量的N、P、K均呈正相关关系,其与全K呈现极显著正相关关系。  相似文献   

9.
广东省桉树林的土壤肥力   总被引:1,自引:0,他引:1  
利用2002年广东省森林资源与生态状况综合监测评估体系的95个桉树林样地的调查资料研究了桉树林的土壤肥力。用环刀法测定其土壤容重、毛管孔隙度、非毛管孔隙度、毛管持水量等物理性质;用土壤化学分析方法测定其土壤有机质、全N、全P、全K、速效N、速效P、速效K含量. 按《我国土壤质地暂行分类方案》将95个样地土壤合并为粉壤土、粘壤土、粗砂土、细砂土、面砂土、粉粘土、砂粘土、粘土、壤粘土. 通过对土壤理化性质进行聚类分析,将土壤按质地类型划分为4类:第1类包括粉壤土、粉粘土和壤粘土,速效K含量较高,速效P含量中等,其余养分含量位居9种土壤的前列,容重和毛管孔隙中等,肥力较高;第2类是粘壤土,全K含量最高,速效N含量中等,其余养分含量较低,容重较小,毛管孔隙较大而非毛管孔隙中等,总体上肥力水平中等;第3类包括粗砂土、细砂土、面砂土和砂粘土,此类土大多数有机质、全N、全K、速效N、速效K含量低,而有的速效P含量较高,容重大、毛管孔隙小,总体来说肥力低; 第4类为肥力高的粘土,其有机质、全N、全P、速效N、速效P含量均是9种土壤中最高的.  相似文献   

10.
桉树人工林地土壤酶活性与营养元素含量关系研究   总被引:4,自引:0,他引:4  
运用典范相关分析 (canonicalcorrelationanalysis)对桉树人工林地土壤酶活性和土壤营养元素含量关系的研究表明 ,土壤过氧化氢酶、脲酶和蛋白酶活性与营养元素全P和全N含量关系最大 ,即正效应较大 ,它们对N、P的转化具有重要作用。转化酶活性在一定程度上对土壤养分K、P和Mg含量有一定的负相关作用。“综合土壤酶因子”可作为土壤肥力评价的一个指标  相似文献   

11.
川滇高山栎林是川西亚高山地区地带性的灌丛群落,具有重要的生态水文功能。本文在川西巴郎山东南坡沿海拔梯度(2 551、3 091、3 549 m),研究了川滇高山栎林表土层(0 15 cm)和亚表土层(15 30 cm)的土壤微生物量碳氮、有机碳(TOC)和氮素含量的分布特征及其相互关系。结果表明:海拔3 549 m和3 091 m处两土层土壤TOC及其储量、总氮(TN)、水解氮含量无显著性差异,其含量均显著高于海拔2 551 m处;海拔3 091 m处表土层与亚表土层的铵态氮(NH4+-N)含量显著比3 549 m的高,但与2 551 m处的NH4+-N含量差异不显著;在3个海拔梯度,土壤层硝态氮(NO3--N)含量差异不显著;3个海拔梯度的总无机氮含量在表土层差异不显著,而亚表土层无机氮含量在海拔3 091 m和3 549 m处差异显著;表土层微生物量碳含量变化与有机碳含量变化特征一致,亚表土层土壤微生物量碳含量在3个海拔梯度差异显著;表土层土壤微生物量氮含量在海拔3 091 m处最高,但3个海拔梯度的差异不显著,亚表土层土壤微生物量氮含量随海拔梯度降低而减少,但差异不显著。相关分析表明:水解氮、TOC、TN和土壤微生物量氮含量之间极显著相关(P<0.01);土壤微生物量碳与水解氮、TOC和TN显著正相关(P<0.05);pH值与水解氮、TOC和土壤微生物量氮显著正相关;NH4+-N与pH值极显著负相关。  相似文献   

12.
In terrestrial ecosystems, soil nutrient regimes at a plant’s living site generally represent the plant’s “nutrition habitat”. Plant species frequently well adapt to their original “nutrition habitat” during a long process of evolution, and the apparent preference for ammonium or nitrate nitrogen source (NH4 + or NO3 ) might be an important aspect of the adaptation. Plants typically favor the nitrogen form most abundant in their natural habitats. Nitrate has been recognized as the dominant mineral nitrogen form in most agricultural soils and the main nitrogen source for crops, but it is not usually the case in forest ecosystems. A large number of studies show that the “nutrition habitats” associated with primary forest soils are typically dominated by NH4 + rather than NO3 , generally with NO3 content much lower than NH4 +. Low levels of NO3 in these forest soils generally correspond to low net rates of nitrification. The probable reasons for this phenomenon include: 1) nitrification limitations and/or inhibitions caused by lower pH, lower NH4 + availability (autotrophic nitrifiers cannot successfully compete for NH4 + with heterotrophic organisms and plants), or allelopathic inhibitors (tannins or higher-molecular-weight proanthocyanidins) in the soil; or 2) substantial microbial acquisition of nitrate in the soils, which makes net nitrification rates substantially less than gross nitrification rates even though the latter are relatively high. Many coniferous species (especially such late successional tree species as Tsuga heterophylla, Pinus banksiana, Picea glauca, Pseudotsuga meziesii, Picea abies, etc.) fully adapt to their original NH4 +-dominated “nutrition habitats” so that their capacities of absorbing and using non-reduced forms of nitrogen (e.g., NO3 ) substantially decrease. These conifers typically show distinct preference to NH4 + and reduced growth due to nitrogen-metabolism disorder when NO3 is the main nitrogen source. The physiological and biochemical mechanisms that account for the adaptation to NH4 +-dominated systems (or limited ability to use NO3 ) for the coniferous species include: i) distribution and activity of enzymes for catalyzing nitrogen reduction and assimilation, generally characterized by lower nitrate reductase (NR); ii) greater tolerance to NH4 + or rapid detoxification of ammonium nitrogen in the roots; iii) lower capacity of absorption to NO3 by roots that might be controlled by feedback regulations of certain N-transport compounds, such as glutamine; iv) relations and balance between nitrogen and other elements (such as Ca2+, Mg2+, and Zn2+ etc.). Some NH4 +-preferred conifers might be more adapted (tolerant) to lower base cation conditions; v) NO3 nutrition, rather than NH4 +, that may lead to the loss of considerable quantities of organic and inorganic carbon to the surrounding media and mycorrhizal symbiont and probably contribute to slower growth; and vi) the metabolic cost of reducing NO3 to NH4 + that may make shade-tolerant conifers favor the uptake of reduced nitrogen (NH4 +). The adaptation of late successional conifers to NH4 +-dominated habitats has profound ecological implications. First, it might be an important prerequisite for the climax forest communities dominated by these conifers to maintain long-term stability. Second, primary coniferous or coniferous-broadleaved forests have been widely perturbed because of commercial exploitation, where the soil ammonium nitrogen pool tends to be largely transformed to nitrate after disturbance. In such a situation, the coniferous species that were dominant in undisturbed ecosystems may become poor competitors for nitrogen, and the site will be occupied by early successional (pioneer) plants better adapted to nitrate utilization. In other words, the implicit adaptation of many conifers dominant in undisturbed communities to ammonium nitrogen will cause difficulties in their regeneration on disturbed sites, which must be taken into account in the practical restoration of degraded temperate forest ecosystems. __________ Translated from Acta Ecologica Sinica, 2005, 25(11): 3,082–3,092 [译自: 生态学报]  相似文献   

13.
木本植物通过N内循环机制来适应有限的N供给,从而保持较高的生产力。文中从N内循环的过程、研究方法、受控因素等方面进行了综述:其过程包括休眠期N回流及翌年春季N再利用2个阶段,贮藏蛋白、精氨酸是休眠期N贮存的主要物质,谷氨酰胺是再利用阶段的主要运输载体;其研究方法主要有3种,即净余法局限于盆栽试验,N流量法通过测定不同时期树液中的N含量以及含N物质的组分来估测大树的N循环情况,同位素标记法是最常见的研究方法;树种、年龄、土壤肥力、土壤水分及大气CO2浓度等是影响N内循环的重要因素。针对目前研究中存在的问题及有待深入研究的内容进行了评述和展望,以期为植物N内循环理论与应用研究提供借鉴。  相似文献   

14.
林木氮素吸收偏好性及其形成机制研究进展   总被引:1,自引:1,他引:0  
森林土壤中可被林木吸收利用的氮(N)素主要以铵态氮(NH4+-N)和硝态氮(NO3--N)的形态存在。受全球气候变暖、氮沉降和人类活动等因素的影响,NH4+和NO3-的分布存在很大的时间波动性和空间异质性,且NH4+-N和NO3--N亏缺已成为限制林地生产力的主要因素。在森林土壤N亏缺和N异质分布的逆境中,在林木长期进化过程中形成了对不同形态N素的吸收偏好,且这种吸收偏好会随生长环境条件而发生改变。特别是对于NH4+和NO3-这2种主要形态的偏好选择性已被证明是决定林木生产力、竞争、共存和生态演替的重要因素之一。对不同树种在N异质分布环境下的N吸收偏好和形成机制的研究,是揭示林木N素营养遗传特性和提高林地N素利用效率的关键。文中从森林土壤中N的主要形态及其分布特征、林木对不同形态N素的吸收偏好和形成机制、林木N吸收偏好的影响因素3个方面进行总结阐述,并对未来研究方向进行展望,以期为我国人工林培育中不同树种的造林配置和合理N素施肥技术提供理论依据和参考。  相似文献   

15.
The transfer mechanisms, calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways of nitrogen transfer from legumes to neighboring non-legumes: (1) the nitrogen pass in soluble form from the donor legume root into the soil solution, move by diffusion or/and mass flow to the receiver root and be taken up by the latter; (2) nitrogen pass into the soil solution as before, be taken up and transported by mycorrhizal hyphae attached to the receiver roots; (3) if mycorrhizal hyphae form connections (bridges) between the two root systems, the nitrogen could pass into the fungus within the donor root and be transported into the receiver root without ever being in the soil solution. The mechanisms of nitrogen transfer between N2-fixing plants and non-N2-fixing plants are reviewed in terms of indirect and direct pathways. The indirect N-transfer process is related to the release of nitrogen from legumes (donor plants), the possible interaction of this nitrogen with soil, the decomposition and mineralization of legumes and turnover of nitrogen, the nitrogen absorbing and competing abilities of the legume and the non-legume (receiver plant). The direct nitrogen transfer process is generally considered to be related to the nitrogen gradient and physiological imbalance between legumes and non-legumes, and when the donor legume lies in stressful stage (i.e. removal of shoots or attacked by insects), the nitrogen transfer can be improved significantly. The methods of determining nitrogen transfer (indirect15N-isotope dilution method and direct15N determination method) are evaluated, and their advantages and shortcomings are shown in this review. Foundation Item: This paper was funded by National Science Foundation and Doctor Foundation of China. Biography: J{upang} San-na (1970-), male. Ph. doctor, engineer in Collage of Resource and Environment. Beijing Forestry University Responsible editor: Chai Ruihai  相似文献   

16.
For the protection and promotion of biodiversity in forest edges and interiors, forest edge management practices are put forward like the creation of gradual forest edges (i.e., edges with a gradual increase of vegetation height from open area to forest, e.g., by means of a fringe, a belt, and a mantle). In this study, we tested the mitigating effect of gradual forest edges on the atmospheric deposition of inorganic nitrogen (N) and the potentially acidifying pollutants SO42−, NO3, and NH4+ (N + S). We conducted field experiments at three exposed forest edges in Flanders and the Netherlands and compared throughfall deposition at steep edges (i.e., edges with an abrupt transition from open area to forest) and at adjacent gradual edges. Along transects perpendicular to the edges, during three months in both winter and summer, throughfall deposition of Cl, SO42−, NO3, and NH4+ was monitored in the forest between 0 and 64 m from the edges and in the gradual edge vegetation. At the smoothest and best fitting gradual edge, the extra N + S throughfall deposition the forest received due to edge effects was lower than at the adjacent steep edge, with on average 80 and 100% in winter and summer, respectively. This was due to a halving of the depth of edge influence and an almost full reduction of the magnitude of edge influence. This decrease in throughfall deposition in the forest was not compensated by the additional throughfall deposition on the gradual edge vegetation itself, resulting in a final decrease in throughfall deposition in the forest edge by 60% in winter and 74% in summer. While this result confirms that gradual edges can mitigate edge effects on atmospheric deposition, the results of the other sites indicate the importance of size and shape of the gradual edge vegetation in mitigating edge effects on deposition: due to insufficient height (‘size’) or inadequate shape of the gradual edge vegetation, only small or insignificant decreases in throughfall deposition were observed. Hence, for mitigating edge effects on N + S and N deposition, our results support the recommendation of creating gradual edges at forests with poorly developed, abrupt edges, but it stresses the importance of a thorough consideration of the shape and size of the gradual edge vegetation in the design and management of gradual forest edges.  相似文献   

17.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

18.
温室条件下,向盆栽山毛榉幼苗中施加192g.m&#183;^-2^15N示踪物,研究连续两个生长季沉积氮在森林土壤(含森林地被物)、沥出物、以及地上和地下部分生物量的分配。模拟了四种处理(栽培和非栽培)下的NH4^+和NO3^-沉积情况,每种处理各自标记为^15N-NH4^+或者^15N-NO3^-。在整个体系中施加15N的总回收率分别是,盆栽处理的^15N-NH4^+为67.3%~74.9%,非盆栽处理的^15N-NO3^-为85.3%~88.1%。两种^15N示踪物主要沉积在森林土壤(包括森林地被物)中,其中盆栽处理的森里土壤中^15N-NH4^+为34.6%~33.7%,^15N-NO3^-为13.1%~9.0%,说明异养微生物有很强的固氮作用。森林土壤微生物对^15N-NH4^+的固定能力比^15N-NO3^-的固定能力强三倍。^15N-NH4^+的优先异养利用造成土壤中^15N-NH4^+的沉积量是植物体保存量的两倍 而土壤中^15N-NO3^-的沉积量却低于植物体的。总之,植被-土壤系统中15N-NH4+的沉积量比^15N-NO3^-的沉积高了60%,说明了沉积氮的形式在森林生态系统中氮保存中的重要性。  相似文献   

19.
The vertical variation and storage of nitrogen in the depth of 0–150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4 +-N) and nitrate (NO3 -N). The sequence of STN storage was woodland>maize field>fallow field>paddy field, while that of NO3 -N content was maize field>paddy field>woodland>fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0–100 cm of woodland averaged to 11.41 t·hm−1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respectively, while there was no significant difference between maize and fallow fields. The comparatively higher amount NO3 -N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R 2≥0.929,p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3 -N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection. Foundation item: The project was supported by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-413-9) and Fund of Shenyang Experimental Station of Ecology, CAS (STZ0204) Biography: ZHANG Yu-ge, (1968-), female, Ph.D. candidate, associate research fellow in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China. Responsible editor: Song Funan  相似文献   

20.
The role of forest fires in the soil dynamics and global carbon cycle has not been comprehensively studied in tropical forests as the effects of fire on tropical forest soils can be extremely variable. This study was aimed to understand how repeated fires affect physical and chemical properties of soil in a tropical dry deciduous forest and alter soil fertility and health. The study was carried out in the dry deciduous forest of Mudumalai Tiger Reserve. Soil samples were collected from unburned (B0) to six-time burned (B6) plots. Samples were collected from each plot from three different depths viz. 0–10 (Top), 10–20 (Middle), and 20–30 cm (Bottom) and analyzed for soil physical and chemical properties. Soil pH, EC, WHC decreased with increasing fire frequencies while bulk density increased. Organic Carbon, Total N, and available P decreased with increasing fire frequencies whereas extractable K initially increased but decreased with the very high frequency of fires. NO3?N slightly decreased with high fire frequencies but NH4?N decreased significantly with increasing fire frequency. These results provide a new insight regarding the influence of repeated fires on soil that will be valuable to understand the effect of fire on the recovery of soils and nutrient dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号