首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The 2015–2018 outbreak of spongy moth (Lymantria dispar) in southern New England initiated a severe oak decline and mortality event. While defoliation was a primary driver, increased secondary pest and pathogen activity contributed to decline and death. Following this large defoliation event, Diplodia was frequently recovered from northern red oaks (Quercus rubra) with serious outbreaks of twig cankering. Given the many recent reports of Diplodia corticola on oak in eastern North America, it was presumed to be the causal agent. To confirm, a limited survey was conducted from five states in the region (Maine, Massachusetts, New Hampshire, New York, and Vermont). Based on ITS, tef1 and tub2 sequences generated from 28 isolates collected primarily from northern red oak, Diplodia gallae, two potentially novel Diplodia species and Diplodia sapinea were identified. Surprisingly, D. corticola was not found in this study. ITS sequences alone failed to discriminate among isolates of D. gallae and D. corticola, creating uncertainty over previous reports of D. corticola in eastern North America. Only a combined ITS + tef1 dataset successfully distinguished D. gallae and D. corticola along with two other closely related species that also occur on oak (Diplodia quercicola and Diplodia quercivora). Additional cankering and endophytic fungi (Coryneum, Dendrostoma, Gnomoniopsis, Pestalotiopsis and Tubakia) were also found on symptomatic oaks in the region. Identification of Diplodia isolates from non-Quercus hosts also detected Diplodia neojuniperi on Juniperus chinensis and Microbiota decussata, which has not been reported previously in North America.  相似文献   

2.
Diplodia corticola is one of the most aggressive fungal pathogens of Quercus species and is involved in the decline of Mediterranean cork oak forests and Californian oaks. Information regarding variation in virulence between strains is scarce. We hypothesize that D. corticola strains differ in virulence and consequently induce different symptoms in infected plants. To test this, infection assays were carried out on Quercus suber half‐sib seedlings with seven strains of D. corticola. Visual symptoms of infection (external lesions, leaf wilting, exudation and others) were recorded in parallel with physiological and biochemical parameters. All strains were able to cause lesions but at differing levels of aggressiveness. We show that internal lesion length did not correlate directly with strain aggressiveness and this agrees with physiological parameters that should be taken into account to infer about strain pathogenicity. Infection by all strains induced an overall negative impact on the net photosynthetic rate and an increase in the oxidative stress status of plants; however, significant differences were found when the effects of different strains were compared. Results also suggest that being under optimum growth conditions, prior to and during infection, allowed plants to respond to the pathogen. At the end of the experiment, some strains of D. corticola established a latent pathogen‐like relationship with cork oak. This is the first study to show that D. corticola virulence is strain‐dependent.  相似文献   

3.
The belowground effects of Phytophthora cinnamomi on 1‐year‐old saplings of two common oak species in mid‐Atlantic US forests, white (Quercus alba) and red oak (Q. rubra), were examined after incubation in pathogen‐infested soilless potting mix. Fine root lengths (0–1.5 mm in diameter) of both oak species were quantified after incubation at successive 30‐day intervals up to 300 days, for a total of 10 incubation periods. In addition, colony‐forming units (CFU) of P. cinnamomi were quantified after white oak saplings were incubated in infested soilless potting mix at different temperature/duration combinations that reflect soil conditions present in the mid‐Atlantic United States. Impact of P. cinnamomi on fine root lengths of red and white oak saplings varied considerably over time. Significant periods of fine root loss occurred primarily during spring, when bud break and leaf flush began for both oak species. Red oaks had 17% fine root loss on average, while white oaks appeared more resistant to P. cinnamomi infection with a 2% decrease in fine roots over the course of the experiment. Phytophthora cinnamomi CFU declined significantly with exposure to all incubation temperatures except 8°C. This was in contrast to in vitro experiments, where the optimum temperature for mycelial growth was determined to be 21°C and above. Significant fine root loss caused by P. cinnamomi depended on plant phenology and the oak species tested. Extreme soil temperatures have a significant adverse impact on temporal changes of P. cinnamomi population.  相似文献   

4.
Variation in virulence was examined among isolates of Phytophthora ramorum from epidemiologically important or infectious (non‐oak) and transmissive dead‐end (oak) hosts from North America. Twelve isolates representative of the genetic, geographic and host range of P. ramorum in the western United States were inoculated on leaves of Umbellularia californica (bay laurel or bay) and stems of Quercus agrifolia (coast live oak). In spite of extreme genetic similarity among the isolates employed, and even within the same genotype, significant differences in lesion size were measured, suggesting virulence in this pathogen is also controlled by epigenetic factors. A strong positive correlation between lesion size on bay laurel and coast live oak provides experimental evidence P. ramorum is a generalist pathogen that lacks host specificity. Isolates from non‐transmissive oaks were significantly less pathogenic both on oaks and bays than isolates from infectious hosts. These results are essential to further our understanding of the epidemiology and evolutionary potential of this pathogen. A quantitative differential in virulence of isolates from hosts with different epidemiological roles has been described for many animal diseases, but is a novel report for a plant disease.  相似文献   

5.
Synchronous decline of oak (Quercus spp.) trees in woodlands has been described in Europe and eastern North America as a complex interaction of stressors that predispose, incite or contribute to tree death. This study presents a 2‐year (2010–2011) assessment of the role of pathogens in coast live oak (Quercus agrifolia) woodlands in southern California where oak mortality occurs in locations that are infested and uninfested by the goldspotted oak borer (GSOB, Agrilus auroguttatus). Cumulative coast live oak mortality was not significantly different between sites and was weakly correlated with Diplodia corticola and GSOB incidence and negatively correlated with annual relative humidity. Multiple logistic regression models explained the presence of individual fungi or GSOB at the tree level. Fisher's exact test analysis determined that the presence of D. corticola, Fusarium solani, Dothiorella iberica, Cryptosporiopsis querciphila and Diatrypella verrucaeformis were each related to origin of sample location on tree, and C. querciphila was additionally related to symptom type on the bole. Multiple linear regression models showed high correlation between environmental variables and plot‐level incidence of both GSOB and D. corticola. Disease incidence (DI) for D. corticola was highest in GSOB‐uninfested locations. Jaccard index of association (J) showed that D. corticola was negatively associated with the presence of GSOB, F. solani and C. querciphila. Results suggest that oak decline in California is an example of a complex syndrome involving strong regional differences in factors that are associated with the problem.  相似文献   

6.
Since 2008, severe and widespread tree decline and mortality has been observed at the main growing Quercus ilex L. (holm oak) forest on Caprera Island, Italy. To clarify the symptomatology and aetiology of this phenomenon, field surveys and isolations from symptomatic trees were carried out in summer 2010. Affected trees exhibited crown thinning, branch dieback, sunken cankers, epicormic shoots, exudates on branches and trunk, root losses and sudden death symptoms. Four fungal species belonging to Botryosphaeriaceae family, namely Botryosphaeria dothidea, Diplodia corticola, D. seriata and Neofusicoccum parvum, were isolated from cankers on trunk and branches, whereas three species of Phytophthora, namely P. cinnamomi, P. cryptogea and P. gonapodyides, were isolated from fine roots and rhizosphere soil samples. Isolates were identified using both morphological analysis and DNA‐based techniques. Pathogenicity trials on holm oak seedlings showed that all the isolated species are pathogenic. D. corticola proved to be the most aggressive species. Our results provide the first evidence for a combined involvement of D. corticola and P. cinnamomi in the aetiology of holm oak decline in Italy and suggest that these pathogens are not only important contributing factors in the onset of long‐term tree decline, but also may cause the rapid devastation of extensive oak ecosystems.  相似文献   

7.
The occurrence of chestnut blight (Cryphonectria parasitica) on oaks in mixed chestnut‐oak forests was studied in 2003–2008 in Slovakia. Infections on living Quercus trees were found at four of seven localities. The disease incidence on oaks ranged from 1.3% to 15.8%. The symptoms on infected oaks were similar to those on chestnut, but less conspicuous. Cankers of C. parasitica were found only on Quercus robur and Q. petraea. A total of 22 isolates of C. parasitica, all virulent, were isolated. Each site yielded only a single vc type (EU12 or EU13). Field inoculation experiments on chestnuts with seven strains of C. parasitica from oaks and an isolate from Castanea sativa showed no differences in virulence. On Quercus robur stems, the cankered area was significantly smaller than on C. sativa and the cankers developed very slowly.  相似文献   

8.
During spring and summer of 2016, dieback symptoms including blights of leaves, twigs, and acorns were observed on current year shoots of Quercus infectoria in the Zagros oak forests of Iran. The fungus isolated from damaged tissues was identified as Discula quercina based on both morphological characteristics and ITS sequencing. To fulfil the Koch's postulates, a representative isolate was inoculated onto shoots of Q. infectoria and Quercus libani in both laboratory and forest conditions. Responses of the two oak species to inoculation with D. quercina were examined under laboratory and forest conditions in a completely randomized experiment. Discula quercina was clearly involved in oak dieback, and Q. infectoria was more susceptible than Q. libani to damage by the pathogen. This is the first record of the occurrence and pathogenicity of the fungus Discula quercina on Quercus infectoria. The fungus is considered as an emerging pathogen on oak trees in Zagros forests in Iran. Furthermore, the pathogenicity of the Discula quercina on Q. libani under laboratory and forest conditions increases the potential importance of this pathogen in Zagros forests.  相似文献   

9.
The oak decline is known as one of the most destructive complex diseases causing high economic losses around the world, especially in Iran. The main objective of the present study was to investigate the possible role of bacteria as causative agents of oak decline in the Zagros forests of Iran. To do this, stem, root and leaf samples were taken from symptomatic Persian oak trees (Quercus brantii) in different zones of Zagros forests (Ilam Province, Iran). From 150 bacterial isolates, 20 showed pathogenicity against Geranium seedlings. Among 20 hypersensitivity test positive strains, four strains showed pathogenicity against oak saplings. Based on morphological and 16S rRNA gene sequence analysis, three strains were identified as Bacillus pumilus and one strain as non‐sporulating Gram‐negative Stenotrophomonas maltophilia. Pathogenicity studies of different B. pumilus and S. maltophilia strains revealed that they have potential to cause the disease in oak saplings and symptoms of disorder in Persian oak trees. To our knowledge, there are no previous records of B. pumilus and S. maltophilia causing decline on Fagaceous trees like Q. brantii. More detailed field and molecular studies are required to confirm the absolute role of such bacteria in occurrence of oak decline in Zagros forests.  相似文献   

10.
Wildfire is an important element in the dynamics of the blue oak (Quercus douglasii) stand. We evaluated the effect of fire in the regeneration of a stand in Quail Ridge. This protected area is located on a peninsula formed by the flooding of Berryessa Valley (California) which has helped it maintain many elements of the native flora. Major vegetation types are blue oak woodland and forest (Q. douglasii, Fagaceae), chamise chaparral (Adenostoma fasciculatum, Rosaceae), and grasslands. In the blue oak stand, 14 plots were randomly located: seven in the burned area and seven outside of the burned areas (control). The effect of fire on sexual regeneration, asexual regeneration, mortality and species composition was analyzed. The fire caused changes in canopy cover, soil cover and litter cover. Asexual regeneration was significantly favored by the fire, but the effect on sexual regeneration was not significant. Fire caused a significant reduction in the basal area of Q. wislizeni and Arctostaphylos manzanita and a reduction in the density of Heteromeles arbutifolia. We concluded that fire does not have a significant effect on the sexual regeneration of Q. douglasii or Q. wislizeni. Fire does stimulate asexual regeneration in both species of oaks, but grazing reduces the regenerative effect of fire. Fire increases regeneration of Arctostaphylos manzanita and Heteromeles arbutifolia by stimulating asexual and sexual regeneration. The occupancies of these chaparral species are further enhanced by their lower palatability compared to both species of oaks.  相似文献   

11.
Forests in the Ozark Mountains of northern Arkansas recently experienced a widespread oak decline event. Armillaria, a root rot fungus, has been associated with other oak decline events and may have been an important contributing factor to tree mortality in this event. Although Armillaria has been identified from the Ozark Mountains in Missouri, it has never been investigated in the Arkansas Ozarks. Molecular diagnostic techniques were used in this study to identify species of Armillaria present on roots removed from dead trees of two common oak species, northern red oak, Quercus rubra L., and white oak, Q. alba L., from three geographic areas and on three topographic positions – ridges, south‐ and west‐facing benches. Armillaria(A. mellea, A. gallica or A. tabescens) was identified from 31% of root samples taken from 102 trees in seven of nine sample plots. Armillaria mellea, occurred most often (20 samples, both oak species on seven plots) followed by A. gallica (10 samples, northern red oak only on four plots), and A. tabescens occurred twice (on northern red oak in a single plot). Thus, all three Armillaria species occurred on northern red oaks while A. mellea was the only species recovered from white oaks. Results varied by topographic position with samples from tree roots on ridges having the fewest positive identifications, one of 29. West‐facing benches had the highest positive samples with 20 of 41 testing positive and trees on south‐facing benches were intermediate with 11 of 32 samples from infected trees. This study documents the occurrence of three species of Armillaria in the Arkansas Ozarks and their association with oak mortality resulting from an oak decline event coupled with a red oak borer, Enaphalodes rufulus, outbreak. Further, it documents some potential variation in host/pathogen combinations and forest site conditions.  相似文献   

12.
Phytophthora ramorum, cause of sudden oak death, has been distributed widely across the United States in horticultural situations, but is not established in forests outside of California and Oregon. Here, it has triggered widespread concern and, especially in Oregon, an intensive disease management programme. Now, we provide the first systematic evaluation of the efficacy of that effort. This paper evaluates four measures of the efficacy of Sudden Oak Death (SOD) local eradication treatments: inoculum availability; inoculum from tree species other than tanoak; disease spread from treated areas; and cumulative infested area with and without treatment. We conclude that local treatments demonstrably reduce local inoculum levels. Eradication of SOD from infested sites is difficult but not impossible. The disease usually does not persist after cutting infected trees but spread on the landscape continues because the pathogen may be present on undetected new infections for a year or two before whole tree symptoms are visible. This limits early detection and coupled with delays in completing eradication treatments, prolongs the chances for long‐distance aerial dispersal.  相似文献   

13.
Mass mortality of Fagacean tree species caused by Raffaelea quercivora has occurred widely in Japan. Because conidia or other propagules of the pathogen have not been found in infected trees, pathogen spread is assumed to occur primarily by hyphae. To clarify the relationship between hyphal growth of the pathogen within trees and their vessel arrangements, we examined two native Japanese oaks, Quercus crispula and Quercus glauca, and three exotic American oaks, Quercus coccinea, Quercus palustris and Quercus rubra. Quercus glauca is a radial‐porous species, whereas the other four species have a ring‐porous wood structure. Hyphal growth within inoculated potted living seedlings and in cut, sterilized stem segments of these species was examined microscopically after fungal inoculation. Water conductance in the seedlings was examined using transverse stem sections. The proportion of non‐conductive sapwood in Q. crispula, Q. coccinea and Q. palustris differed between inoculation and control treatment, being much higher in inoculated seedlings. The proportions were positively correlated with the extent of the hyphal growth. In sterilized stem segments, the extent of fungal colonization varied among the foreign ring‐porous species Q. coccinea, Q. palustris and Q. rubra. It is hypothesized that the extent of colonization by R. quercivora reflects the extent of non‐conductive sapwood irrespective of tree species, but is little affected by vessel arrangements.  相似文献   

14.
The genus Quercus, which belongs to the family Fagaceae, is native to the northern hemisphere and includes deciduous and evergreen species. The trees of the different species are very important from both economic and ecological perspectives. Application of new technological approaches (which span the fields of plant developmental biology, genetic transformation, conservation of elite germplasm and discovery of genes associated with complex multigenic traits) to these long-rotation hardwoods may be of interest for accelerating tree improvement programs. This review provides a summary of the advances made in the application of biotechnological tools to specific oak species. Significant progress has been made in the area of clonal propagation via organogenesis and somatic embryogenesis (SE). Standardized procedures have been developed for micropropagating the most important European (Q. robur, Q. petarea, Q. suber) and American (Q. alba, Q. bicolor, Q. rubra) oaks by axillary shoot growth. Although regenerated plantlets are grown in experimental trials, large-scale propagation of oak species has not been carried out. The induction of SE in oaks from juvenile explants is generally not problematic, although the use of explants other than zygotic embryos is much less efficient. During the last decade, enormous advances have been made in inducing SE from selected adult trees, mainly specimens of pedunculate oak (Q. robur) and cork oak (Q. suber). Advances in the understanding of the maturation and germination steps are required for better use of embryogenic process in clonal forestry. Quercus species are late-maturing and late-flowering, exhibit irregular seed set, and produce seeds that are recalcitrant to storage by conventional procedures. Vitrification-based cryopreservation techniques were used successfully in somatic embryos of pedunculate oak and cork oak, and an applied genbank of cork oak selected genotypes is now under development. The feasibility of genetic transformation of pedunculate oak and cork oak somatic embryos by means of co-culture techniques with several strains of Agrobacterium tumefaciens has also been demonstrated. To date, most research on the genomics of Quercus species has concerned population genetics. Approaches using functional genomics to examine the molecular and cellular mechanisms that control organogenesis and or somatic embryogenesis are still scarce, and efforts on the isolation and characterization of genes related to other specific traits should be intensified in the near future, as this would help improve the practical application of clonal forestry in recalcitrant species such as oaks.  相似文献   

15.
Soil water content and infiltration in agroforestry buffer strips   总被引:1,自引:1,他引:0  
Agroforestry practices are receiving increased attention in temperate zones due to their environmental and economic benefits. To test the hypothesis that agroforestry buffers reduce runoff by increased infiltration, water use, and water storage; profile water content and soil water infiltration were measured for a Putnam soil (fine, smectitic, mesic Vertic Albaqualf). The watershed was under no-till management with a corn (Zea mays L.)-soybean (Glycine max L.) rotation since 1991. Agroforestry buffer strips, 4.5 m wide and 36.5 m apart, were planted with redtop (Agrostis gigantea Roth), brome (Bromus spp.), and birdsfoot trefoil (Lotus corniculatus L.). Pin oak (Quercus palustris Muenchh.), swamp white oak (Q. bicolor Willd.) and bur oak (Q. macrocarpa Michx.) trees were planted at 3-m intervals in the center of the agroforestry buffers in 1997. Ponded water infiltration was measured in agroforestry and grass buffers and row crop areas. Water content in agroforestry and row crop areas at 5, 10, 20, and 40 cm depths were measured throughout the year. Quasi-steady infiltration rates were not different (P > 0.05) among the treatments. Agroforestry had lower soil water content than row crop areas (P < 0.05) during the growing season. Higher water content after the principal recharge event in the agroforestry treatment was attributed to better infiltration through the root system. Results show that agroforestry buffer strips reduce soil water content during critical times such as fallow periods, and increase water infiltration and water storage. Therefore, adoption of agroforestry buffer practices may reduce runoff and soil loss from watersheds in row crop management.  相似文献   

16.
Species of Botryosphaeriaceae are associated with canker and dieback of Eucalyptus spp. worldwide, but little is known about their effect on the host physiology. The aim of this study was to evaluate the impact of Botryosphaeriaceae isolates from nine species in three genera (Botryosphaeria, Diplodia and Neofusicoccum), previously isolated from eucalypts, on three different Eucalyptus hosts (seedlings of E. nitens, cuttings of E. globulusand of E. globulus× E. cypellocarpa). An approach combining standard pathogenicity trials with evaluation of plant morpho‐physiological parameters was used. The size of the lesions produced revealed differences in fungal aggressiveness and host susceptibility. Isolates of Neofusicoccum kwambonambienseand Diplodia corticolawere the most aggressive, while Botryosphaeria dothidea and Diplodia seriataisolates were the least aggressive. In general, hybrid E. globulus× E. cypellocarpa plants developed smaller lesions, followed by E. nitens and E. globulus. Eucalyptus nitensplants showed minimal modifications on the morpho‐physiological profile when infected, although more severe symptoms and mortality were observed. This is probably due to a more variable genetic background of the plants. However, in general, no direct association between putative fungal aggressiveness and plant physiological disorders could be found. Results suggested that under optimal growth conditions plants manage to cope with pathogen attack and maintain their physiological performance.  相似文献   

17.
Decline phenomena of shrub species such as Quercus coccifera and Retama raetam have occurred throughout Tunisian forests since 2012. These evergreen shrubs have long been regarded for their medicinal and ecological interests. Therefore, their preservation as valuable forest resources is of great interest. However, information regarding aetiology of this disease is still scarce. Hence, the aim of this study was to identify and characterize the causal agents associated with disease symptoms in two Tunisian forests. Thirty-eight isolates were obtained from symptomatic Q. coccifera and R. raetam twigs. Morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster and partial sequence of the translation elongation factor 1-alpha gene (tef1-α) allowed the identification of three Diplodia species namely Diplodia africana, D. seriata and D. pseudoseriata. Our findings revealed that the incidence of Diplodia species was significantly correlated to the altitude, the temperature and the rainfall. Pathogenicity test showed that all Diplodia isolates are pathogenic. However, D. africana revealed to be the most aggressive species toward R. raetam. These findings were the first record of D. seriata as fungal pathogen associated with Q. coccifera dieback and D. pseudoseriata and D. africana on R. raetam in Tunisia.  相似文献   

18.
Oak decline syndrome is characterized by periodic occurrences of decline and death of oaks over widespread areas. An outbreak of a new emerging disease on oak trees was reported in the Hyrcanian forest of Iran (Mazandaran and Golestan provinces) that showed stem bleeding and canker symptoms. Bacterial isolates were characterized through biochemical and physiological tests, protein electrophoresis, DNA fingerprinting (rep‐PCR, ERIC and BOX primers) and sequencing of 16S rRNA and MLSA (multilocus sequencing analysis) for housekeeping genes (gyrB, infB and atpD). A complex community of the genus Brenneria spp. (Brenneria goodwinii, Brenneria roseae subsp. roseae, Brenneria sp. and Brenneria nigrifluens) and a few isolates in the genus Gibbsiella were identified as major groups involved. Isolate differentiation was more accurate using concatenated partial gene sequences within the main groups. All bacterial isolates showed hypersensitivity reactions (HR) on Pelargonium leaves (Pelargonium × hortorum). Pathogenicity studies of different Brenneria and Gibbsiella strains revealed that they have potential to cause the disease in oak seedlings and devastating oak canker and stem bleeding symptoms in northern Iran. Due to the presence of several potentially pathogenic agent(s) associated with the oak decline, identification of the principal agent(s) is of major interest. To our knowledge, this is the first report of potentially pathogenic bacteria associated with oak bleeding and canker in Iran.  相似文献   

19.
The aim of this research was to study the changes in net photosynthesis and stomatal conductance values in 3‐year‐old cork oak and holm oak seedlings growing in natural conditions and inoculated with Apiognomonia quercina, Biscogniauxia mediterranea, Botryosphaeria corticola and Pleurophoma cava. Throughout the 4‐month experimental period, the evolution of visual external symptoms and the values of physiological variables were periodically recorded. All pathogens caused stem lesions around the infection point; however, the lesions caused by B. corticola were longer in both oak species. On cork oak seedlings, all pathogens induced a significant and gradual reduction in net photosynthesis and stomatal conductance values, whereas other physiological disturbances were induced only by B. corticola infections on holm oak seedlings.  相似文献   

20.
Bur oak (Quercus macrocarpa Michx.) and chinquapin oak (Q. muehlenbergii Engl.) leaves were exposed to high temperatures at various photosynthetic photon flux densities under laboratory conditions to determine if species-specific responses to these factors were consistent with the distribution of these oaks in gallery forests in the tallgrass prairies of northeastern Kansas, USA. Measurements of the ratio of chlorophyll fluorescence decrease, R(fd), indicated that chinquapin oak maintained greater photosynthetic capacity than bur oak across all tested combinations of irradiance (100, 400, 700 and 1000 micro mol m(-2) s(-1)) and temperature (40, 42, 44, 46 and 48 degrees C). In both oak species, manipulation of leaf temperature to about 47 degrees C for 45 min in the field led to a 45% decrease in carbon assimilation up to one week after the heat treatment, and to sharp reductions in stomatal conductance. Photosynthetic recovery patterns indicated that bur oak took longer to recover from heat stress than chinquapin oak, suggesting that heat stress may be important in determining distribution patterns of these oak species. Based on a comparison of the results with data from other forest species, we conclude that the photosynthetic temperature tolerances of bur oak and chinquapin oaks facilitate their dominance at the western limit of the eastern deciduous forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号