首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Use of reduced-impact logging (RIL) techniques has repeatedly been shown to reduce damage caused by logging. Unfortunately, these techniques do not necessarily ameliorate the low growth rates of many commercial species or otherwise assure recovery of the initial volume harvested during the next cutting cycle. In this study, we analyze the effect of logging and application of additional silvicultural treatments (liana cutting and girdling of competing trees) on the growth rates on trees in general and on of future crop trees (FCTs) of 24 commercial timber species. The study was carried out in a moist tropical forest in Bolivia, where we monitored twelve 27-ha plots for 4 years. Plots received one of four treatments in which logging intensity and silvicultural treatments were varied: control (no logging); normal (reduced-impact) logging; normal logging and low-intensity silviculture; and, increased logging intensity and high-intensity silviculture. Tree growth rates increased with intensity of logging and silvicultural treatments. The growth rates of FCTs of commercial species were 50–60% higher in plots that received silvicultural treatments than in the normal logging and control plots. Responses to silvicultural treatments varied among functional groups. The largest increase in growth rates was observed in FCTs belonging to the partially shade-tolerant and the shade-tolerant groups. These results indicate that silvicultural treatments, in addition to the use of RIL techniques, are more likely to result in a higher percentage of timber volume being recovered after the first cutting cycle than RIL alone.  相似文献   

2.
A major impediment to the sustainable management of tropical dry forests in Bolivia is the scarcity of natural regeneration of commercial timber tree species. Where regeneration is present, true seedlings of many species are outnumbered by vegetative sprouts from roots, broken stems, and the stumps of felled trees. This study evaluates the importance of resprouts promoted by logging operations for the regeneration of commercially important canopy tree species. The objectives of the study were: (1) to characterize stump and root sprouting behaviors of canopy tree species harvested for timber; (2) to quantify the effect of logging on relative abundances and growth rates of stump sprouts, root sprouts, and true seedlings; (3) to relate the species-specific probabilities of stump sprouting to stump diameter and stump height; and (4) to explore how sprouting varies with the ecological requirements of canopy tree species. The study was carried out 1–5 years after logging of a privately owned land in a Bolivian tropical dry forest. Twenty-seven of the 31 species monitored resprouted at least occasionally, among which Centrolobium microchaete (Leguminosae-Fabaceae) and Zeyheria tuberculosa (Bignoniaceae) were the most frequent stump sprouters, and Acosmium cardenasii (Leguminosae-Fabaceae) and C. microchaete were the most frequent root sprouters. In all species the number of sprouts declined with increasing stump diameter and stump height. The probability of stump resprouting differed among species but did not vary consistently with stump diameter, except in Z. tuberculosa in which it declined. Approximately 45% of juveniles <2 m tall of canopy tree species originated from root or stem sprouts. Light-demanding species tended to regenerate more from seeds and root sprouts than from stumps. Seedling densities were higher in microsites opened by logging, while root and stem sprouts were equally common across microsites. Given their abundance and the fact that root and stem sprouts at least initially grew faster than true seedlings, we conclude that vegetative regeneration in this tropical dry forest is an important mode of post-logging regeneration especially for species that regenerate poorly from seed. Resprout management should be considered as a potentially effective strategy for the procurement of regeneration following logging, especially for species that do not readily recruit from seed.  相似文献   

3.
Coppice regrowth in a disturbed tropical dry limestone forest in Jamaica   总被引:1,自引:0,他引:1  
The Hellshire Hills are an extensive area of tropical dry forest over limestone, located on the south coast of Jamaica. Despite being a protected area, they are subject to encroachment and clearance by charcoal burners, leaving a relatively pristine core within more disturbed areas of forest. Future management requires a consideration of the forest’s resilience to such disturbance, and this study reports on coppice regrowth following clearance. The number of coppice shoots and the length and diameter at breast height (DBH) of the leading shoots were measured on tree stumps 14 months after they were cut in an experiment. Coppice regrowth after cutting was measured on a total of 476 stumps, representing 51 species. Coppice production and growth was vigorous as there was an extremely high incidence of coppice regrowth among and within the species in this forest after it had been cut. Initial regrowth was high with the diameter recovered by the leading shoots after 14 months approximating to 29% per year. Of the 51 species sampled three did not coppice at all and the average percent of individuals found with shoots within each species was 81%. The height and diameter of the leading shoots was significantly different among the species and the average height recorded of the leading shoots was 114 cm while the average diameter recorded was 10 mm. Larger sized stems (>10 cm DBH) on average produced more coppice shoots and larger sized shoots than smaller sized stems (<10 cm DBH) while smaller sized stems recovered more biomass than larger sized stems irrespective of species. The average diameter of the leading shoots decreased significantly with increasing shoot densities. At the species level there was a significant relationship between stem diameter and the number of shoots produced in seven of the 27 species analysed and three species returned significant relationships between stem diameter and average height of leading shoots. Coppice regrowth clearly offers considerable resilience to disturbance in this dry forest where successful regeneration by seed is highly susceptible to rainfall seasonality. However, the different abilities of species to produce coppice shoots will likely affect long-term species diversity if the present rate of clearance continues.  相似文献   

4.
Studies on successional dynamics in tropical systems have mostly focused on plant communities and mainly have been conducted in tropical humid areas. Here, we document changes in the structure of bat assemblages among secondary successional stages of a neotropical dry forest. We specifically focused on the speciose phyllostomid bat family, comprising most of the foraging guilds found among neotropical bats, including nectarivores and frugivores that play important roles in processes of plant reproduction and forest regeneration. To investigate bat species richness, diversity and abundance during successionnal processes, we mist-netted bat assemblages in 12 sites belonging to 4 different successional stages, namely pastures (0 yrs), early (3–5 yrs), intermediate (8–12 yrs) and late successional stage (>50 yrs). A capture effort of 142 nights using five mist-nets per night yielded 606 phyllostomid bats belonging to 16 species. Late stage was the most speciose sustaining all species found in the study (16 species against 9 for early and intermediate stages and 4 in pastures), and was the only environment where rare species occurred. Species found within any one successional stage were a combination of species found at the previous stage plus additional ones. This additive pattern appeared to be driven by the natural abundance of species, as the abundant species were found across more succesisonal stages than rarer species. Bats were significantly less speciose and less abundant in pastures, regardless of the foraging guild. Bat diversity and abundance did not differ significantly among early, intermediate and late stages. However, nectarivores were more abundant in early compared to late stage, probably as a consequence of differences in patterns of food availability. We conclude that areas of forest, recognized as late stage in our study, are the most important reservoirs of species richness. Secondary vegetation also contains diverse bat assemblages, while pastures only harbour a few abundant and vagile species occasionally crossing this habitat. We suggest that land-use regulations in this region focus on maintaining connectivity of a mosaic of areas of secondary and mature vegetation to insure the conservation of bat diversity as well as their important ecological interactions.  相似文献   

5.
Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north-eastern Bolivia. Some species benefited from increased light intensities on abandoned logging roads. Others benefited from low densities of competing vegetation on roads with compacted soils. This was the case for the small-seeded species Ficus boliviana C.C. Berg and Terminalia oblonga (Ruiz & Pav.) Steud. Some species, e.g. Hura crepitans L., displayed patchy regeneration coinciding with the presence of adult trees. Our results suggest that current management practices could be improved by intensifying logging in some areas to improve regeneration of light demanding species. Sufficient seed input in logged areas should be ensured by interspersing large patches of unlogged forest with logged areas. This may also assist regeneration of species that perform poorly in disturbed areas.  相似文献   

6.
In northern Thailand, a growing interest in restoring forests for wildlife conservation and environmental protection is increasing demand for high quality planting stock of a wide range of native forest tree species. Since most native tree species have never been grown in nurseries, their production is hindered by a lack of knowledge of basic propagation methods. Basic data on germination and performance of ten indigenous framework tree species, Castanopsis acuminatissima, Dalbergia rimosa, Diospyros glandulosa, Eugenia albiflora, Ficus glaberrima var. glaberrima, Lithocarpus craibianus, Melia toosendan, Prunus cerasoides, Quercus semiserrata and Spondias axillaris were collected during the production process. Different species produce seeds at different times of the year and they have different growth rates, yet saplings must attain a plantable size by the optimum planting time i.e. the start of the wet season. Germination percentages ranged from 38 to 89%, and the time in the nursery to reach a plantable size ranged from 119 days for Prunus cerasoides, when it had reached a mean height of 48.6 cm (SD 7.9), to 609 days for Lithocarpus craibianus, when it had reached mean height of 40.5 cm (SD 10.6). This paper discusses the scheduling of production for these candidate framework species.  相似文献   

7.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

8.
Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988–2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 ± 4.6% (range = 1.5–17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1–5 cm dbh, elephant-herbivory in stems 5–10 cm dbh, and other natural causes in stems >10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2–3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.  相似文献   

9.
A major challenge of forest management is to maintain the biodiversity and integrity of the forests while at the same time satisfying human needs through productive activities. While selective extraction of natural resources has less severe consequences on biodiversity and ecosystem function than complete removal of vegetation, such consequences need to be evaluated in detail. “Varas” or stems cut from small trees of tropical dry forests (TDF) in the Pacific Coast of Mexico have been used as plant support stakes in horticultural fields (mainly tomato crops) since the middle of the last century. In this study, we evaluated the effects of selective cutting of plant support stakes on the diversity of woody vegetation of a TDF in northwestern Mexico. Stakes were cut by local harvesters before our assessment of cutting effects. In each of three cutting treatments (T0 = uncut, T1 = one cut event, and T2 = two cut events), we established three sampling plots each consisting of ten 50 m × 2 m parallel transects. All woody plants (stems ≥1.0 cm diameter at 1.3 m height, DBH) were identified and measured on each transect. Species richness (S) decreased as the number of cuts increased (T0 = 65 species, T1 = 50 species, and T2 = 38 species). The Simpson (C) and the Shannon (H′) diversity indices, as well as the rarefaction curves and non-parametric estimates of diversity (Chao1 and ACE) confirmed this tendency of change. Comparison of dominance–diversity curves showed that the woody plant community loses equitability with every additional stake cutting event. The total number of stake providing species did not vary notably across treatments (T0 = 8 species, T1 = 9 species, and T2 = 7 species), but four species reduced their dominance considerably in T2, while Croton septemnervius, the most used species, increased its abundance and relative basal area with each additional stake harvest, reaching a representation of more than 59% of total number of stems in T2. The reduction in species diversity, changes in patterns of dominance, and the proliferation of species associated to disturbed sites suggest that current practices of selective cutting require adjustments to make this forest management application more consistent with local conservation of woody plant species diversity and community structure.  相似文献   

10.
Natural regeneration of large-seeded, late-successional trees in fragmented tropical landscapes can be strongly limited by a lack of seed dispersal resulting in the need for more intensive restoration approaches, such as enrichment planting, to include these species in future forests. Direct seeding may be an alternative low-cost approach to planting nursery-raised tree seedlings, but there is minimal information on its efficacy or when in the successional process this technique will be most successful. We tested directly seeding five native tree species into habitats representing passive and active restoration approaches: (1) recently abandoned pasture; (2) naturally establishing, young secondary forests; and (3) young, mixed-species (fast-growing N-fixers and commercially valuable species) tree plantations established to facilitate montane forest recovery in southern Costa Rica. We monitored germination, survival, growth, and above- and below-ground biomass over a 2-year period. Germination in pastures, secondary forests, and tree plantations was similar (∼43%). Seedling survival after one and two years was significantly higher under tree plantations (91% year 1, 75% year 2) compared to secondary forests (76, 44%) or pastures (74, 41%). Moreover, seedlings had greater total biomass and lower root:shoot ratios in the plantations, suggesting higher nutrient availability in that treatment. Costs for direct seeding were 10- to 30-fold less per 100 seedlings after 2-year compared to nursery-raised seedlings planted at the same sites; however, there are important trade-offs to the two restoration approaches. Planting nursery-raised seedling is a more effective but higher cost approach for rapidly establishing canopy cover and restoring large areas whereas direct seeding is a more efficient way to enrich an existing system. We particularly recommend using direct seeding as a complimentary measure to the more intensive restoration approach of planting fast-growing and N-fixing trees.  相似文献   

11.
For sustainable forest management, it is important to know the response of timber species to the change in environment caused by logging. We performed a 2-year study on germination, survival and growth of four timber species, Cedrela odorata, Swietenia macrophylla, Hymenaea courbaril, and Cariniana micrantha, and one non-commercial species Tachigali vasquezii. We sowed seeds of these species in five microenvironments: log landing, gap-crown and gap-trunk, skidder trail and understory, in a tropical lowland moist rain forest in northern Bolivia. We related seed and seedling performance to light availability, soil compaction, and plant competition. Germination did not differ significantly between microenvironments but survival of germinated seeds for most species was significantly higher (P < 0.05) in the log landing (46–100%) than in the understory (0–7%). After 2 years, the tallest plants were always found in the log landing (119–190 cm) and the smallest in the understory (12–26 cm) caused by a higher relative height growth rate (RHGR) in the log landing (0.003–0.004 cm cm−1 per day) compared to the understory (0.000–0.001 cm cm−1 per day). During the first year RHGR was positively related to canopy openness for all species and negatively to the number of overtopping competitors for three species. During the second year also water infiltration explained observed variation to RHGR. These results show that abandoned log landings and logging gaps are suitable environments for the regeneration of timber species studied. This finding suggests that the removal of competitors in log landings and logging gaps combined with leaving seed trees near these microenvironments or sowing seeds, will improve regeneration of timber species in tropical forests.  相似文献   

12.
New challenges are facing the managers of the world’s forests, with stakeholders demanding a broader range of goods and services. Balancing the demand for forest products and the responsibility for forest protection is not an easy task. The earlier narrow perspective of wood-resources sustainability has often been transferred to an equally narrow biological diversity conservation perspective. Segregation, in which most of the fiber is produced in plantations, attempts to solve the conflict between conservation and wood production. Biotechnology offers a strategy to gain more wood on less land and with less harm to the environment. The traditional forest research community has not always been able to react properly and promptly to the needs of the users of research results. Consequently, forest research has lost ground to other disciplines. Forest researchers should not consider the newcomers as competitors but instead should try to create more collaboration with those who are interested in solving forest-related problems but do not belong to the old forestry family. There is also a clear need to improve the interface between the research and user communities. Very often the problem is not so much a need to obtain more data than in discovering how to find the most appropriate existing information. In general, forest research should be more cost-efficient. Adopting a more business-like environment should not, however, lead to an excessively result-oriented, short-term way of thinking, to the extent that basic research, and also quality of research, would be in danger.  相似文献   

13.
Phenological transects were employed to assess monthly leaf, flower, unripe fruit and ripe fruit abundance for a total of 1732 individual plants within five tropical forest habitats at the ‘Lago Caiman Research Camp’, Noel Kempff Mercado National Park, northeastern Santa Cruz Department, Bolivia. Fruit surveys along trails were conducted concomitantly to assess fruit availability for the resident terrestrial frugivore community. The results of the two methodologies are compared and discussed with respect to wildlife and forest management in the region. Phenological transects revealed that Cerrado forest, tall forest, low vine forest, Sartenejal (swamp) forest, and pied mont (premontane) forest, showed seasonal variations in flower, unripe fruit and ripe fruit abundance, however, the broad temporal patterns were significantly different across habitats. Seasonal variation in overall foliage abundance was only marked for Cerrado forest. Ripe fruit production within the study site was not significantly different across months, with different habitats peaking asynchronously in abundance. From a frugivory perspective, overall ripe fleshy fruit abundance also varied considerably between habitats, and again showed asynchronous peaks in habitat production. However, both methodologies revealed the early dry season (June–July) as a period of ripe fleshy fruit scarcity throughout the study area. This period represents a resource ‘bottleneck’ for the resident frugivore community and phenological results allowed the identification of a number of keystone fruit resources for the region. Furthermore, fruit resources which are super-abundant in the early–mid wet season (November–February) might also be considered keystone resources for the region, given that they are available in an otherwise fruit scarce forest. The dynamic spatial patterning of fruit availability at Lago Caiman suggests that certain habitats might be considered keystone habitats, since they provide the majority of fruit resources on a seasonal basis. Finally, the potential of phenological information in tropical forest management plans is discussed and underlined by the observation that rainfall in itself fails to predict fruit availability in the dominant habitats at Lago Caiman.  相似文献   

14.
Participatory forest management (PFM) has been applied as an approach to create a framework for collaborative forest management between local communities and government forestry agencies. This study was designed to assess the contribution of PFM approach in improving forest status in the Southeastern Highlands of Ethiopia. Landsat satellite imageries of four years were used to evaluate the trends and rate of deforestation before and after PFM interventions. Socio-economic data were collected from sample household surveys, key participants, focus group discussions, and field observations. The results showed that there was high rate of deforestation before PFM intervention as forestland has decreased by 19% (2531 ha) between 1990 and 2000. However, after the PFM intervention (2000–2016), the forest cover has increased by 247 ha (2.2%). During this period, net 1016 ha of shrub-lands were converted into forestland owing to significant forest regeneration. In addition, most sampled households (94% and 96% from lower and upper altitudes, respectively) perceived that PFM had significantly contributed to improve forest regeneration in their locality. This study revealed that PFM can serve as a stepping stone for carbon financing mechanisms to reduce greenhouses emission and enhance carbon sinks via forest resources.  相似文献   

15.
Dry forests represent the most endangered ecosystem in tropical regions and continue to be one of the most sought after environments for human colonization, development and production. In spite of this, dry forests are one of the least well studied tropical habitats. This special issue is dedicated to reviewing much of the information that exists about tropical dry forest in the Americas. The introduction summarizes the articles presented herein, highlighting management strategies that are suggested throughout the special issue that may be useful for conserving tropical dry forest environments.  相似文献   

16.
Understanding tropical forest succession is critical for the development of tropical forest conservation strategies worldwide, given that tropical secondary forests can be considered the forests of the future. Tropical dry forests (TDF) are among the most threatened tropical ecosystems, there are more secondary forests and forest restoration efforts that require a better understanding of successional processes. The main goal of this synthesis for this special issue on the ecology and management of tropical dry forests in the Americas is to present a summarized review of the current knowledge of the ecology and management implications associated to TDF succession. We explore specific issues associated to tropical dry forest succession with emphasis on the use of chronosequences, plant diversity and composition, plant phenology and remote sensing, pollination, and animal–plant interactions; all under the integrating umbrella of ecosystem succession. We also emphasize the need to conduct socio-ecological research to understand changes in land-use history and its effects on succession and forest regeneration of TDF. We close this paper with some thoughts and ideas associated with the strong need for an integrating dimension not considered until today: the role of cyberinfrastructure and eco-informatics as a tool to support sound conservation, management and understanding of TDF in the Americas.  相似文献   

17.
Long-term tree and seedling growth and survivorship data from permanent sample plots established in a neotropical dry forest in Jamaica from 1998 to 2008 were used to (1) model growth (periodic annual increment) and survivorship dynamics, (2) cluster structural and functional types, and (3) estimate the age of selected tropical dry forest tree species. A statistical comparison of parameter estimates derived from a generalized linear model (GLM) of each species to a reference species was used to group individuals based on size (DBH and height), and demographic dynamics (periodic annual increment and survivorship). We identified two groups of species based on structural types (canopy and sub-canopy species), three groups of species based on periodic annual increment (fast, intermediate, and slow growing) and four groups of species based on the probability of survivorship of seedlings and trees (very low probability of seedling survivorship but high tree survivorship (two groups); high survivorship throughout the DBH classes; very low survivorship, regardless of stem size). The composition of the groups was mixed, and included individuals of both structural types, and with different periodic annual increment and survival probabilities. The dichotomy of guilds found in tropical rainforests (pioneer and climax species) was not found in this forest. Individual and group GLMs incorporating empirical relationships between periodic annual increment and survivorship, across a spectrum of ontogenies and DBH’s, were also generated. The periodic annual increment models were then used to estimate the time taken by a newly germinated seedling to reach the largest recorded DBH. The fastest growing species was the hemi-cryptophyte Clusia flava which was estimated to take 74 years to reach its maximum recorded size (12.1 cm DBH), whereas the slowest growing species, Ziziphus sarcomphalus, was estimated to take 399 years to reach its maximum size (24.4 cm DBH). These dry forest trees were estimated to reach their maximum size (which was one-half or one-third of the largest DBH recorded for tropical rainforests) in a time similar to tropical rainforest trees. Some of the tree species are ubiquitous to other neotropical dry forests; therefore, our equations for periodic annual increment and survivorship can be applied elsewhere in the region.  相似文献   

18.
19.
Tree growth and health status appear to be related to foliar nutrient contents. Foliar nutrient concentration might be the result of a complex interaction between soil nutrients and effective availability caused by climate, water and other site and treatment effects. This study examines foliar macronutrient (N, P, K, Ca, Mg) and organic C concentrations in Aleppo pine (Pinus halepensis) needles (between 5 and 18 months old), as well as time course variability (nine dates, from July 1999 to November 2001). Variability was assessed depending on quality site (two sites, Yeste and Calasparra; SE Spain) and seven silvicultural treatments including thinning, scrubbing, pruning and particular combinations of them. Foliar macronutrient concentrations for Aleppo pine in South-eastern Spain were slightly lower (N, P, K,) or higher (Mg, Ca) than the considered as adequate ranges for Aleppo pine and Pinus genera. However, our results agree well with other normal ranges reported for Aleppo pine in Spain and for other North American Pinus species such as P. elliottii, P. taeda and P. palustris. Site, treatment and date (season) affected significantly the foliar macronutrient and C concentration, although the most important was the date, likely due to the two growth periods per year that Aleppo pine has in Mediterranean sites. Silvicultural treatments affected foliar nutrient concentration, so that the concentrations of N, P and K were higher when treatments included thinning than those that did not. The contrary was true for Mg and Ca. However, treatments did not affect the time course of the concentration, i.e., seasonality was not broken due to treatments. Moreover, the effect of the treatments was markedly high along the first year after they were applied but the differences were attenuate 2 years later. Site affected the time course of N, K, Mg and C in a different way: while for N, K and C, at the end of study period, they were higher in Calasparra than in Yeste, for Mg the contrary was true. Nutrient ratios had a different behaviour regarding to single nutrient: although date was significant, we did not appreciate seasonality. In addition, some nutrient ratios were not affected by treatments (N/P, N/K, Ca/Mg,) or by site (N/Ca, K/Ca). Average foliar N concentration and Ca/Mg ratio explained significantly the mean diameter and height growth, so that higher is the foliar N concentration and lower is Ca/Mg, higher is the growth.  相似文献   

20.
人工补植通常用于增加低商业价值树种盛行的次生林中期望树种的密度。本研究评估了均格种植法(vis-à-vis gap)和行植法(line planting)2种人工补植方法,以及老挝过度采伐的热带混合落叶林中的青皮木(Vatica cinerea) 和龙脑香木(Dipterocarpus alatus)和3种豆科植物(缅茄 Afzeliax ylocarpa,大果紫檀Pterocarpus macrocarpus,酸枝木Dalbergia cochinchinensis)的表现。人工补植实验安捧在了一个随机完整的大块场地,做了7个重复。栽植7年后测定了存活率、高度和直径生长,并进行方差分析。用2种人工补植方法栽植的幼苗的存活率没有发生变化(p0.05)。然而,就直径和高度生长而言,均格种植法要比行植法效果更好。这与林冠在格间和行间块速封闭有关,这种情况在行间更加明显。在存活率,高度和直径生长方面,存在着明显的种间变异。耐阴的龙脑香科树种存活率和生长表现优于喜光树种(p0.0001)。个体的大小分布不规则,说明林下光照条件不均衡。考虑到行植法很难维持恒定线条宽度和均匀光线条件,及其每年用于清理的成本和僵硬的几何模式,我们推荐采用均格种植法。龙脑香木(Diperocarpus alatus)和青皮木(V.cinerea)可用于混合阔叶林人工补植的树种。缅茄、酸枝木和大果紫檀可作为人工林的混合树种,在较宽林隙地、直线区域和开放地种植或在火耕林幼林冠下种植。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号