首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Fire suppression over the last century has increased conifer expansion and dominance in aspen-conifer forests, which appears to be a driving force behind aspen decline in some areas. The primary objective of this study was to examine how increasing conifer dominance affects aspen regeneration vigor following the return of fire. The influence of physiographic features and herbivory on aspen regeneration vigor were also examined. The study was conducted in the Sanford fire complex located in the Dixie National Forest in southern Utah, USA, where more than 31,000 hectares burned in the summer of 2002. Seven years after the burn (at 66 locations) we measured aspen regeneration density and height as response variables and former stand composition and density (the burned trees were still standing), soil characteristics, slope, aspect and presence or absence of herbivory as independent variables. Aspen regeneration (root suckering) densities ranged from <500 to 228,000 stems/hectare with an average of 37,000 stems/hectare. Post-fire aspen regeneration density was most strongly correlated with pre-fire stand successional status (as measured by stand composition and species abundance), with percent conifer abundance (R2 = −0.55) and overstory aspen density (R2 = + 0.50) being the most important. Average aspen suckering densities ranged from approximately 60,000 stems/hectare in what were relatively pure aspen stands (>90% aspen) to less than 5000 stems/hectare in stands where conifer abundance was greater than 90%. Soil C, N, and P showed positive correlations (R2 = 0.07 to 0.17) with aspen regeneration vigor, while soil texture had a relatively weak influence on sucker regeneration. Aspen regeneration densities were 15% lower on north facing aspects compared to east, west and south facing aspects with slope steepness showing no correlation with regeneration vigor. Regeneration density was significantly lower (8%) at sites with evidence of herbivory versus sites where herbivory was absent. Overall, the aspen regeneration response in the Sanford fire complex was strong despite high wildlife densities, which may be related to disturbance size. Where the maintenance of aspen is desired in the landscape we recommend promoting fire when the percentage of overstory conifer stems is greater than 80% or overstory aspen density is less than 200 overstory stems/hectare.  相似文献   

2.
In southern British Columbia, juvenile trembling aspen is managed primarily as a competitor with conifers rather than for its ecological and economic value. As a result, brushing treatments have been applied on a widespread basis and this practice is likely to continue in the near future. Given the potential for climate change to affect our valuation of aspen, we require a better understanding of factors that affect its development, its competitive ability with conifers and its responses to brushing. We used data from 11 aspen management experiments to examine the influence of climate and site factors on aspen height, cover, and density in 17–24 year-old control stands and 9–16 years after manual cutting or girdling. Models explained 64% and 89% of the variation in aspen height in control and manually brushed stands, respectively, but were poor for girdling. Increasing length of the frost-free period was associated with increasing aspen height in control stands, whereas drier summer conditions on cool aspects favoured height growth of aspen suckers following manual cutting. We also examined the influence of climate and site factors on three simple competition indices that describe the height and density of aspen relative to conifer height, and then tested how well these indices predicted conifer growth. The density of aspen taller than conifers accounted for 39% of the variation in lodgepole pine diameter and the ratio of aspen/conifer height accounted for 33% of the variation in Douglas-fir height, suggesting that aspen competition was only moderately important to conifer growth. Our findings imply that aspen may become more productive with warmer summers provided it is not limited by summer moisture availability and that mixed stand management is a viable option in southern interior stands.  相似文献   

3.
Plant succession and mycorrhizal fungi both play crucial roles in shaping the development of forest ecosystems. However, despite the strong potential for interactions between them, few studies have examined how patterns of forest succession affect mycorrhizal associations that a majority of plant species depend on to alleviate soil resource constraints. Fire suppression in subalpine forests over the last century has changed successional patterns in ways that may have important implications for mycorrhizal associations of forest tree species. To better understand these relationships we conducted a field and greenhouse study in which we examined mycorrhizal infection along gradients of light intensity and soil nutrient availability that develop as aspen becomes seral to conifers under longer fire return intervals. We examined whether ectomycorrhizal associations of quaking aspen (Populus tremuloides), a shade intolerant, early succession species, were more sensitive to light and soil resource limitations than subalpine fir (Abies lasiocarpa), a shade tolerant, late succession species. In the field study, ectomycorrhizal infection of aspen roots was reduced by 50% in conifer dominated stands relative to aspen stands. In contrast, subalpine fir maintained its EM associations regardless of the successional status of the stand. The greenhouse results were consistent with field results and indicated that light limitation was the driving force behind reductions in EM infection of aspen roots in later stages of succession. These results suggest that nutrient limitations constraining early successional species may be exacerbated by losses in EM associations via light limitations created by late successional species. This is one potential mechanism by which climax forest species create a competitive advantage over early successional species and these results suggest that it is likely exacerbated by longer fire return intervals.  相似文献   

4.
Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species. We conducted a field and greenhouse study to compare photosynthesis, growth and defense responses of quaking aspen and subalpine fir regeneration under light reductions and shifts in soil chemistry that occur as conifers increase in dominance. The studies demonstrated that aspen regeneration was substantially more sensitive to light and soil resource limitations than that of subalpine fir. For aspen, light reductions and/or shifts in soil chemistry limited height growth, biomass gain, photosynthesis and the production of defense compounds (phenolic glycosides and condensed tannins). Biomass gain and phenolic glycoside concentrations were co-limited by light reduction and changes in soil chemistry. In contrast, subalpine fir seedlings tended to be more tolerant of low light conditions and showed no sensitivity to changes in soil chemistry. Unlike aspen, subalpine fir increased its root to shoot ratio on conifer soils, which may partially explain its maintenance of growth and defense. The results suggest that increasing dominance of conifers in subalpine forests alters light conditions and soil chemistry in a way that places greater physiological and growth constraints on aspen than subalpine fir, with a likely outcome being more successful recruitment of conifers and losses in aspen cover.  相似文献   

5.
We report on the recent growth of upland aspen (Populus tremuloides Michx.) thickets in northwestern Yellowstone National Park, USA following wolf (Canis lupus L.) reintroduction in 1995. We compared aspen growth patterns in an area burned by the 1988 fires to aspen growth patterns in an adjacent unburned area. Elk (Cervus elaphus L.) are the principal ungulates that use this area to meet foraging needs. Within a 2 m × 6 m belt transect established in each aspen thicket, we measured aspen densities and recorded annual browsing and height information on the three tallest post-1988 aspen stems. We found greater densities (p < 0.01) in the burned area relative to the unburned area. A decline in the percentage of stems browsed in the burned area began in 1997, with no measured browsing occurring since 2001. In contrast, the percentage of stems browsed in the unburned area began declining in 2002, with 41% of stems still being browsed in 2004. We hypothesize that the combined effect of fire and a subsequent decrease in herbivory following wolf reintroduction facilitated aspen growth. We further propose that, in addition to any changes in elk density in recent years, a recoupling of fire with increased predation risk from wolves may create a positive feedback loop that improves aspen recruitment.  相似文献   

6.
Recent reports of rapid die-off of aspen (Populus tremuloides), coupled with vigorous debate over long-term reduction of aspen cover in western North America, has prompted considerable research given the importance of this forest type for economic and non-economic interests. Despite this interest, indicators of aspen conditions are poorly understood, and there is a lack of systematic monitoring of stable aspen landscapes. Stable aspen are defined here as being predominantly aspen overstorey (>80% basal area) with little or no conifer regeneration. We examined a putative stable aspen landscape in southern Utah and addressed (1) stand structure and (2) indicators of decline. We sampled 83 aspen-dominated stands within a 275 km2 landscape using established forest health monitoring protocols. Eighty-four percent of sample stands on Cedar Mountain exhibited stable aspen characteristics. Principal findings include: (1) a relatively uniform age of adults within the study area; (2) approximately 10% crown dieback on half of the plots sampled; (3) roughly 50% of the study plots had greater than 50% of the trees with damage to the bole; (4) about 25% of the adult basal area was dead; and (5) over half the plots had few sub-canopy individuals and/or limited regeneration. Physiographic variables including elevation, slope, and aspect were generally not strong indicators of aspen condition, typically explaining less than 15% of the variation in basal area, mortality, dieback, or damage. Healthy stands were rarely observed in the most drought prone locations, though the inverse was not necessarily true; healthy and unhealthy stands were found in more mesic settings. Principal components analysis identified two clusters of plots that differed considerably in regeneration; however, no other variables differed between these groupings. We suggest exogenous factors such as land-use history or altered disturbance regimes and endogenous factors such as soils and geology influence aspen condition on this landscape. Further research is necessary to test these hypotheses.  相似文献   

7.
8.
The most widely distributed tree in North America, quaking aspen (Populus tremuloides, Michx.), reproduces sexually via seed and clonally via suckers. The size of aspen clones varies geographically, generally smaller in the east and large in the arid Intermountain West. In order to describe clone size and genetic structure of aspen in the southern Cascade Mountains, 864 stems from six sites were assayed at 15 isozyme and 6 microsatellite loci. Although isozymes reveal significantly lower levels of allelic richness (P < 0.001) and expected heterozygosity (P < 0.01), differences in genet diversity (isozyme G/N = 0.45, microsatellite G/N = 0.47) and allele frequency variation (isozyme FST = 0.02, microsatellite FST = 0.03) were nonsignificant. While a majority of stands were monoclonal, such stands were small, and the number of clones per stand was positively correlated with stand size (P < 0.0001). High genetic diversity, low genetic differentiation, and a rapid decay of spatial genetic structure consistent with long distance gene flow during seedling recruitment indicate that sexual reproduction is a significant factor contributing to the genetic structure of these populations. These findings further resolve the geographic variation in clonal structure observed in aspen across North America, providing novel information for land management and conservation efforts.  相似文献   

9.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

10.
In the boreal forest, conifer release treatments can leave a low quality hardwood component, which does not contribute to healthy, productive mixedwood forests. In this study, the growth and quality of trembling aspen (Populus tremuloides Michx.) regeneration were examined 5-7 years after spraying with glyphosate herbicide before and after harvesting. Results were compared to those from a partial cut and clearcut treatment without herbicide treatments. The preharvest spray treatment effectively reduced aspen density and height but did not lower regeneration quality—assessed by stem and crown deformation and stem stain—compared to the postharvest spray and clearcut treatments. Increased stem stain in the postharvest spray treatment was largely associated with the stem section that grew prior to herbicide application—post-herbicide growth was not affected. While the effect of stem stain may be restricted to growth that occurred before herbicide use, stem deformation from stem dieback may have longer term effects. In the partial cut treatments both density and stocking of aspen regeneration were lower, but aspen basal diameter growth, height growth, and quality were similar to those in the clearcut treatment. Thus, preharvest spray should promote conifer growth by reducing the density and growth of aspen regeneration without reducing the quality of aspen; this should be considered a preferred treatment to support for management objectives calling for productive and healthy mixtures of fast-growing aspen and slow-growing conifers.  相似文献   

11.
Large and severe wildfires are now widespread in the Mediterranean Basin. Fire severity is important to ecosystem properties and processes and to forest management but it has been neglected by wildland fire research in Europe. In this study, we compare fire severity between maritime pine (PS) woodland and other forest (OF) types, identify other variables influent on fire severity, and describe its variation. We sampled contiguous, paired stands of PS and OF cover types – including deciduous and evergreen broadleaves and short-needled mountain conifers – that burned under very high to extreme fire danger in northwestern Portugal. Data on stand characteristics and fire severity metrics were collected in plots along transects perpendicular to the PS–OF boundary. Fire severity was rated in separate for the tree canopy, understorey vegetation and forest floor layers, and then an average (composite) fire severity rating was calculated. Fire intensity inferred from stem char height (adjusted for the effects of other factors) was highest in PS, followed by deciduous broadleaved woodland and short-needled conifer forest. With a few exceptions, all fire severity ratings were significantly different between PS and OF at all sites. Most fire severity metrics and ratings were correlated. The distance for fire severity minimization did not differ between OF types (median = 21 m). Variation in composite fire severity was accounted for by a classification tree (R2 = 0.44) based on cover type (contributing with 51% to the overall explanation), stand variables, aspect, distance to the PS–OF edge and fire spread pattern. Except for a more immediate decline in deciduous broadleaves, fire severity rating was not affected by OF type and tended to decrease in more mature stands and moister aspects. The fire severity moderation from PS to OF was compounded by a dominant pattern of down slope fire propagation into moister topographical positions, exacerbating the fuel effect implicit in the cover type change. The results are consistent with fire hazard and fire incidence studies and support conventional knowledge that advocates the expansion of broadleaved deciduous or evergreen forest as a means to achieve more fire-resilient ecosystems and landscapes.  相似文献   

12.
Aspen and balsam poplar regeneration from root suckers were assessed in boreal mixedwood forests nine years after logging in a variable retention experiment (EMEND Project—Ecosystem Management Emulating Natural Disturbance) located north of Peace River, Alberta, Canada. Five levels of retention of mature trees (2%, 10%, 20%, 50% or 75% of the original basal area) were applied in stands dominated by aspen, white spruce or mixtures of the two species. Basal area of aspen (or that of aspen plus balsam poplar combined) prior to logging strongly influenced sucker density of aspen (or aspen + balsam poplar combined) and in some cases their growth. Nine years after harvest there was a decline in sucker density and volume ha−1 with increasing retention levels of aspen (or both poplars combined); sucker density declined by 50% when only 20% of the original basal area was left in the stand. Retaining mature spruce trees in the stand had little influence on the number of suckers but did affect their total volume ha−1. Thus, we suggest that by knowing stand aspen and balsam poplar density prior to logging and varying levels of retention of aspen and balsam poplar or conifers at harvest, the density of Populus regeneration can be predicted by managers, thereby allowing them to create a range of mixedwood conditions.  相似文献   

13.
Overstory mortality, understory tree recruitment, and vegetation development were assessed in trembling aspen (Populus tremuloides Michx.) stands following two recent episodes of forest tent caterpillar defoliation (Malacosoma disstria Hbn.) in northeastern Ontario. The results suggest that poplar (aspen and balsam poplar (Populus balsamifera L.)) mortality increased with consecutive years of insect defoliation occurring from the mid-1980s to mid-2000s and the proportion of poplars in the overstory, but decreased with improved pre-defoliation tree vigour (DBH increment). The first outbreak, which lasted from the mid-1980s to early 1990s, was more severe in terms of insect defoliation and contributed more to poplar mortality and decline. The decline began in the late 1990s and peaked in early 2000s. Poplar regeneration and understory shrubs responded rapidly to foliage loss to insect defoliation and mortality of overstory poplars. The regenerated poplars were able to maintain their growth under developing shrubs and residual overstory canopy and numbers were sufficient to compensate for the poplar trees lost to insect infestation. The defoliation-induced overstory decline will accelerate the transition of aspen stands to conifer dominance through enhanced conifer recruitment and growth, and reduced hardwood overstory in aspen-dominated stands, while hardwood dominance will persist in pure aspen stands. From a timber supply perspective, the decline caused by forest tent caterpillar defoliation could delay the availability of aspen stands for harvesting by 40–50 years.  相似文献   

14.
Current management practices encourage conversion of red alder (Alnus rubra) riparian forests to conifers in the Pacific Northwest U.S. Patches of young naturally regenerated conifers are commonly present in alder dominated riparian areas and an understanding of the soil processes in these patches will be helpful in guiding future riparian management. Study objectives were to: (1) determine decomposition rates of red alder leaves in riparian alder and conifer patches, (2) relate decomposition rates to environmental factors and litter chemistry, and (3) determine nutrient release from decomposing alder leaves in these patches. Study sites were riparian areas adjacent to Brown and Le Bar creeks in the Skokomish River basin, Olympic National Forest, Washington. Red alder leaves were placed in litterbags in red alder and conifer riparian patches along each stream in November 2000 and collected after 1 and 3 years. There was rapid mass loss of alder leaves in the first year in both patch types, but decomposition was significantly faster (p < 0.05) in alder patches (43.2% mass remaining, k = 0.855 year−1) than in conifer patches (48.4% mass remaining, k = 0.734 year−1). There was little mass loss after the first year and no significant difference in decomposition rates. After 3 years mass remaining was 44.2% (k = 0.283 year−1) and 47.8% (k = 0.48 year−1) in alder and conifer patches, respectively. Decomposition rate differences were attributed more to the effects of the different litters in each patch and the influence on soil microbial and faunal communities than differences in soil temperature and moisture. The forest floor was deeper in conifer patches (3.7 cm) than alder (1.8 cm) patches. This was ascribed to slower decomposition rates in conifer patches, greater litterfall in conifer patches, and/or removal of alder surface litter by flooding. Alder patches were lower in elevation (0.8 m above bankfull width) than conifer patches (2.2 m). Forest floor and soil C and N concentrations and pHs were not significantly different in alder and conifer patches. Nutrient release from decomposing alder leaves was not significantly different in conifer and alder patches, although there was a trend for C, N, P, K, and Ca to be lost faster from leaves in alder patches than conifer patches in the first year. Red alder litter input to riparian conifer patches will initially decompose rapidly and provide nutrients, particularly N and P to conifers, as well as enhancing soil C since long-term decomposition rates are slow.  相似文献   

15.
In the boreal forest of Alberta, fire and wind often open gaps in the canopy where late-successional species can establish and over time cause a shift in the species distribution from deciduous (e.g., trembling aspen) dominated to mixedwood, to shade-tolerant conifer (e.g., white spruce) dominated stands. This study attempted to understand the change of density-dependent competition in a boreal chronosequence and the role of tree competition in affecting stand structure and mortality. Four 1-ha stem-mapped plots were established to represent a chronosequence comprised of aspen dominated, mixedwood, and spruce dominated stands in Alberta. Second order spatial point-pattern analysis using Ripley's K(t) function showed that intraspecific competition is a prevailing force causing conspecific tree mortality and thus shaping the stand structure. The results of bivariate K(t) function analysis did not reveal sufficient evidence of interspecific competition. This suggested that competitive interaction among heterospecific trees was not strong enough to cause significant tree mortality, but the analysis of marked correlation function revealed that interspecific competition could have a negative impact on tree growth. This study highlights the importance of density-dependent competition in understanding stand dynamics of boreal forests over succession.  相似文献   

16.
Establishing white spruce (Picea glauca (Moench) Voss) by planting it under established aspen (Populus tremuloides Michx.), stands has substantial potential as a technique for regenerating boreal mixedwood stands. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. In this study we examine the growth of white spruce during the first 10 years after being planted underneath a 39 year-old stand of trembling aspen following thinning and fertilization. Results indicate successful establishment and reasonable growth rates of white spruce planted under thinned and unthinned aspen stands, even with aspen basal area of 51 m2 ha−1. Thinning of overstory aspen to 1000 or 2000 stems ha−1 did not increase light reaching seedlings, but did result in improvements in light above the shrub layer and in diameter and height growth of the underplanted seedlings. However, these increases in growth of underplanted spruce may not justify the expense of thinnings. Fertilization of these stands prior to planting had no effect on spruce growth. Growth of spruce underplanted at this site near Fort Nelson was similar to that at two other stands near Dawson Creek, B.C.  相似文献   

17.
Establishing white spruce (Picea glauca (Moench) Voss) by planting it under established aspen (Populus tremuloides Michx.), stands has substantial potential as a technique for regenerating boreal mixedwood stands. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. In this study we examine the growth of white spruce during the first 10 years after being planted underneath a 39-year-old stand of trembling aspen following thinning and fertilization. Results indicate successful establishment and reasonable growth rates of white spruce planted under thinned and unthinned aspen stands, even with aspen basal area of 51 m2 ha−1. Thinning of overstory aspen to 1000 or 2000 stems ha−1 did not increase light reaching seedlings, but did result in improvements in light above the shrub layer and in diameter and height growth of the underplanted seedlings. However, these increases in growth of underplanted spruce may not justify the expense of thinnings. Fertilization of these stands prior to planting had no effect on spruce growth. Growth of spruce underplanted at this site near Fort Nelson was similar to that at two other stands near Dawson Creek, B.C.  相似文献   

18.
Shelterwood silviculture is commonly used to regenerate oaks in upland stands. However, competition from other species such as tulip-poplar (Liriodendron tulipifera) may deter oak regeneration when these traditional shelterwood techniques are used. The shelterwood-burn technique is a relatively new tool for regenerating oak-dominated stands on some upland sites while simultaneously minimizing undesirable hardwood intrusion with prescribed fire. Once successful oak regeneration has been achieved, three options are available which will result in different vegetative structure and composition within a stand and subsequently different habitats for songbirds. These options are: complete or partial canopy retention, post-harvest prescribed burning and complete canopy removal. Canopy retention, burning and removal treatments will create, respectively, two-age stands that are likely to harbor a diverse mixture of mature forest and early successional species; park-like woodlands with open woodland species; or early-successional habitats with shrubland species. We suggest that shelterwood-burn systems and the management options associated with them offer viable alternatives for managing both songbird and timber resources where oak-dominated stands are the desired goal in upland southeastern sites.  相似文献   

19.
Concern and debate about the condition of quaking aspen in the intermountain West of North America have led to many studies examining aspen recruitment at local to landscape scales. Patterns of aspen mortality and recruitment may reflect local conditions, or may show broad synchrony if regional-scale drivers are important. This paper aggregates historical aspen establishment data from 12 case studies from nine locations in a meta-analysis of emergent patterns of aspen dynamics at sub-continental or mesoscales (104-106 km2). Aspen establishment data were reported in multiple forms among studies, so the meta-analysis included two approaches (1) a quantitative analysis of percent aspen establishment in decadal time bins for 1820-1999 for six studies that reported data in a format suited for this approach and (2) a qualitative ranking of 19th and 20th century peaks in aspen establishment for all 12 studies. Aspen forests ranging from Wyoming to northern Arizona experienced two peaks in establishment between 1820 and the 1980s. The first peak began in the 1860s, reached its maximum in the 1880s, and gradually declined to an end the 1910s. The second peak began abruptly in the 1970s and continued through the 1980s. I speculate that the late-1800s peak in aspen recruitment was driven primarily by the occurrence of the last historical fires throughout the intermountain West and that the 1970s and 1980s peak was driven by improved moisture conditions brought about by a shift to a positive phase of the Pacific Decadal Oscillation and a persistent negative phase of the Atlantic Multidecadal Oscillation. The overarching implication of large-scale synchrony in aspen dynamics is that current aspen ecosystem condition is not solely the result of local-scale histories of browsing or fire, but is more likely the interwoven legacy of these local factors combined with broad factors such as climate and Euro-American settlement.  相似文献   

20.
Postfire tree species compositions are predicted to be the same prior to fire according to the direct regeneration hypothesis (DRH). We studied 94 upland boreal forest stands between 5 and 18 years after fire in Ontario, Canada. Postfire species-specific regeneration density was positively related to prefire stand basal area for Pinus banksiana, Populus spp., Betula papyrifera and Picea mariana, but not for Picea glauca and Abies balsamea. In addition, seedling density of Populus spp., B. papyrifera, P. mariana, P. glauca and A. balsamea were positively affected by build up index and, except Populus spp., their density increased with age of burn. To facilitate testing the DRH, we introduced a term called compositional difference (CD) that is the difference in a species relative percentage between the postfire and prefire stand. The testable null hypothesis is CD = 0 for a given species. CD was not different from 0 for P. banksiana, was 19.8% for Populus spp., 10.4% for B. papyrifera, −17.9% for P. mariana, −14.6% for P. glauca, and −14.9% for A. balsamea, indicating fire increases broadleaves at the expenses of mid- and late-successional coniferous species. Compositional increases of Populus spp. and B. papyrifera in postfire stands occurred mostly where these species were a minor component prior to fire. In conclusion, the DRH was supported by the specific positive relationships between postfire regeneration densities and prefire basal area for P. banksiana, Populus spp., B. papyrifera and P. mariana. However, if the DRH is used for predicting postfire composition, P. banksiana is the only species that had the same composition between postfire and prefire stands. Nevertheless, CD for P. banksiana was negatively related to its prefire composition. Similarly, CD for other species was negatively related to their prefire compositions with varying effects of build up index and age of burn. Our results suggest, if fire occurrences increase with global change, the boreal landscape will be more dominated by hardwoods and mixtures of conifers and hardwoods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号