首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Secondary forests are gaining increased importance in tropical landscapes and have recently been reported to act as potential belowground carbon sinks. While economic interest in the management of secondary forests to mitigate carbon emissions is rising, the dynamics of soil carbon stocks under these ecosystems remain poorly understood. Recent studies report conflicting results concerning soil carbon trends as well as multiple confounding factors (e.g. soil type, topography and land-use history) affecting these trends. In this study, organic carbon stocks were measured in the mineral soil up to 20 cm depth of at 24 active pastures, 5-8-year-old, and 12-15-year-old secondary forest sites on former pastures. Additionally, we estimated carbon stocks under a 100-year-old secondary forest and compared them to those of nearby mature forests. Abiotic conditions in the study area were homogenous, enabling us to isolate the effect of land-use change on soil organic carbon stocks. Contrary to our expectations, soil carbon stocks in the top 10 cm did not change with young secondary forest development. Pasture soils stored 24.8 ± 2.9 Mg ha−1 carbon (mean ± standard error) in the top 10 cm, and no accumulation of soil carbon was apparent during the first 15 years of secondary succession. Soil carbon stocks under 100-year-old secondary forests, averaging 43.0 ± 7.9 Mg ha−1 (mean ± standard error), were clearly higher than those recorded at younger sites and approached levels of soil carbon stocks under mature forests. These data indicate that soil carbon stocks in this region of Panama are not affected by the land-use transition from pasture to young secondary regrowth. However, an increase of soil carbon storage might be possible over a longer period of time. Our results support trends observed in other tropical areas and highlight the importance of environmental conditions such as soil properties rather than land-use transitions on soil carbon dynamics. While our understanding of organic carbon dynamics in tropical soils remains limited, these results underscore the challenges of undertaking short-term reforestation projects with the expectation of increasing soil carbon sequestration.  相似文献   

2.
The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple < oak = beech ? spruce. Tree species influenced mineral soil only in some of the sampled soil layers within 30 cm depth. Species with low forest floor C and N content had more C and N in the mineral soil. This opposite trend probably offset the differences in forest floor C and N with no significant difference between tree species in C and N contents of the whole soil profile. The effect of tree species on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N, and mineral soil N status. Forest floor and litterfall C/N ratios were not related, whereas the C/N ratio of mineral soil (0–30 cm) better indicated N status under deciduous species on rich soil. The results suggest that European deciduous tree species differ in C and N sequestration rates within forest floor and mineral soil, respectively, but there is little evidence of major differences in the combined forest floor and mineral soil after three decades.  相似文献   

3.
Harvest impacts on soil carbon storage in temperate forests   总被引:1,自引:0,他引:1  
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of variation in soil C responses to harvest, we used meta-analysis to test a database of 432 soil C response ratios drawn from temperate forest harvest studies around the world. Harvesting reduced soil C by an average of 8 ± 3% (95% CI), although numerous sources of variation mediated this significant, overall effect. In particular, we found that C concentrations and C pool sizes responded differently to harvesting, and forest floors were more likely to lose C than mineral soils. Harvesting caused forest floor C storage to decline by a remarkably consistent 30 ± 6%, but losses were significantly smaller in coniferous/mixed stands (−20%) than hardwoods (−36%). Mineral soils showed no significant, overall change in C storage due to harvest, and variation among mineral soils was best explained by soil taxonomy. Alfisols and Spodosols exhibited no significant changes, and Inceptisols and Ultisols lost mineral soil C (−13% and −7%, respectively). However, these C losses were neither permanent nor unavoidable. Controls on variation within orders were not consistent, but included species composition, time, and sampling depth. Temporal patterns and soil C budgets suggest that forest floor C losses probably have a lesser impact on total soil C storage on Alfisols, Inceptisols, and Ultisols than on Spodosols, which store proportionately large amounts of C in forest floors with long C recovery times (50–70 years). Mineral soil C losses on Inceptisols and Ultisols indicate that these orders are vulnerable to significant harvest-induced changes in total soil C storage, but alternative residue management and site preparation techniques, and the passage of time, may mitigate or negate these losses. Key findings of this analysis, including the dependence of forest floor and mineral soil C storage changes on species composition and soil taxonomic order, suggest that further primary research may make it possible to create predictive maps of forest harvesting effects on soil C storage.  相似文献   

4.
Few long-term studies have been conducted on changes in soil nutrients after afforestation in Iceland, a country with a young history of forest management. While fertilization was shown to improve survival of seedlings in the first years after planting on the nutrient limited soils, knowledge about the nutrients status of the soils that develop under maturing forest stands is still scarce. In a chronosequence study, the development of base cations and Olsen-phosphorus (Olsen-P) in the mineral soil was followed in six forest stands of two different tree species of increasing age (14–97 years): native birch (Betula pubescens) and introduced Siberian larch (Larix sibirica). A treeless heathland was included to present soil conditions prior to forest establishment. The sites are part of the largest forest area in Iceland, located in the east of the country. Results revealed an effect of stand age on all soil nutrients investigated except for potassium (K). Olsen-P increased in 0–10 cm depth of the mineral soil, indicating a better availability and thus improved P supply in maturing forest stands. Calcium (Ca) and magnesium (Mg) concentrations decreased with stand age in 0–10 and 10–20 cm soil depth, while sodium (Na) decreased only in the upper soil layer. Only Olsen-P and K concentrations were higher in the upper soil layer as compared to 10–20 cm depth. This indicates a higher biotic control as opposed to the geochemical control of the other base cations.  相似文献   

5.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

6.
Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha−1 in the high forest stand (HF) and 213 Mg ha−1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil.  相似文献   

7.
The effects of nitrogenous fertilisation on litter fall, FH layer and soil characteristics were investigated in replicated trials in six second rotation New Zealand Pinus radiata plantation forests. Four trial sites also incorporated three different post-harvest organic matter removal treatments. All sites were sampled in early 2002 and 2003. Fertilisation significantly increased the nitrogen content and decreased the carbon:nitrogen ratio of the litter fall. Fertilisation significantly increased the mass of the FH layer in the treatment plots, moisture content in the FH layer, the concentration of nitrogen in the FH layer and the pool of carbon and nitrogen stored in the FH layer. Fertilisation significantly increased the nitrogen concentration of the mineral soil, and decreased the mineral soil carbon:nitrogen ratio and pH. Several significant site × fertilisation interaction terms indicated that variations in the fertilisation regimes and site characteristics substantially influenced the effects of fertilisation. Fertilisation did not significantly decrease the relative differences between the organic matter removal treatments. The significant differences in the litter fall, FH layer and mineral soil characteristics strongly suggest that nitrogenous fertilisation has the capacity to significantly alter the forest floor environment, and may be able to increase carbon storage over the life of the rotation.  相似文献   

8.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

9.
Long-term management impacts on carbon storage in Lake States forests   总被引:2,自引:0,他引:2  
We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of similar ages, providing a unique opportunity to evaluate long-term management impacts on carbon pools in two major North American forest types. Management resulted in total ecosystem carbon pools of 130-137 Mg ha−1 in thinned red pine and 96-177 Mg ha−1 in managed northern hardwoods compared to 195 Mg ha−1 in unmanaged red pine and 224 Mg ha−1 in unmanaged northern hardwoods. Managed stands had smaller tree and deadwood pools than unmanaged stands in both ecosystems, but management had limited impacts on understory, forest floor, and soil carbon pools. Total carbon storage and storage in individual pools varied little across thinning intensities in red pine. In northern hardwoods, selection cuttings stored more carbon than the diameter-limit treatment, and selection cuttings generally had larger tree carbon pools than the shelterwood or diameter-limit treatments. The proportion of total ecosystem carbon stored in mineral soil tended to increase with increasing treatment intensity in both ecosystems, while the proportion of total ecosystem carbon stored in the tree layer typically decreased with increasing treatment intensity. When carbon storage in harvested wood products was added to total ecosystem carbon, selection cuttings and unmanaged stands stored similar levels of carbon in northern hardwoods, but carbon storage in unmanaged stands was higher than that of thinned stands for red pine even after adding harvested wood product carbon to total ecosystem carbon. Our results indicate long-term management decreased on-site carbon storage in red pine and northern hardwood ecosystems, but thinning intensity had little impact on carbon storage in red pine while increasing management intensity greatly reduced carbon storage in northern hardwoods. These findings suggest thinning to produce different stand structures would have limited impacts on carbon storage in red pine, but selection cuttings likely offer the best carbon management options in northern hardwoods.  相似文献   

10.
Tropical forests play an important role in the global carbon cycle. Despite an increasing number of studies have addressed carbon storage in tropical forests, the regional variation in such storage remains poorly understood. Uncertainty about how much carbon is stored in tropical forests is an important limitation for regional-scale estimates of carbon fluxes and improving these estimates requires extensive field studies of both above- and belowground stocks. In order to assess the carbon pools of a tropical seasonal forest in Asia, total ecosystem carbon storage was investigated in Xishuangbanna, SW China. Averaged across three 1 ha plots, the total carbon stock of the forest ecosystem was 303 t C ha−1. Living tree carbon stocks (both above- and belowground) ranged from 163 to 258 t C ha−1. The aboveground biomass C pool is comparable to the Dipterocarp forests in Sumatra but lower than those in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1–2 t C ha−1 to the total carbon stock. The mineral soil C pools (top 100 cm) ranged from 84 to 102 t C ha−1 and the C in woody debris from 5.6 to 12.5 t C ha−1, representing the second and third largest C component in this ecosystem. Our results reveal that a high percentage (70%) of C is stored in biomass and less in soil in this tropical seasonal forest. This study provides an accurate estimate of the carbon pool and the partitioning of C among major components in tropical seasonal rain forest of northern tropical Asia. Results from this study will enhance our ability to evaluate the role of these forests in regional C cycles and have great implications for conservation planning.  相似文献   

11.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

12.
Incorporation of forest slash during stand establishment is proposed as a means of increasing soil carbon and nutrient stocks. If effective, the increased soil carbon and nutrient status may result in increased aboveground tree growth. Eight years after study installation, the impact of forest slash incorporation into the soil on soil carbon and nutrient stocks, foliar nutrients and loblolly pine growth are examined on mineral and organic sites on the North Carolina Lower Coastal Plain. Treatments include leaving forest slash on the surface and flat planting (control); V-shear and bedding (conventional), mulch forest slash followed by bedding (strip mulch) and mulch forest slash and till into the soil followed by bedding (strip mulch till). After eight years, mulching and/or tillage did not have a significant impact (p > 0.05) on soil bulk density or soil chemical properties (pH, cation exchange capacity, soil nutrients). Additionally, neither tree foliar nutrients nor stand volume were significantly impacted. However, significant effects were observed for soil phosphorus contents and stand volume between the control plots and the other treatment plots. For example, the mean stand volumes on the mineral site were 24.49 ± 1.28, 38.16 ± 2.90, 44.59 ± 3.07 and 46.96 ± 2.74 m3 ha−1 for the control, conventional, strip mulch and strip mulch till plots. These observations are more likely due to the effect of bedding rather than mulching or tillage of the forest slash. These results are consistent for the mineral and the organic sites. Considering the greater expense to install the mulch and tillage treatments, the lack of a treatment effect on soil carbon and nutrient stocks and tree growth does not justify these treatments on these sites.  相似文献   

13.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

14.
Carbon concentrations and stocks in forest soils of Europe   总被引:1,自引:0,他引:1  
This study presents the results of a series of evaluations of a continent-wide soil database (EU/UN-ECE Level I) with the aim to estimate baseline soil carbon concentrations and stocks. The methodology included the biogeographic stratification of soil carbon measurements throughout Europe using climatic zones derived from the Soil Regions Map of Europe. The presented stock estimates range from 1.3 to 70.8 t C/ha for the O-layer, and from 11.3 to 126.3 t C/ha for the mineral soil 0–20 cm (Germany: 0–30 cm) (5 and 95 percentiles). Histosols were excluded because of methodological differences and data gaps. When looking at the median values of the strata investigated, relationships were found. For example, carbon stocks in the O-layer of sandy soils are distinctly higher than those of fine-textured soils. However, the variability is so high that some of these relationships disappear. For example in western and central Europe, the level of carbon stocks in the mineral soil between shallow soils (Leptosols) and more deeply developed soils (Podzols and Cambisols) do not differ very much. It was also found that just the investigation of topsoils is not sufficient to understand the regional pattern of organic matter in forest soils – unless the subsoil becomes included as well. It is hypothesized that for Europe, the impact of site factors such as climate, texture and relief are difficult to extract from such a database if the data are only stratified according to macro-climatic areas. It has to be considered that the effect of systematic error in the database is quite large (but cannot be identified on the level of the current data availability). In order to receive a first impression of the landscape-level distribution of carbon, a map of carbon concentrations in the topsoil was generated. The results support the relationships found between carbon stocks and site factors, such as climatic zones and soil type. Compared to the much lower carbon concentrations of agricultural soils, the results demonstrate clearly the importance of forest soils for the terrestrial carbon cycling in Europe.  相似文献   

15.
The effects of three postharvest organic matter removal treatments on fermentation-humus (FH) layer and soil characteristics were compared in replicated trials in four second rotation New Zealand Pinus radiata plantation forests, planted 8–16 years prior to sampling. All sites were sampled in early 2002 and 2003. Increasing organic matter removal significantly decreased the mass of the FH layer in the treatment plots, the moisture content in the FH layer and mineral soil, the concentration of carbon in the FH layer and mineral soil, the pool of carbon stored in the FH layer, the concentration of nitrogen in the mineral soil and the pool of nitrogen stored in the FH layer. Mineral soil pH was significantly increased with increasing organic matter removal. The persistence of the significant differences in the FH layer and mineral soil characteristics strongly suggested that variations in organic matter removal have long-term effects on forest floor properties, and significantly influences carbon storage over the life of the rotation.  相似文献   

16.
柳杉人工林皆伐后初期土壤有机碳和微生物量碳动态   总被引:3,自引:0,他引:3  
本文研究了华西雨屏区柳杉人工林皆伐后1年内土壤有机碳和微生物量碳动态。结果表明:柳杉人工林皆伐林地土壤平均有机碳含量比对照(未皆伐林地)减小2.01 gC.kg-1,但差异不显著,而土壤平均有机碳储量及微生物量碳分别比对照减少20.97 tC.hm-2、6.68 mg.kg-1(P0.05);皆伐林地土壤有机碳含量及微生物量碳均随季节的变化而逐渐降低,但有机碳储量随季节的变化无明显减少趋势;皆伐林地土壤四季的有机碳含量、碳储量和微生物量碳差异不显著。皆伐对柳杉人工林土壤有机碳储量的影响主要表现在0~20 cm土层(P0.05);皆伐林地和对照在0~40 cm土层的微生物量碳和有机碳含量都表现出显著相关性(P0.05),但对照的相关性高于皆伐林地。总之,柳杉人工林转变为采伐迹地后,其初期土壤有机碳储量和微生物量碳都明显减少。  相似文献   

17.
The objectives of the study were to investigate mineral soil profiles as a living space for microbial decomposers and the relation of microbial properties to soil acidity. We estimated microbial biomass C on concentration (g g–1 DW) as well as on volume basis (g m–2) and the microbial biomass C to soil organic C ratio along a vertical gradient from L horizon to 20 cm in the mineral soil and along a gradient of increasing acidity at five beech forest stands in Germany. Microbial biomass C concentration ranged from 17,000–34,000 g Cmic g–1 DW in the litter layer and decreased dramatically down the profile to 29–264 g Cmic g–1 DW at 15–20 cm depth in the mineral soil. This represents depth gradients of microbial biomass C concentrations ranging from a factor of 65 in slightly acidic and up to 875 in acidic soils. In contrast, microbial biomass C calculated on a volume basis (g Cmic m–2) showed a different pattern since a considerable part of the microbial biomass C was located in the mineral soils. In the soil profile 22–34% of the microbial biomass C was found in the mineral soil at strictly acidic sites and as much as 64–88% in slightly acidic soils. The microbial biomass C to soil organic carbon ratios decreased in general down from the L horizon in the forest floor to 0–5 cm depth in the mineral soils. In strongly acidic mineral soils however, the C to soil organic carbon ratio increased with depth, suggesting a positive relation to increasing pH. We conclude from depth gradients of soil pH and microbial biomass C to soil organic carbon ratio that pH affects this ratio at acidic sites. The inter-site comparison indicates that acidity restricts microbial biomass C in the mineral soils.  相似文献   

18.
Changes in temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration that are expected in the coming decades will have profound impacts on terrestrial ecosystem net primary production (NPP). Nearly all models linking forest NPP with soil carbon (C) predict that increased NPP will result in either unchanged or increased soil C storage, and that decreased NPP will result in decreased soil C storage. However, linkages between forest productivity and soil C storage may not be so simple and direct. In an old-growth coniferous forest located in the H.J. Andrews Experimental Forest, OR, USA, we experimentally doubled needle litter inputs, and found that actual soil respiration rates exceeded those expected due to the C added by the extra needles. Here, we estimated that this ‘priming effect’ accounted for 11.5–21.6% of annual CO2 efflux from litter-amended plots, or an additional 137–256 g C m−2 yr−1 loss of stored C to the atmosphere. Soil priming was seasonal, with greatest amounts occurring in June–August coincident with peaks in temperature and dry summer conditions. As a result of priming, mineral soil was more resistant to further mineralization during laboratory incubations. Soil lignin-derived phenols in the Double Litter plots were more oxidized than in the control, suggesting that the soil residue was more degraded. Our hypothesis that excess dissolved organic C produced from the added litter provided the link between the forest floor and mineral soil and a substrate for soil priming was not supported. Instead, the rhizosphere, and associated mycorrhizal fungi, likely responded directly to the added aboveground litter inputs. Our results revealed that enhanced NPP may lead to accelerated processing of some stored soil C, but that the effects of increased NPP on ecosystem C storage will be based on a net balance among all ecosystem C pools and are likely to be ecosystem-dependant. Forest C models need to include these complex linkages between forest productivity and soil C storage.  相似文献   

19.
Through the long-term measurement and development of a method for partitioning the products of decomposing litter, the impact of chemical components of forest debris on soil organic carbon (SOC) accumulation was studied in a forest succession series in South China. We quantified how litter quality is strongly correlated with the partitioning of respiration, dissolved organic carbon (DOC) and fragments of decomposing litter. In the succession sequence of 60-year-old pine forest (PF), to 80-year-old mixed pine and evergreen broadleaved forest (MF) to more than 400-year-old monsoon evergreen broadleaved forest (MEBF), the litter C/N ratios and lignin contents were gradually decreasing, which in turn were correlated with increasing litter decomposition constants (k-values), gradually shortening residence times of standing litter pool. And, 53.5%, 65.6% and 76.2% of the gravimetric litter mass losses were going belowground through both DOC and fragmentation. Correspondingly, the SOC accumulation rates in the top 20 cm of mineral soils for the three forests from 1978 to 2008 were 26 ± 4, 33 ± 5 and 67 ± 5 g C m−2 yr−1, respectively. Results of the study support the idea that in order to increase carbon sequestration in soils and long-term functional ability of forest ecosystems to act as carbon sinks, “Kyoto Forests” should be designed and reconstructed with a high diversity of broadleaved species, especially containing nitrogen-fixing trees.  相似文献   

20.
Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号