首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Compression creep experiments of hybrid poplar (Populus deltoides×Populus trichocarpa) were performed in a pressurized vessel equipped with a heated hydraulic press. The viscoelastic response at various stress levels (2–7 MPa), a temperature of 170°C and transient steam conditions was studied. Moisture content and oven-dry density of compressed specimens were determined. While some recovery of compression strain occurred, compression resulted in permanent deformation and increased wood density. The influence of stress level on the amount of set recovery of compressive deformation was evaluated after 24 h water soaking. Applied stress level had a significant effect on the compression deformation. The initial strain, as well as creep strain, varied depending on the applied stress level. The highest oven-dry density was obtained at a stress level of 6.9 MPa. Lower stress levels resulted in lower moisture content after the compression process, while the equilibrium moisture content of compressed specimens was not significantly affected by stress level. Set recovery increased from 20% to 65% with increased stress level from 1.7 MPa to 4.1 MPa, then decreased to 53% for specimens compressed at 6.9 MPa. Moisture content after the compression process significantly affected the set recovery.  相似文献   

2.
对毛白杨木材浸注脲醛树脂胶制备压缩改性木材中的主要影响因素及相关工艺参数进行初步探索与试验,并在实验结果基础上讨论了各因素对制作工艺及其性能的影响。结果表明:①影响板材性能由主到次因素的顺序为压缩率-热压时间-热压温度;②在试验参数范围内较好的工艺参数为热压温度140℃、热压时间20min、压缩率50%;③在试验参数范围内热压时间对试件增重率、含水率、树脂留存率影响显著,而热压温度对试件增重率影响显著,压缩率对试件密度、变形回复率、吸水厚度膨胀率影响显著。  相似文献   

3.
ABSTRACT

Densification of resin impregnated wood under hot-pressing is a method that along with the potential for the reduction of set-recovery could additionally increase the density of wood and further improve other technical properties. In this study, the effect of the methylated melamine-formaldehyde modification on the shape memory effect of densified Populous nigra wood at various compression ratio levels was investigated. Furthermore, the effects on moisture content and compression ratio were also assessed. The most important conclusion drawn was that MF can act as a means for reducing set-recovery of compressed poplar wood since it is obvious that the use of MF significantly improved the stability of densified wood due to the formation of new bonds between cell wall components and MF. In the case of densification under stress of 10?kg/cm2, the stabilization was improved by the use of MF to about 50% compared to water-treated specimens. The effect of MF on the stabilization of densified wood was not very clear for stresses higher than 10?kg/cm2 since due to the outflow of MF solution during the first minutes of compression.  相似文献   

4.
The bending properties of split bamboo culm were compared with those of spruce and beech wood specimens. The bamboo allowed large flexural deformation since its outer layer retains the tensile stress while the softer inner layer undergoes large compressive deformation. The results suggested that the combination of the fiber-rich outer part and the compressible inner part was responsible for the flexural ductility of split bamboo. To clarify the compressible nature of the inner part of bamboo, the longitudinal surfaces of the bamboo and wood specimens were microscopically observed before and after a large longitudinal compression. Although the wood specimens showed serious and localized buckling, the inner part of the bamboo specimens showed no such visible buckling. In the latter case, the foam-like parenchyma cells absorbed the large compressive deformation by their microscopic buckling and simultaneously, the alignment of sclerenchyma fibers was maintained by the surrounding parenchyma matrix. The flexural elasticity of the bamboo was compared to that of the wood in respect of remaining strain during cyclic bending tests. No clear difference was recognized between their remaining strains. This fact indicated that the bamboo was not so flexible elastically, although its fiber–foam combination and intelligent fiber distribution improve flexural ductility.  相似文献   

5.
In order to increase its hardness and gravity as well as dimension stability, the technology of hotcompressing on Paulownia wood was studied. The main factors of affecting the spring back of the compressed Paulownia samples were discussed. It was discovered that every factor in the experiment had obvious effects on wood hardness and dimension stability of compressed wood. When the MC (Moisture Content) of experimental specimens was 13.89%, it was useful to spray water on the surface of samples before hot pressing. The best resuit was the recovery of compression set could decrease from 90.69% of untreated wood to 45.51% of soaking specimens into PF (Phenol Formaldehyde) water solution. The hot pressing time was 8 min at 190 ℃.  相似文献   

6.
In order to clarify the effects of extraction and compression on the hydroscopicity of wood, Chinese fir (Cunninghamia lanceolata Hook.) heartwood samples with or without extraction were radially or tangentially compressed under water-saturated condition at room temperature. Warm water and 1% sodium hydroxide were used as different solutions for extraction. Water absorption capacity and moisture adsorption isotherms of the compressed samples were then tested. The fractal dimension of internal wood surfaces (Dfs) was calculated based on adsorption isotherms by FHH equation. Results showed that in both compressed groups, the hydroscopicity of samples extracted by sodium hydroxide solution improved greatly, while that of samples extracted by warm water changed little, compared with that of water-saturated samples. Recovery of set and the change of hydroscopic environment inside wood were main reasons for the difference of water absorption among water-saturated samples and samples extracted with warm water and sodium hydroxide solution. The swelling rate of samples extracted by sodium hydroxide solution significantly increased. Moreover, the swelling rate in the tangential direction of tangentially compressed samples was obviously higher than that in radial direction of radially compressed ones. Dfs values of woods extracted by warm water and sodium hydroxide solution decreased by 0.002 and 0.007 in a radially compressed group and by 0.013 and 0.013 in a tangentially compressed group, compared to those of water-saturated one. Therefore, the conclusion can be made that the extraction and compression treatments used in this study have no obvious effects on internal wood surface.  相似文献   

7.
白雪  杨永福  王天龙  秦学娴 《林产工业》2012,39(3):17-19,29
杨木是我国人工林培育的主要树种之一。为了加强对杨树木材的高效利用,改善杨木的渗透性,探究了常温下压缩空气微爆破处理中杨木试材初含水率、爆破压力和爆破次数对杨木渗透性的影响。结果表明,杨木木材试件经微爆破处理后,渗透性明显提高,初含水率和微爆破压力对杨木渗透性影响显著,微爆破处理的次数对杨木渗透性影响不显著。压缩空气微爆破处理对杨木力学性能影响不显著。  相似文献   

8.
Sandwich compression of wood that can control the density and position of compressed layer(s) in the compressed wood provides a promising pathway for full valorization of low-density plantation wood. This study aims at investigating the effects of preheating temperatures (60–210 °C) on sandwich compression of wood, with respect to density distribution, position and thickness of the compressed layer(s). Poplar (Populus tomentosa) lumbers with moisture content below 10.0% were first soaked in water for 2 h and stored in a sealed plastic bag for 18 h, the surface-wetted lumbers were preheated on hot plates at 60–210 °C and further compressed from 25 to 20 cm under 6.0 MPa at the same temperature on the radial direction. The compressed lumbers were characterized in terms of density distribution, position and thickness of compressed layer(s). It was found that depending on preheating temperatures, sandwich compressed wood with three structural modes, namely, surface compressed wood, internal compressed wood and central compressed wood can be formed. Density of the compressed layer(s) in wood increased gradually as a result of the elevated preheating temperatures. Higher preheating temperatures gave rise to bigger distance between compressed layer(s) and the surface, and preheating temperature elevation from 90 to 120 °C contributed to a maximal distance increase of 2.71 mm. In addition, higher preheating temperatures resulted in bigger thickness of compressed layer(s) over 60–150 °C and temperature elevation from 120 to 150 °C lead to the layers integration from two into one. Further temperature elevation over 150 °C reduced the thickness of the compressed layer in wood. SEM scanning suggested that cell wall bucking rather than cell wall crack occurred in compressed layer(s) and transition layer(s).  相似文献   

9.
人工林软质木材表面密实化新技术   总被引:16,自引:7,他引:16  
采用一种新型木材改性处理剂,分别以改性异氰酸酯浓度5%、10%、15%、20%,对美国人工林火炬松(Pinus taeda)进行表面密实化处理。结果表明,随着树脂浓度的增加,无论是冷水浸泡还是煮沸,木材的吸水厚度膨胀率和压缩变形恢复率明显降低。表面密实化后,火炬松处理材的MOR和MOE值分别比素材提高43.9%和30.1%;水浸24h和煮沸2h后的湿状抗弯性能比素材略低,干状抗弯性能明显比素材高,MOR分别高28.0%和25.76%;MOE分别高22.55%和27.79%。改性异氰酸酯浸渍处理后的表面密实化木材,具有一定的阻燃效果;表面耐磨耗性能和表面硬度亦明显改善。  相似文献   

10.
速生杉木通过浸渍PF树脂并压缩改性后,力学性能得到大幅度提高,且随着树脂浓度和压缩率的增加而提高。增重率与真空度、浸渍压力、时间有关,并随着其增加而增大;抗胀(缩)率和阻湿率与树脂的浓度有关,当树脂浓度从0上升到10%时,ASE和MEE的值变化较大,当树脂浓度超过10%后趋于平缓;在树脂浓度相同的情况下,较大压缩的恢复率也相应较大,当树脂浓度低于10%时,随着浓度增加,恢复率急剧下降,浓度达到15%以上时,恢复率几乎没有变化。  相似文献   

11.
杨树新无性系冠层特性与生长关系研究   总被引:14,自引:1,他引:13  
对 5年生黑杨无性系的冠层特性与材积生长之相关性进行了研究。材积生长与全树总叶面积TLA、树冠表面积TCA和冠型率CSR呈极显著正相关而与叶面积指数LAI、冠层密度CLD呈负相关。冠层内上、中层的叶面积对材积生长起了决定性作用 ,下层叶面积与材积生长关系不大。水平方向 ,冠层内、外部叶面积特性对材积生长贡献较大 ,而中部叶面积特性贡献小。阐明了杨树生长的理想冠层特性。  相似文献   

12.
PF树脂浸渍ACQ防腐杨木的基本特性   总被引:3,自引:1,他引:2  
采用低分子量酚醛树脂对ACQ防腐后的速生杨木进行浸渍处理、干燥定型后制得改性材.试验表明,ACQ防腐处理对酚醛树脂的浸渍没有影响,PF树脂对杨木具有较好的浸注性,但不同杨木试件的浸注性差异较大.通过分析杨木自身材性及试件不同尺寸与增重率的关系,发现不同的杨木树株和木材纹理对杨木浸注性有显著的影响.  相似文献   

13.
In order to increase its hardness and gravity as well as dimension stability, the technology of hot-compressing onPaulownia wood was studied. The main factors of affecting the spring back of the compressedPaulownia samples were discussed. It was discovered that every factor in the experiment had obvious effects on wood hardness and dimension stability of compressed wood. When the MC (Moisture Content) of experimental specimens was 13.89%, it was useful to spray water on the surface of samples before hot pressing. The best result was the recovery of compression set could decrease from 90.69% of untreated wood to 45.51% of soaking specimens into PF (Phenol Formaldehyde) water solution. The hot pressing time was 8 min at 190°C. Responsible editor: Zhu Hong  相似文献   

14.
对大青杨辊压处理材(压缩率10%~50% )的密度和干缩系数进行测试和研究.结果表明,与素材相比,辊压处理材的全干、气干和基本密度均有所增加,密度变化率<5%,其中气干密度增幅最大,密度变异与压缩方向无明显相关;气干和全干干缩系数随压缩率增大而变大,变动范围-3.448%~23.678%;弦向干缩系数变化大于径向.  相似文献   

15.
Fiberboards were prepared from acetylated fibers with various weight gains: 0, 4.7, 9.4, 18.5, and 24.8 weight percent gain (WPG). The effects of low bondability of acetylated fibers on mechanical properties and dimensional changes were determined. The decreased mechanical properties of acetylated fiberboard are mainly due to low bondability. To improve bending strength, high face density is also needed. The thickness swelling according to JIS and the linear expansion under relative humidity changes decreased with increasing WPG. As for accelerated weathering and the outdoor exposure test, the thickness changes in 4.7–18.5 WPG boards were much higher than those in OWPG board and 24.8 WPG board. The high thickness change in 4.7–18.5 WPG boards is due to low bondability. Although 24.8 WPG board also has low bondability, the thickness change of 24.8 WPG board decreased. The high dimensional stability of acetylated fibers, caused by high WPG, probably outweighs the dimensional change caused by low bondability. On the other hand, during the boiling test the thickness changes in 24.8 WPG board and the 4.7–18.5 WPG boards were higher than those in 0 WPG board. The effect of the boiling test on the boards is more severe than that seen with the accelerated weathering and outdoor exposure test; therefore, the effects of the low bondability probably cancel the effects of the high WPG. It is necessary to increase the bondability of acetylated fibers to improve the dimensional stability and the mechanical properties.  相似文献   

16.
采用两种不同溶剂的糠醇溶液对竹材进行浸渍改性,并对改性后的竹材的力学性能、尺寸稳定性、平衡含水率及防霉性能进行测试。研究结果显示:以乙醇为溶剂的糠醇溶液改性竹材平均增重率(WPG)为5.21%,顺纹抗压强度增加37.26%,抗弯强度和模量增加不显著;平衡含水率降低25.97%;75%湿度状态到绝干状态的抗干缩系数为8.72%,物理力学性能均优于以水做溶剂的配方。经糠醇树脂改性后竹材的防霉性能改善显著,能有效减缓霉菌生长速度,经表面擦拭后,改性后的竹材表面霉变现象不显著,而对照样有明显的霉斑,糠醇树脂改性至少能有效改善竹材的防霉性能。  相似文献   

17.
To improve the impregnation of wood, the pre-treatment by compression was systematically studied in terms of effects of compression ratio, compression direction, compression speed and compression-unloading place on the liquid impregnation in poplar and Chinese fir. The results showed: the impregnation increased 0.0065 or 0.0074 g/cm3 for every 1% increase of compression ratio when the compression ratio was lower or equal to 50 and 40% for poplar and Chinese fir, respectively; it continued to increase afterwards while the variation was quite big. There existed a significant difference of the impregnation of wood compressed at different directions in Chinese fir, but not in poplar. There existed a significant difference of the impregnation of wood compressed at different speed in both species. The impregnation of wood is likely to be in favor of radial compression in terms of the amount of impregnation. 5 and 10 mm/min were recommended as a compromise of impregnation and pre-treatment efficiency. The impregnation of wood that the compression unloaded in water was about 18.2 (poplar) and 9.2% (Chinese fir) higher in amount and was much quicker in speed than that the compression unloaded in air, and the difference between them was significant, suggesting that compression unloaded in water is significant to improve the impregnation.  相似文献   

18.
酚醛树脂处理杨木、杉木尺寸稳定性分析   总被引:17,自引:5,他引:17  
采用酚醛树脂浸渍处理人工林杨木、杉木,然后通过热压定型工艺制得表面密实化木材。对其尺寸稳定性的分析结果表明:处理试材的增重率、抗胀率和阻湿率随树脂浓度的增加而成比例增大,弦向和径向干缩率明显降低,在树脂浓度较低时变化较大,当达到一定量时变化趋于稳定。就压缩变形恢复率而言,当树脂浓度超过10%,压缩变形恢复率很小,说明表面密实化木材的压缩变形几乎被固定。  相似文献   

19.
采用高温热处理工艺固定杨木板材的压缩变形,比较分析了处理前后杨木板材的物理力学性能.结果表明:杨木板材的压缩变形得到很好的固定;杨木板材经过热压及高温热处理后,密度和尺寸稳定性得到提高,吸湿性降低,弯曲性能变化不大.  相似文献   

20.
软质木材的表面密实化   总被引:3,自引:0,他引:3  
探讨软质木材表面密实化的理想状态和途径,研究用酚醛树脂浸渍、再进行不同程度压缩木材的表面密实化效果.试验结果表明,浸渍压缩后木材密度从表层到内层的分布呈现一定的梯度,表面密度均高于内层密度和平均密度;试件的表面硬度、耐磨性和尺寸稳定性均有不同程度的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号