首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在RS和GIS技术的支持下,基于MODIS-NDVI数据,采用像元二分模型估算了湖北省2000―2015年的植被覆盖度。运用一元线性回归趋势分析方法和有序聚类分析方法对植被覆盖度时空变化趋势及突变进行了研究,并结合DEM分析其对高程、坡度等地形因子的响应。结果表明:(1)湖北省植被覆盖度整体较高并呈现西高东低、四周高中间低的空间分布格局,地形、土地覆被类型等是影响湖北省植被覆盖度空间分布的重要原因。(2)2000―2015年湖北省植被覆盖度整体上呈现波动上升态势,但以不显著变化为主。其中,基本不变区占研究区总面积的88.10%,显著增加、显著减少区分别只占1.52%和1.31%。鄂西山区是植被覆盖度的主要改善区,武汉城市圈则是主要退化区。(3)植被覆盖度分别在700 m高程带和14°坡度带发生显著突变。100 m及2 500~2 800 m高程带植被覆盖度在2009年发生显著突变;300~400 m及1 100~2 400 m高程带在2004年发生显著突变。2°~10°及46°~52°坡度带植被覆盖度在2004年发生显著突变。16 a间湖北省植被覆盖度变化可能是气候波动、退耕还林工程实施等因素共同作用的结果,其中退耕还林工程的实施是该区植被覆盖度增加的主要因素。  相似文献   

2.
在对福建省2006—2016年4—10月NDVI影像进行MVC最大值合成的基础上,利用像元二分模型计算植被覆盖度,分析福建省植被覆盖度的时空变化特征及其与气候因子的相关性。结果表明:2006—2016年间福建省植被覆盖度总体上是呈增加趋势的,并在2015年达到最大值;在空间分布上,植被覆盖显著增加的区域在闽西南(龙岩、漳州附近)、长汀等地,而植被覆盖度减少的地区则在经济发展速度较快的厦门、泉州、福州等地区;植被覆盖度的变化与气温因子的相关性要比降水因子大。  相似文献   

3.
提取内蒙古巴彦淖尔市乌拉特后旗2006年、2010年及2015年3个时期的遥感影像,利用GIS软件计算了乌拉特后旗3个年度的植被覆盖度,同时对该地区植被覆盖在时间变化及空间变化中的状况进行了分析。结果表明:从时间方面看,乌拉特后旗的植被覆盖度整体呈增长的趋势。裸地及微植被覆盖度显著减少,低植被覆盖度和高植被覆盖度缓慢增加,中植被覆盖度在2010—2015年有显著增加的趋势。从空间方面看,乌拉特后旗的植被覆盖度逐渐递增并呈现东南部覆盖度高西北部覆盖度低的态势。阴山以南河套平原地区的高植被覆盖度及中植被覆盖度缓慢增加,阴山以北的荒漠及半荒漠草原的微植被覆盖度逐渐减少,到2015年时其植被覆盖度明显增加,转变为以低植被覆盖及中植被覆盖为主的态势,且出现零星的高植被覆盖度。  相似文献   

4.
内蒙古地区植被覆盖动态及驱动因素分析   总被引:1,自引:0,他引:1  
为研究内蒙古自治区植被覆盖度的时空演变规律,基于2005—2018年MODIS NDVI数据,以植被覆盖度FVC为研究植被覆盖度变化的主要指标,利用时间信息熵、时间序列信息熵、植被覆盖动态变化分析等方法,分析内蒙古自治区植被覆盖度的变化强度和趋势;通过GIS空间分析方法,分析矿区、河流、降水、地形等因素对植被覆盖度的影响。结果表明:1)从时间上看,2005—2018年,内蒙古自治区植被覆盖度变化强度较平稳,变化趋势呈现缓慢增加趋势,主要原因是人们日益重视保护环境,保护植被,也得益于退耕还林政策的实施以及矿区的整治。2)从空间上看,在2005—2018年间,内蒙古地区的植被覆盖度东高西低,有明显的经度地带性。3)降水、矿区、河流都是植被覆盖度变化的影响因素,降水充沛的地区,植被覆盖度往往较高;矿区植被覆盖度低于非矿区;河流的发育为植被的生长提供良好的水分条件,距河流较近的区域植被覆盖度高;不同的地形对植被覆盖度有显著的影响,低缓坡度和海拔较低的地区相较于坡度较陡、海拔较高的地区,更适宜植被的生长。  相似文献   

5.
基于MODIS NDVI的三峡库区植被覆盖度动态监测   总被引:6,自引:0,他引:6  
基于MODIS—NDVI遥感数据,采用像元二分模型估算三峡库区2000—2009年的年最大植被覆盖度,并在像元尺度上分析库区年最大植被覆盖度的时空变化规律及其驱动力。结果表明:三峡库区大部分区域处于高植被覆盖度,并随高程和坡度的增加而增大,其中年最大植被覆盖度大于60%的区域占92.35%;近10年来,库区年最大植被覆盖度总体呈微弱上升趋势,其中呈显著增加或降低趋势的像元数仅占7.16%,在20个区县中石柱、江津和丰都的植被覆盖度存在退化风险;降水是影响库区植被覆盖度年际波动的主导因子,当年5—8月降水量与年最大植被覆盖度的相关性最高,但在空间上存在差异,其中呈显著正相关区域主要分布于库区西部低山丘陵农业种植区,该区域降水增加有利于植被生长,而部分高海拔地区的年最大植被覆盖度与降水呈显著负相关,过多降水反而会抑制植被生长。  相似文献   

6.
选取昆明市为研究区域,在RS和GIS技术支持下,对2013年、2014年和2015年植被分类和覆盖度时空特征进行研究。结果表明:1)2013—2015年间,研究区分布较广的植被为针叶林和阔叶林,草地主要分布在北部高山河谷地带,灌丛和人工植被主要围绕城镇及水域分布,灌丛和草地面积下降12.72%,人工植被和其他用地面积上升12.82%。2)2013—2015年植被覆盖度整体呈上升趋势,NDVI>0.5区域比例上升31.52%,而2014—2015年植被覆盖度总体呈下降趋势,NDVI>0.5区域比例下降6.1%。3)植被覆盖度因海拔、坡度差异而呈现不同的分布特征,其中:海拔>2500m和坡度>25°区域植被覆盖度相对较高,而海拔<1000m和坡度<5°区域植被覆盖度相对较低,变化较明显的分布在海拔1000~2500m和坡度<5°区域;海拔>2500m和坡度>25°区域人类活动少,植被覆盖变化不明显。  相似文献   

7.
基于2000-2014年MODIS-NDVI时间序列数据集,探讨了贵州高原植被变化的时空格局。结果表明:研究期间贵州省植被覆盖度年际变化总体呈现上升趋势,但具有明显的时空变化。从空间分布上看,植被覆盖度的空间分布格局为东南部及北部地区高、西部地区较低。研究期间植被覆盖度较高的区域为黔东南州和黔南州,植被覆盖度较低的区域为毕节市和安顺市。高植被覆盖面积比例最大,低植被覆盖面积比例最小。2000-2010年间,高植被覆盖面积在逐渐增加,低植被覆盖、较低植被覆盖、中度植被覆盖、较高植被覆盖面积逐渐减少;2010-2014年间,高植被覆盖面积出现下降趋势,其他覆盖类型面积逐渐增加。  相似文献   

8.
北京永定河流域森林植被覆盖研究   总被引:1,自引:0,他引:1  
利用1978~2009年间共6期TM遥感数据,采用归一化植被指数(NDVI)结合二值化分析方法确定植被覆盖度的阈值,对北京市永定河流域32年来的森林植被覆盖变化情况进行研究,揭示永定河流域森林植被覆盖变化的驱动力因子与作用机制.结果表明,永定河流域上游植被覆盖度较高,中下游覆盖度较低,整个研究时期内植被覆盖度呈现波动变化,1978~1987年间,植被覆盖度急剧下降,而1987~1995年间植被覆盖度略有提高,但之后又迅速下降,2000年植被覆盖度处于历年最低值,2000~2004年间植被覆盖度呈上升趋势,2004—2009年间植被覆盖度趋于平稳.驱动力分析表明,引起植被覆盖变化的主要驱动因素是人为因素,包括人类破坏和保护2方面,其次是气候因素,包括降水和温度,其中降水占主导地位.  相似文献   

9.
借助ENVI 4.3及GIS10.0软件,估算了多伦县2000年、2005年和2009年3期植被覆盖度,并结合研究区年平均降雨量变化趋势,分析得出:从空间分布格局上来说,多伦县植被覆盖处于良好状态,绝大部分地区已达40%以上,属中覆盖类型,而植被覆盖度较低的地区主要集中在该区西北部,且呈零星分布,说明该区林业工程生态效益明显;其次,从动态变化趋势上来分析,可以看出2000-2009年间,研究区植被覆盖度总体上呈现增加趋势,但后期(2005-2009年)较前期(2000-2005年)而言,增加幅度有所较小,这与该时段年平均降雨量变化相一致。  相似文献   

10.
基于RS的长株潭绿心区植被覆盖动态变化研究   总被引:1,自引:0,他引:1  
以2000年、2005年、2011年3个时期的landsat5TM遥感影像为数据源,利用像元二分法模型反演三个时期的植被覆盖度,并研究3期植被覆盖度变化特征、植被覆盖度转移矩阵。结果表明:研究区植被覆盖状况良好,3期Ⅳ级和Ⅴ级植被覆盖度(f_c0.5)区域的面积和占总面积百分比均为79%以上。2000—2011年,研究区植被覆盖度总体呈下降趋势,2000年平均植被覆盖度为0.78,2005年平均植被覆盖度为0.72,2011年平均植被覆盖度为0.70。  相似文献   

11.
基于ENVI和GIS技术的龙川江流域植被覆盖度动态监测   总被引:1,自引:0,他引:1  
在ENVI和GIS技术支持下,利用1989年、1999年、2007年的TM和2013年的ETM’遥感影像数据,运用归一化植被指数(NDVI)方法对龙川江流域植被覆盖度进行估算,并划分为5个不同盖度等级。根据盖度等级的空间分布特征,比较分析了龙川江流域植被覆盖度的变化情况。结果表明:龙川江流域植被覆盖度在1989~2007年呈逐渐增加趋势,2007~2013年又出现退化趋势。对龙川江流域植被覆盖变化的原因进行了分析。  相似文献   

12.
为揭示西宁市近20年植被覆盖的时空变化规律,为西宁市植被应对气候变化及生态良性发展提供科学指导,选取西宁市2001-2021年植被遥感数据,采用像元二分模型、最大值合成法及Slope趋势分析法等对西宁市植被覆盖变化特征进行分析,探究了研究期内西宁市植被覆盖的时空变化规律。结果表明:(1)在时间变化上,月际植被覆盖度呈现显著上升趋势,月总平均植被覆盖度在0.3412,由0.2963增长到了0.4222,其中7月份植被覆盖度(0.4222)最高,12月份(0.2963)最低。年均植被覆盖度呈现显著上升的趋势,由0.3350增长到0.3532。(2)在空间分布上,西宁市植被覆盖度呈现由西向东、由北向南增加的趋势。低植被覆盖区域呈现减少趋势,其余植被覆盖等级均呈现增加趋势。(3)在变化趋势上,2001-2021年植被覆盖度显著增加区域面积达到了33645.6 km2,占比为30.75%,植被覆盖度显著减少面积为30740.4 km2,占比为28.10%。2001-2021年植被覆盖度总体呈现上升趋势,未来西宁市生态环境建设的重点应该放在低植被覆盖区域...  相似文献   

13.
采用2017年昆明市主城区Landsat TM/OLI及DEM数据,采用SVM分类方法,对比不同多特征组合的分类精度筛选出森林提取的最佳特征组合,并由此得到2000、2010及2017年昆明市主城区森林分布,分析3期森林的总面积、不同海拔森林面积分布和植被覆盖度变化。结果表明,光谱、纹理以及地形特征的多特征组合为城市森林提取的最佳组合(精度为92.69%);2000—2017年昆明市主城区森林总面积呈上升趋势,海拔低于2 000 m区域的森林面积逐年减少,而高于2 000 m区域的森林面积逐年增加;随时空变化呈现出低植被覆盖度及高植被覆盖度面积增加,中植被覆盖度及较高植被覆盖度面积减少的趋势。  相似文献   

14.
基于MODIS-NDVI的云南怒江流域植被覆盖时空变化特征研究   总被引:1,自引:0,他引:1  
以2000—2015年MODIS-NDVI动态数据为基础,辅以小波分析、趋势分析、变异系数、Hurst指数及空间叠加分析等方法,探究怒江流域(云南区段)近16年植被覆盖时空分布,变化特征和演变趋势。结果表明:1)时间上,流域NDVI月际变化整体呈增长态势,月均增长率为0.95%;在年际变化方面,流域植被覆盖呈现增长趋势且存在14年左右的变化周期,增速为0.21/10a;月际和年际增长趋势均通过置信度P0.05的显著性检验。2)空间上,流域高植被覆盖区域(0.6NDVI1)占61.95%,整体较好。受北部高海拔地形以及南部建设用地扩张等因素影响,植被覆盖格局从北至南呈低—高—低的分布特征。2000—2015年间,流域植被覆盖整体处于低态势波动变化,低波动和较低波动变化区域占比合计83.18%,在该波动下约53.25%的区域植被覆盖得到了改善,14.41%,32.34%的区域植被分别呈退化及不变趋势。3)空间可持续性方面,约59.01%的区域植被将延续过去变化趋势,37.98%的区域植被将沿反向发展,同向特征强于反向特征。未来,植被覆盖将向良性、不变方向发展的区域分别占39.36%,26.50%;31.14%的区域植被覆盖将向不利方向发展,主要集中于南部各县(市)中心、外围等城镇建设用地区以及勐波罗河、枯柯河、勐统河等支流沿线区,需引起重视。  相似文献   

15.
利用呼伦贝尔沙地及周边区域2007-2017年生长期遥感和气象数据,结合第五次全国荒漠化和沙化监测数据,对区域内植被覆盖度变化及气候因素的响应进行了研究。结果表明:2007—2017年呼伦贝尔沙地植被覆盖度呈现先上升后下降的趋势,2007-2013年植被覆盖度呈现整体增加的趋势,年均增加2.76%,显著增加的区域所占面积比例为20.52%,2013—2017年植被覆盖度呈现整体下降的趋势,年均下降6.57%,显著下降的区域所占面积比例为15.69%;区域植被覆盖度年际变化与降水量呈现显著正相关关系,与温度呈现非显著性负相关关系,与日照的相关性不明显。  相似文献   

16.
高雁  刘蜀鄂  雷琳 《林业调查规划》2011,36(6):10-12,16
植被覆盖度是刻画地表植被覆盖的一个重要参数,也是指示生态环境变化的重要指标之一.以洱海流域1990年和2006年TM影像为数据源,利用NDVI的像元二分模型法对洱海流域1990年和2006年植被覆盖度进行遥感估算,并进行变化分析.结果显示,近17年来洱海流域植被覆盖度总体上有所提高,无植被覆盖区域面积明显下降,高植被覆盖占全植被覆盖区域面积比大幅提高,二者面积比近50%;在空间分布上,洱海流域上游地区、东部部分地区植被覆盖度相对较低,对地区生态环境稳定构成重大威胁,将是今后洱海流域生态建设和整治的重点区域.  相似文献   

17.
基于MODIS-NDVI的乐安湿地植被覆盖动态分析   总被引:1,自引:0,他引:1  
乐安湿地作为长江上游生态屏障的重要组成部分,是大凉山生态建设的重点区域;也是高原湿地在海拔2 500 m^3 000 m典型生态系统。植被覆盖度(植被的垂直投影面积与单位面积之比)是反映湿地植物生长状况的重要生态学参数,在评估和监测湿地生态环境方面发挥着重要的作用。本文利用2011-2015年的MODIS归一化植被指数数据,应用像元二分法估算了布托乐安湿地保护区的植被覆盖度及其变化趋势,分析了乐安湿地保护区内植被覆盖度变化,旨在为保护区生态环境评价及管理提供科学依据。研究表明乐安湿地保护区植被覆盖度状况良好,中度及其以上等级植被覆盖区占研究区比重较大,超过50%;5年间,保护区植被覆盖度总体上呈现稳定状态,但是不同等级,不同时段的植被覆盖变化趋势不同;植被覆盖度在空间上呈现以万吨山、四棵乡一线向两侧降低的总体趋势。与海拔3 500 m左右的若尔盖湿地相比,乐安湿地植被覆盖度分布主要受地形、水热条件限制,以及人为活动因素的影响。  相似文献   

18.
2000—2014年乌鲁木齐市植被覆盖度时空变化分析   总被引:1,自引:0,他引:1  
以乌鲁木齐市2000,2006,2010和2014年TM/ETM+/OLI影像为数据源,基于NDVI的像元二分模型生成植被覆盖度图,再与ASTER GDEM数据生成的海拔、坡度、坡向图进行空间图像叠加,分析植被覆盖分布特征和变化原因。15年来研究区植被覆盖度总体呈现先整体下降,然后以2006年为拐点显著回升的U型趋势。较2006年,2014年乌鲁木齐县北部和米东区东北部的温带半灌木、矮半灌木荒漠有一定改善;米东区北部温带矮半乔木荒漠和达坂城区的温带丛生矮禾草、矮半灌木荒漠草原改善显著。地形因子和植被覆盖类型影响了植被覆盖水平的分布格局,夏季当月及上月降水量对研究区植被覆盖尤其荒漠草地影响显著,草地与灌丛的变动性大于林地。经济活动与生态工程建设等是植被覆盖变化的驱动因素。荒漠草原覆盖度受自然和人为因子的耦合作用大,应加强保护力度。近年来大规模实施系列林草业工程对全市植被覆盖度提高、生态环境改善起到了重要作用。  相似文献   

19.
基于MODIS的南四湖植被覆盖变化的时空特征研究   总被引:1,自引:1,他引:0  
《林业资源管理》2017,(1):144-152
湿地植被的时空变化研究是陆地生态系统对全球变化响应研究的重要内容之一。利用2000—2015年的中分辨率成像光谱仪(MODIS)16天合成的植被指数数据(NDVI和EVI)作为植被覆盖的指标,采用基于像元的线性趋势分析和稳定性分析方法研究了南四湖湿地植被覆盖的时空演变和稳定性格局特征,并结合气象数据和相关资料分析了控制植被覆盖变化的主要因素。结果表明:1)南四湖湿地植被覆盖度受景观格局控制,呈现由湖岸向湖心减小的带状分布特征。2)南四湖植被覆盖变化具有阶段性特征。2000—2003年生长季植被覆盖度处于较高水平,2004—2006年处于较低水平,之后波动变化;植被覆盖年内变化呈双峰特征,尤其在下级湖。3)湿地的水陆交错地带植被覆盖下降趋势明显,植被指数平均每10年减少0.1~0.3,其他区域植被覆盖略有上升。4)植被覆盖的稳定度亦呈现以湖心为中心的环带状特征,由湖心到湖岸植被的稳定性逐渐增高。5)植被覆盖度的变化与区域降水导致的湖泊水位变化关系密切。除去极端降水的2003年,年降水量与湿地植被指数呈显著负相关关系(P<0.05),相关系数分别为-0.60(NDVI)和-0.66(EVI)。作为南水北调东线工程重要的水利枢纽,南四湖频繁的水文调蓄必然影响湿地植被覆盖格局,进而影响南四湖湿地生态过程及生态功能,需引起管理者的重视。  相似文献   

20.
【目的】探究城市地表温度时空变化特征,阐明不同植被覆盖度条件下植被降温差异,为改善城市生态环境、合理规划城市绿地提供参考。【方法】以城市化水平较高的北京五环内区域为研究对象,基于1999—2017年5期Landsat遥感影像反演得到的地表温度和植被覆盖度图像,采用标准差分类法将研究区划分为极低温区、低温区、次低温区、中温区、次高温区、高温区和极高温区,探究研究期地表温度时空变化特征,运用线性回归进一步对300、600、900和1 200 m栅格尺度下的植被覆盖度和地表温度进行相关性分析。【结果】1999—2017年,北京五环内热环境的时间变化总体分为2个阶段:1999—2011年高温区和极高温区面积逐渐增加; 2011—2017年,热环境状况有所改善,高温区和极高温区面积占比分别下降0.96%和0.71%,极低温区和低温区面积占比分别升高0.45%和1.19%。热环境空间格局随北京城市建设发生显著变化,1999年地表温度较高的区域集中在二环内,1999年后逐渐向外转移,至2011年,高温区和极高温区集聚在三环至五环间的东南部区域(2011年高温区和极高温区在三环至五环间分布比例最高,分别为70.73%和78.92%),2017年五环内区域整体热环境有一定程度改善。研究期内北京五环区域植被覆盖度总体呈先降后升的趋势,2005年植被覆盖度最低(31.84%),且植被覆盖度较高的区域主要分布在四环至五环,四环内区域植被覆盖度相对较低。地表温度与植被覆盖度总体呈线性负相关(P0.001),且在中植被覆盖度条件下(40%~60%)相关关系更稳定。同一栅格尺度下,植被覆盖度越高,降温效应越强,地表温度越低。【结论】1999—2011年,高温区和极高温区面积逐渐增加,且高温区域由二环内向外转移;2011—2017年,热环境状况有所改善。研究期内植被覆盖度总体呈先降后升的趋势,且植被覆盖度在四环至五环间区域较高。植被覆盖度增加可降低地表温度,且在植被覆盖度达到40%~60%时才表现出稳定的降温效果,适当提高植被覆盖度,可提升城市绿地降温功能,缓解城市热环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号