共查询到2条相似文献,搜索用时 3 毫秒
1.
Forest drains and streams on blanket peatland in western Ireland were sampled weekly, 1996–2000, using continuous, depth-proportional passive sampling, and analysed for molybdate-reactive phosphorus (MRP) by the acid–antimony-molybdate method. The study area was largely clearfelled and partly reforested with wind-rowing, drainage, planting, and aerially applied rock phosphate equivalent to 70 kg P/ha. Further felled areas were not wind-rowed, drained or fertilised for reforestation. Catchment areas were of the following orders: 1 ha (two forest drains); 10–20 ha (two semi-permanent drains, one permanent stream); 1–3 km2 (three permanent streams). Streamwater from three undisturbed closed-canopy-forest catchments had pre-felling median concentrations of MRP (all values are μg MRP l−1) of 9 (catchment approximately 1 km2), 13 (1 ha) and 93 (1 ha). Clearfelling was associated with large increases (maxima 305, 4164 and 3530 μg MRP l−1) in MRP concentrations in each case. Following protracted mechanical operations in four other catchments of ca. 1 km2, 20, 10 and 10 ha, with apparently existing elevated MRP concentrations (medians 41, 328, 102, 214 μg MRP l−1) fertilising gave major rises (maxima 218, 2723, 806, 2323 μg MRP l−1). The three smaller catchments showed subsequent exponential-type declines, while the 1 km2 catchment had sustained high values (median 74 μg MRP l−1) over the remaining study period. The higher values in this one larger stream were seasonally cyclical, with a late summer maximum. Annual median MRP values above 70 μg l−1 represent a seriously polluted state for these streams, which qualify as waterways under relevant statutes, but it is not clear what implications these results have for downstream river-water quality in larger channels. 相似文献
2.
A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams 总被引:2,自引:0,他引:2
R.W. Lucas J. KlaminderM.N. Futter K.H. Bishop G. EgnellH. Laudon P. Högberg 《Forest Ecology and Management》2011,262(2):95-104
The dominant base cations (BC; i.e., Ca2+, Mg2+, K+, and Na+) are important in buffering soil and water acidity in both terrestrial and aquatic ecosystems. Ca2+, Mg2+, and K+ are also important in many plant physiological functions. Because BC availability is affected by changes in the nitrogen (N) cycle, we conducted a meta-analysis of previously published data to determine if N fertilization alters the availability of BC in terrestrial and stream ecosystems across biomes. We include data from 107 independent studies published in 62 different articles, taking a holistic perspective on BC by examining their responses to added N in plant foliage, bulk soil, soil solution, and stream water. Our results suggest N fertilization may accelerate BC loss from terrestrial ecosystems over time periods less than five years. We found that N additions resulted in an overall 24% decrease in the availability of exchangeable Ca2+, Mg2+, and K+ in the bulk soil of boreal forest, temperate forest, and grassland biomes. Collectively, responses of BC in boreal forest, temperate forest, tropical forest, and grassland biomes increased following N fertilization by about 71% in soil solution and 48% in stream waters. Additionally, BC responses in foliage decreased in boreal forest and temperate forest biomes following N additions over time periods less than five years, but there were no significant changes over longer time periods. Despite large short-term shifts in BC responses following N additions, we did not find evidence of widespread negative impacts on ecosystems over time periods greater than five years. This analysis suggests effects of N addition on the availability of exchangeable BC may diminish over time. Although the effects on BC can be substantial over periods less than five years, there is little available evidence that N fertilization has had large-scale detrimental effects on the availability of BC needed for plant growth within terrestrial or aquatic ecosystems. 相似文献