首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于超级电容器额定电压低,在高压大容量应用场合需将超级电容器进行串并联使用,各单体电容器间压差直接影响着超级电容器的性能和寿命。基于上述原因提出STM32的超级电容器管理系统设计方案,使用隔离DC-DC进行均衡,通过低损均衡方式提高了超级电容器的储能效率和可靠性,通过3G网络与远程监控终端实现数据共享,集中实现对整个超级电容管理系统的实时监控。  相似文献   

2.
活性炭是一类传统的、可工业化生产的多孔质炭材料,由于它具有高的比表面积,可调的孔隙结构与表面化学性质、稳定的物理化学性质以及良好的导电性,因此,活性炭不仅在环保、化工、食品和医药等领域中得到广泛应用,而且具有储存电能和电催化转化燃料的潜力,在超级电容器和燃料电池等新型能源器件领域显示出巨大的应用前景。笔者综述了活性炭作为超级电容器和燃料电池电极材料的主要研究进展。在超级电容器方面,活性炭是作为储存电能的材料,主要综述了活性炭作为超级电容器电极材料的应用历史,气体活化法、化学药品活化法、碱金属活化法等常规方法制备的活性炭储存电能的性能,活性炭表面含氧、氮、硫和磷表面官能团对超级电容器活性炭电化学性能的影响规律,活性炭表面改性技术在超级电容器活性炭方面的应用。在燃料电池方面,活性炭是作为阴极反应的催化剂材料,主要综述了活性炭作为碱性燃料电池、质子交换膜燃料电池和微生物燃料电池阴极材料的研究现状,炭材料催化燃料电池的阴极反应,即氧气还原反应的表面结构特点与反应机理。通过分析总结,明确了活性炭作为新型能源材料的未来发展方向。  相似文献   

3.
详细阐述了竹炭基超级电容器材料的作用原理、制备工艺和影响因素,介绍了其结构设计和工艺方面的研究进展。相对于单一活性竹炭材料,重点分析了以竹炭作为赝电容材料生长/嵌合模板的竹炭基复合材料,赝电容材料与电解液界面之间发生的氧化还原反应,体现出双电层和赝电容的高效协同效应,使竹炭基碳材料具有更为广泛的应用领域。在总结当前竹炭基超级电容器材料研究成果及所面临问题的基础上,对利用我国丰富的竹材资源在超级电容器领域的应用前景进行了展望。  相似文献   

4.
近年来,生物质碳材料由于来源广泛、化学稳定性好、比表面积高、环境友好等优点已成为备受关注的电极材料,在能源转化和能量储存领域显示出巨大的应用潜力。但是生物质碳材料的理论比电容有限,且分散性差、机械脆性等缺陷也阻碍了其性能的完全实现,进一步影响了实际比电容。当其用于超级电容器时,受低能的静电作用力驱使,生物质碳材料基超级电容器的能量密度往往较低。将赝电容活性材料MnO_2沉积在生物质碳材料基质上,利用生物质碳材料与MnO_2的协同效应,可获得电导率、循环稳定性和电化学性能优异的复合材料。在介绍MnO_2结构和性质的基础上,对生物质碳材料/MnO_2复合电极材料的制备方法展开综合述评。此外,还总结了生物质碳材料/MnO_2复合物作为电极材料在超级电容器上的研究进展,并指出了其在应用过程中存在的问题。最后,就生物质碳材料/MnO_2复合物在高性能和柔性超级电容器未来应用方面进行分析,认为对生物质碳材料基底的改性、MnO_2纳米结构的调控和超级电容器结构的设计优化将是今后的重点研究方向。  相似文献   

5.
概述了纤维素气凝胶通过炭化和复合导电物质实现导电功能的技术手段,及其在超级电容器中的应用研究现状。重点介绍了纤维素导电气凝胶孔结构及其复合结构对超级电容器电化学性能的影响,包括:依据电解液离子大小调控电极材料的孔结构和孔径分布,优化双电层电容行为;借助石墨烯等高导电性物质提高复合材料的导电性和比表面积,实现复合电极材料性能的增强及其在柔性能源储存装置中的应用;结合纤维素炭气凝胶优良的导电性与结构稳定性以及金属化合物高的赝电容和大的能量密度特性,实现复合电极材料中双电层电容和赝电容的协同增效作用。最后针对纤维素导电气凝胶及其复合材料在制备和超级电容器应用中面临的机遇与挑战,指出未来发展方向。  相似文献   

6.
用装有超级电容管理系统的超级电容器系统作为驱动电源的储能式无轨电车具有能量循环利用率高、零排放、低噪声和机动性好的特点。通过模拟工况热效应试验以及储能式无轨电车原型车的实际运行数据分析,储能式无轨电车能够满足未来清洁能源公共交通的应用。  相似文献   

7.
林霖 《技术与市场》2010,(4):100-101
纳米技术把织物和纸张变成轻型电池斯坦福大学的工程师已发现了一种廉价和高效地生产轻型纸质电池和超级电容器,以及延伸和传导纺织品的方法,称之为e-纺织品(eTextiles),这种纺织品能够储存能源,同时保留普通纸张或者织物的力学性能,电池和超级电容器储存能量通过静电,不是  相似文献   

8.
超级电容器凭借着其在大功率充放电场合的突出优势,在混合动力液压挖掘机系统的应用中更是发挥了巨大的作用和展现了优良的性能。以应用在并联式混合动力中型液压挖掘机上的由美国MAXWELL公司生产的BM-OD0165P048超级电容单元模块为试验对象,对其进行了相关的动态性能测试和参数测定,并制定了其在大功率充放电应用场合的SOC估算策略,最后对估算方法进行了仿真和试验验证。  相似文献   

9.
纤维素是自然界中一种轻质、生物相容性好以及柔韧性强的生物高分子材料,在柔性超级电容器、生物传感器以及电磁屏蔽等领域得到了广泛应用。在柔性超级电容器领域中,纤维素基材料的多羟基结构是电解质离子传导的良好介质,有助于提高电极材料的电容特性以及循环特性,并且易与导电活性材料(如:石墨烯、碳纳米管、导电高分子)通过涂布、共混、层层自组装以及原位聚合等方法构建导电框架以制备柔性电极材料。综述了基于纤维素材料的柔性超级电容器电极开发的相关研究,重点介绍了基于不同纤维素基原料(原生纤维素、纳米纤维素以及纤维素衍生物)制备柔性超级电容器电极的方法以及所得电极的电化学性质,分析归纳了纤维素基材料在柔性电极中的主要作用:作为骨架支撑柔性电极材料、充当柔性基底(可兼有隔膜作用)、形成多孔结构传输电解质离子。最后,对纤维素材料在柔性电极材料领域的发展趋势进行了展望。  相似文献   

10.
创新技术     
超级电容器石家庄开发区高达科技开发有限公司研制的具有自主知识产权的超级电容器通过了专家鉴定。该超级电容器是一种高储能密度的电容器,具有大功率放电的特点,其技术指标达到国内领先水平,进入国际先进行列,填补了我国法拉以上级别的电容器在最高为400V电压下可进行大电流快速充放的空白,有着非常广阔的市场前景。该产品的推广应用将带来巨大的经济效益和引发相关应用领域的一次技术进步。超级电容器是一种新型的基础性储能元件,属物理二次电源,所以不但储电能力超强,可广泛应用于各种需要二次电源提供短时大功率放电的场合和各种电脉冲机电设备,部分或全部取代其所使用的蓄电池,并显著改善其工作性能,而且不会像化学电池或蓄电池那样对环境造成污染。高达公司开发的超级电容器属于石家庄市2000年度科学研究与发展计划重点攻关计划的课题,与国外同类技术比较,最大电流与国外先进水平持平,最高积能密度和最高工作电压都有所超越。高效镀锌原板清洗剂高效脱脂清洗剂由攀钢研制成功,这种名为PY—AO的清洗剂脱脂性能达到国内先进水平,清洗效果优于某些国外名牌产品。清洗剂是热镀锌工序用于改善原板表面清洁度,保证镀锌效果的必须产品。该清洗剂可将热镀锌原板表面残留油污...  相似文献   

11.
随着经济的发展和社会的进步,人们对具有长的循环寿命、高的功率密度和绿色廉价的能源设备的需求逐渐增加,基于生物质活性炭的超级电容器近年来备受关注。然而,生物质基活性炭的电化学性能仍然缺少竞争力,此外,对其微观结构的控制也是较大难题。笔者以糠醛渣为原料,KOH为活化剂,在氩气氛围下通过两步炭化的方法制备三维多孔炭材料,并将制备的多孔炭用做超级电容的电极材料。通过SEM、TEM、Raman、XPS、XRD等手段系统分析表征了所获多孔炭材料的形貌、结构、组成,并探讨活化剂的比例对糠醛渣多孔炭结构性能的影响。研究结果表明:当KOH和糠醛渣的质量比为3∶1时,所制备的多孔炭材料比表面积为2 164.3 m~2/g,具有良好的电容性能(当电流密度1 A/g时,比电容为235.6 F/g)、倍率性能和循环稳定性(当循环充放电10 000次后,比电容仍能保留96%以上)。本研究从生物精炼废弃物中制备了性能优异的超级电容器用活性炭,为降低高性能超级电容器成本,实现生物质的高值化应用提供新思路。  相似文献   

12.
综合TNW科技网站、澳大利亚Drive网站消息:日本制纸有限公司正在试验利用树木制造电动车蓄电池的方法,以代替锂离子电池。该公司希望能够利用柳杉等树种制成的木浆来制造纤维素纳米纤维,并将其精制到百分之一微米或更小,以制造超级电容器,作为电动车动力。日本制纸有限公司此前长期利用纤维素纳米纤维生产纸尿裤等家用产品随着纳米纤维备制技术的进步与突破,该公司认为可利用木质纤维素纳米纤维生产超级电容器,替代锂离子电池,并应用于汽车和智能手机等领域。  相似文献   

13.
美国德克萨斯大学奥斯汀科克雷尔工程学院的研究人员在材料科学和机械工程学教授罗德尼.鲁夫的带领下,制成了一种新型超级电容(DLC),可在不到1毫秒的时间内可完成充电。据了解,超级电容也称双电层电容器,是一种新型储能装置。通常能在几秒钟内完成充电,此外,还具  相似文献   

14.
综述了以糖类、含酚类生物小分子及其他生物质为炭基前驱体制备生物质基炭气凝胶的研究进展,重点介绍了纤维素基、壳聚糖基、木质素基和单宁基炭气凝胶的制备工艺、产品性能及其在催化剂载体、超级电容器、吸附剂以及隔热阻燃材料等领域的应用情况,并对未来生物质基炭气凝胶工业化发展的研究重点和方向进行了展望。  相似文献   

15.
为了制备价格低廉、性能优良的超级电容器活性炭,以马尾松为原料,采用常规的水蒸气活化法制备了超级电容器木质活性炭。采用元素分析,N2吸附/脱附等手段分析了活性炭的元素含量和孔隙结构;采用循环伏安、恒电流充放电和交流阻抗等方法,分析了活性炭电极在以1-乙基-3-甲基咪唑四氟硼酸盐/乙腈为电解质溶液的超级电容器中的电化学性能,考察了活化温度、活化时间对木质活性炭电化学性能的影响规律。结果表明:随着活化温度的升高,活性炭的比电容量先增后降;随着活化时间的延长,活性炭的比电容量也呈现先增后降的变化趋势。在炭化温度900℃、活化温度900℃和活化时间1 h的条件下制得的活性炭比表面积高达1 647 m~2/g,总孔容积1.00 cm3/g;在5 m V/s的扫描速率下活性炭电极的比电容量最高,达到155 F/g,且倍率性能和循环稳定性良好,循环5 000次后比电容量保持率89%;其在有机电解液中的能量密度高达33.6(W·h)/kg。  相似文献   

16.
为改善工业物理法产普通活性炭的孔隙结构,提高其作为离子液体超级电容器电极材料的性能,采用水蒸气活化法,分别对煤质活性炭(CAC)、椰壳活性炭(CSAC)和竹基活性炭(BAC)进行二次活化,探讨了工艺条件对活性炭孔隙结构的影响,并利用恒电流充放电、循环伏安曲线和交流阻抗等方法对3种活性炭制作的双电层电容器的电化学性能进行了研究。结果表明:二次水蒸气活化能够显著提高活性炭中孔孔容,从而大大提高吸附性能,3种活性炭的碘吸附值、亚蓝吸附值均相比原料有较大提升;二次水蒸气活化对CSAC的孔隙结构和比电容量影响最显著,二次活化椰壳活性炭的BET比表面积可达1 972 m2/g,电流密度0.5 A/g时,超级电容器的比电容量可达106 F/g,是原料(43F/g)的2.5倍。  相似文献   

17.
正美国莱斯大学科学家用黏土和一种电解液混合,开发出一种既能当电解液又能当隔离板使用的"复合板",可作为一种新型高温超级电容器。"多年来,研究人员一直想造出像电池和超级电容器这样能在高温环境下稳定工作的能源存储设备,但由于传统材料本身性质的制约,一直未能攻克难题。"莱斯大学材料科学家帕里柯·阿加恩说,"我们的革新是找到了一种能在高温下保持稳定的、非传统  相似文献   

18.
技术需求     
正铅酸蓄电池定量密闭间歇式内化成装置及工艺解决问题:①铅蓄电池内化成过程中实现密闭化成,无酸雾排放;②定量加酸,无酸液浪费;③缩短化成时间,提高电池一致性及循环使用寿命。可让充电电池实现瞬间充电的技术钛酸钡电介质的陶瓷超级电容器技术  相似文献   

19.
公开了一种方形超级电容器的电芯结构,包括正极片、负极片和用于隔离正、负极片的隔膜;按照隔膜-负极极片-隔膜-正极极片-隔膜的顺序不断叠片形成多层结构的电芯本体;包括位于电芯本体同侧从正极片和负极片引出的极耳,其特征在于:所述的隔膜沿长度方向由正极片或负极片构成的留白为1~5 mm;所述的隔膜沿宽度方向由正极片或负极片构成的留白为1~2 mm;所述的正极片和负极片引出的极耳间的间隙为1~10 mm。本结构具有不容易导通短路,同时壳体内部不会被电芯所填满,为超级电容器工作时释放的气体、热量留出足够空间、更加安全可靠的优点。  相似文献   

20.
木质素是一种绿色环保、低成本的不规则酚类聚合物,其结构中富含羟基和甲氧基等官能团,并且可以从造纸工业的副产品以及农林废弃物中大量获取,因此在各行各业中具有巨大的应用潜力。在储能领域,大量的研究报道了木质素作为可再生碳源制备用于储能装置的电极材料。近年来,越来越多的研究关注了木质素结构中丰富的官能团结构,并充分利用官能团性质将其应用于储能设备,如:利用羟基的亲水性将木质素应用于液流电池的膜结构中提高膜的质子传导率,利用酚-醌结构的可逆变化增加超级电容器的赝电容,利用与苯环共轭的发色基团对太阳能电池光电化学界面进行调控与敏化,利用木质素结构高电荷密度的含氧官能团改善锂离子电池存储的不稳定性,利用木质素分子中丰富的碳和杂原子官能团制备电极从而提高燃料电池的电化学性能。基于木质素分子的官能团结构和性能特点,概述木质素分子对超级电容器、锂离子电池、燃料电池、太阳能电池、液流电池等主流储能器件电化学性能的提升作用和代表性应用,认为最大化保留木质素分子的官能团并将其应用于电化学器件,可以实现木质素分子的多功能化应用,充分发挥木质素基团的特点以提高储能设备的电化学性能。最后,总结归纳了木质素分子应用于...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号