首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast-growing hybrid poplar trees (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) were compared with slower-growing parental types in both field and laboratory experiments to determine physiological components of leaf growth that could be closely related to biomass production. Stem volume was correlated with individual leaf area (r = 0.81) and leaf growth rate (r = 0.82). Hybrids had a greater total leaf area, not because they produced more leaves, but because they had larger leaves than either parental type. The greater leaf size of the hybrids may be explained by inheritance of larger cell number from P. deltoides and larger cell size from P. trichocarpa. Rates of enlargement of isolated leaf discs in liquid culture were approximately 50% of those observed in intact leaves of field-grown plants.  相似文献   

2.
Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.  相似文献   

3.
Responses of net photosynthesis, dark respiration, photorespiration, transpiration, and stomatal conductance to irradiance, temperature, leaf-to-air vapor density difference (VDD), and plant water stress were examined in two Populus trichocarpa clones (one from a moist, coastal climate in western Washington and one from a dry, continental climate in eastern Washington), one P. deltoides clone, and two P. trichocarpa x P. deltoides clones. Light saturation of photosynthesis in greenhouse-grown trees occurred at about 800 micromol m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern Washington ecotype of P. trichocarpa, but at about 600 micromol m(-2) s(-1) for the western Washington ecotype of P. trichocarpa. Average net photosynthesis (at saturating irradiance and the optimum temperature of 25 degrees C) was 20.7, 18.8, 18.2 and 13.4 micromol CO(2) m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern and western Washington clones of P. trichocarpa, respectively. In all clones, net photosynthesis decreased about 14% as VDD increased from 3 to 18 g H(2)O m(-3). Stomatal conductance decreased sharply with decreasing xylem pressure potential (XPP) in all clones except the western Washington clone of P. trichocarpa. Stomata in this clone were insensitive to changes in XPP and did not control water loss. Complete stomatal closure (stomatal conductance < 0.05 cm s(-1)) occurred at about -2.0 MPa in the eastern Washington clone of P. trichocarpa and around -1.25 MPa in the P. deltoides and P. trichocarpa x P. deltoides clones. Transpiration rates were highest in the P. trichocarpa x P. deltoides clone and lowest in the western Washington clone of P. trichocarpa. The P. deltoides clone and eastern Washington clone of P. trichocarpa had the highest water use efficiency (WUE) and the western Washington clone of P. trichocarpa had the lowest WUE. The hybrids were intermediate. It was concluded that: (1) gas exchange characteristics of eastern and western Washington clones of P. trichocarpa reflected adaptation to their native environment; (2) crossing the western Washington clone of P. trichocarpa with the more drought resistant P. deltoides clone produced plants better adapted to the interior Pacific Northwest climate, although the stomatal response to soil water deficits in the hybrid was conservative compared with that of the eastern Washington clone of P. trichocarpa; and (3) introducing eastern Washington clones of black cottonwood into breeding programs is likely to yield lines with favorable growth characteristics combined with enhanced WUE and adaptation to soil water deficits.  相似文献   

4.
Pearce DW  Rood SB  Wu R 《Tree physiology》2004,24(2):217-224
Hybrid vigor for secondary growth in poplar has been linked with increased gibberellin (GA) concentration in cambial tissue, but the relationship between concentrations of GAs and hybrid vigor of primary growth has not been investigated. We explored associations between concentrations of GAs, abscisic acid (ABA) and indoleacetic acid (IAA) and shoot extension in a hybrid family of Populus deltoides Bartr. ex Marsh. (Clone ILL-129) and P. trichocarpa Torr. & Gray (Clone 93-968) and two F1 and 67 F2 genotypes. Rapidly elongating subapical internodes from shoots of 4-year-old clonal saplings were selected for hormone analysis. The F1 hybrids displayed heterosis (hybrid vigor) for primary growth as a result of the complementation of dominance for increased internode length from the P. trichocarpa parent and dominance for increased diameter from the P. deltoides parent. Internodes from the faster-elongating shoots of the P. trichocarpa parent had a fourfold higher concentration of bioactive GA1 and higher concentrations of GA20, GA44, GA29 and GA8 than the P. deltoides parent. However, the two fast-growing F1 hybrids had low concentrations of all five GAs, with concentrations similar to those of the slower-elongating P. deltoides parent. Concentrations of ABA and IAA were correlated with GA concentrations and there was thus no evidence of a consistent promoting or inhibiting effect of ABA or IAA within the F1 family. These results indicate that heterosis for internode growth was not primarily regulated by hormone concentration. The segregating population of F2 hybrids was analyzed to assess the possible utility of hormone screening as a selection tool. The internodes of most of the F2 hybrids were smaller than those of their F1 parents and the larger P. trichocarpa parent. Among the F2 hybrids, mature internode length varied fourfold, and was correlated with lengths of young, subapical internodes from which hormones were analyzed. In these internodes, GA1 concentrations were negatively correlated with length (r = 0.41), diameter (0.33) and mass (0.50). Indoleacetic acid concentration was negatively correlated only with diameter (r = 0.37) and positively correlated with GA1 (r = 0.46), whereas ABA concentration was not correlated with any parameter. Thus, in the F2 population, variation in hormone concentration was not primarily responsible for the variation in shoot growth, indicating that selection for individuals with high GA concentration may not be an effective strategy for identifying vigorous hybrid genotypes.  相似文献   

5.
We compared the physiological and morphological responses of rooted cuttings of Populus trichocarpa Torr. & Gray and P. trichocarpa x P. deltoides Bartr. ex Marsh. grown in either near-ambient solar ultraviolet-B (UV-B; 280-320 nm) radiation (cellulose diacetate film) or subambient UV-B radiation (polyester film) for one growing season. Midday biologically effective UV-B radiation was 120.6 and 1.6 mJ m(-2) s(-1) under the cellulose diacetate and polyester films, respectively. Gas exchange, leaf chlorophyll, light harvesting efficiency of photosystem II, and foliar UV-B radiation-absorbing compounds (i.e., flavonoid derivatives) were measured in expanding (leaf plastochron index (LPI) 5), nearly expanded (LPI 10), and fully expanded mature (LPI 15) leaves of intact plants of plastochron index 30 to 35. Plants were then harvested and height, diameter, biomass allocation and leaf anatomical attributes determined. Net photosynthesis, transpiration, and stomatal conductance were significantly greater in mature leaves exposed to subambient UV-B radiation than in mature leaves exposed to near-ambient UV-B radiation. Concentrations of UV-B radiation-absorbing compounds (measured as absorbance of methanol-extracts at 300 nm) were significantly greater in mature leaves exposed to near-ambient UV-B radiation than in mature leaves exposed to subambient UV-B radiation. The UV-B radiation treatments had no effects on chlorophyll content or intrinsic light harvesting efficiency of photosystem II. Height, diameter, and biomass were not significantly affected by UV-B radiation regime in either clone. Leaf anatomical development was unaffected by UV-B radiation treatment in P. trichocarpa x P. deltoides. For P. trichocarpa, leaf anatomical development was complete by LPI 10 in the near-ambient UV-B radiation treatment, but continued through to LPI 15 in the subambient UV-B radiation treatment. Mature leaves of P. trichocarpa were thicker in the subambient UV-B radiation treatment than in the near-ambient UV-B radiation treament as a result of greater development of palisade parenchyma tissue. We conclude that exposure to near-ambient UV-B radiation for one growing season caused shifts in carbon allocation from leaf development to other pools, probably including but not limited to, UV-B absorbing compounds. This reallocation curtailed leaf development and reduced photosynthetic capacity of the plants compared with those in the subambient UV-B radiation treatment and may affect growth over longer periods of exposure.  相似文献   

6.
During the summers of 1986 and 1987, stem and leaf growth were measured on coppiced plants of Populus trichocarpa Torr. & A. Gray, P. deltoides Bartr. ex Marsh, and P. trichocarpa x deltoides growing in the field in Puyallup, WA. The trees were either irrigated periodically throughout the season, or grown without irrigation. In both treatments, stem volume at the end of the growing season was directly proportional to total leaf area in all three genotypes. The rate of individual leaf growth was reduced by lack of irrigation more in the parental species than in the hybrid. Only in the parental species did unirrigated trees have lower leaf water potentials (predawn and midday) than irrigated trees. However, stomatal conductances of all three genotypes were lower in unirrigated trees than in irrigated trees. Osmotic potentials of growing leaves of all three genotypes were also lower in unirrigated trees than in irrigated trees. As a consequence, turgor of growing leaves was as great in unirrigated trees as in irrigated trees, which indicates that turgor differences cannot explain the lower rates of leaf growth in the unirrigated trees. However, cell wall extensibility of leaves was lower in unirrigated trees than in irrigated trees, and the difference was greater in the parental species than in the hybrid. Unlike its effect on leaf area growth, irrigation increased stem volume growth of the hybrid and the parental species by a similar amount (12-16%).  相似文献   

7.
Patterns of leaf growth, transpiration and whole-plant water balance in Populus trichocarpa, P. deltoides and their F(1) hybrids were studied during a soil drying cycle. Plant responses were analyzed during three distinct stages of dehydration. In stage I, the transpiration rate of drought-stressed plants remained constant and equal to that of well-watered plants even though soil water content declined by more than 40%. Stage II began as soil and plant water deficits induced stomatal closure. When soil water was expressed as a fraction of transpirable soil water, the transition from stage I to stage II occurred at soil water fractions of 0.35, 0.45 and 0.60 for P. trichocarpa, P. deltoides and their F(1) hybrids, respectively. Reductions in leaf growth coincided with the shift from stage I to stage II. As soil water declined further, decreases in relative transpiration and whole-plant leaf area were significantly greater in parental species than in F(1) hybrids. Inherent feedbacks controlling stomatal water loss and the maintenance and growth of leaf tissue appeared to differ between F(1) and parental genotypes in a pattern characteristic of an overdominant mode of inheritance.Stage III began once the ability of stomata to compensate for water loss had been exhausted. Substantial differences were found in plant survival during stage III, with F(1) hybrids surviving longer than parental species. Survival was more strongly correlated with the hydraulic conductivity of xylem tissues than with the dehydration tolerance of leaf tissues. Collectively, these responses suggest that F(1) hybrids were more drought resistant than either parental species and highlight the importance of whole-plant studies of functional relationships between plant growth, water balance and hydraulic conductivity.  相似文献   

8.
Effects of N and K nutrition on drought and cavitation resistance were examined in six greenhouse-grown poplar clones: Populus trichocarpa (Torr. & Gray) and its hybrids with P. deltoides Bartr. and P. euramericana (Dole) Guinier, before and after preconditioning to water stress. Both tendency to cavitate and water-use efficiency (WUE) increased when N supply was increased, whereas K supply had little impact on cavitation. Mean xylem vessel diameters increased from 36.6 &mgr;m at low-N supply to 45.2 &mgr;m at high-N supply. Drought-hardy clones, which were relatively resistant to cavitation, had the smallest mean vessel diameters. Vulnerability to cavitation had a weakly positive relationship with vessel diameter, and a negative correlation with transpiration. Drought hardening offered no protection against cavitation in a subsequent drought. Under drought conditions, increasing N supply increased leaf loss and decreased water potentials, whereas increasing K supply decreased leaf loss. Drought-resistant clones exhibited similar WUE to drought-susceptible clones, but had smaller, more numerous stomata and greater leaf retention under drought conditions.  相似文献   

9.
Tang Y  Liang N 《Tree physiology》2000,20(14):969-976
The photosynthetic induction response is constrained by stomatal and biochemical limitations. However, leaves in some plants like Populus koreana x trichocarpa cv. Peace (a hybrid clone) may have little stomatal limitation because their stomata barely respond to changes in photon flux density (PFD). We examined the induction responses of leaves of well-watered and dehydrated P. koreana x trichocarpa plants grown in a high-light or a low-light regime. With an increase in PFD from 50 to 500 micromol m(-2) s(-1), steady-state stomatal conductance (g(s)) increased by only 0.25-8.2%, regardless of the initial g(s), but steady-state assimilation rate (A) increased by 550-1810%. Photosynthetic induction times required to reach 50% (IT50) and 90% (IT90) of A at high PFD were 60-90 s and 210-360 s, respectively. Examination of the dynamic relationships between A and g(s), and between A and intercellular CO2 concentration, indicated that the induction limitation was imposed completely by the biochemical components within 30-40 s after the PFD increase. Values of IT50 and IT90 were significantly higher in low-light leaves than in high-light leaves, whereas the induction state at 60 s and the induction efficiency at 60 and 120 s after the increase in PFD were lower in low-light leaves than in high-light leaves. Dehydration reduced leaf water potential (psi) significantly, resulting in a significantly decreased initial g(s). Leaf water potential had no significant effects on induction time in high-light leaves, but a low psi significantly reduced the induction time in low-light leaves. We conclude that the photosynthetic induction response was limited almost completely by biochemical components because the stomata barely responded to light changes. The biochemical limitation appeared to be higher in low-light leaves than in high-light leaves. Mild water stress may have reduced steady-state A and g(s), but it had little effect on the photosynthetic induction response in high-light leaves.  相似文献   

10.
Excised leaves and roots of willow (Salix dasyclados Wimm.) accumulated abscisic acid (ABA) in response to desiccation. The accumulation of ABA was greater in young leaves and roots than in old leaves and roots. In mature leaves, ABA accumulation was related to the severity and duration of the desiccation treatment. Water loss equal to 12% of initial fresh weight caused the ABA content of mature leaves to increase measurably within 30 min and to double in 2.5 h. The drying treatment caused significant (P = 0.05) reductions in leaf water potential and stomatal conductance. Recovery of leaf water potential to the control value occurred within 10 min of rewatering the dehydrated leaves, but recovery of stomatal conductance took an hour or longer, depending on the interval between dehydration and rewatering. The addition of ABA to the transpiration stream of well-watered excised leaves was sufficient to cause partial stomatal closure within 1 h and, depending on ABA concentration, more or less complete stomatal closure within 3 h. When the ABA solution was replaced with water, stomatal conductance increased at a rate inversely related to the concentration of the ABA solution with which the leaves had been supplied.  相似文献   

11.
欧李叶表皮形态气孔指标与叶果矿质元素含量变化的关系   总被引:2,自引:1,他引:1  
欧李(Cerasus humilis)是我国特有的一种野生果树资源,其果实中钙、铁等元素尤为丰富(曹琴等,1999),同时具有抗旱、耐寒、耐贫瘠、耐盐碱等特性,是生态建设和防风固沙的良好树种(姜英淑等,2009;李学强等,2009).研究表明:叶片是植物进化过程中对环境变化敏感且可塑性较大的器官,叶表皮形态结构随着环境的变化而形成自身相对稳定的遗传特征,叶片的气孔、表皮毛、角质层等结构与植物的抗逆性密切相关(李芳兰等,2005;李正理,1981;Bosabalidis et al.,2002;Sam et al.,2000;Mendes et al.,2001),而叶片气孔形态指标大小变化影响着植物的蒸腾、光合、呼吸等作用(潘瑞炽,2008).  相似文献   

12.
Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.  相似文献   

13.
复叶槭 (AcernegundoLinn .)自 10 0年前从北美引种到中国 ,在内蒙古东部的生态交错带上 ,为了适应严酷的生存环境 ,形成了很多特殊的形态特征 .在不同的植被带生长的两个复叶槭生态型 ,其叶片并没有肉眼可见的差异 ,但它们的叶片显微形态特征却完全不同 .来自更加干旱温暖的种源的叶片具有更多的表皮毛、更多而小的气孔、更大的副卫细胞、更厚的栅栏组织 ,且其叶表角质层更加平滑 .来自干热地区种源的叶片显微特征有利于植物降低叶温、保持水分 .植物长期适应不同生存环境会形成具有不同叶部显微形态特征的生态型 ,当叶部显微形态特征用作植物分类的依据时应予以考虑 .  相似文献   

14.
Poplars are one of the woody plants that are very sensitive to water stress, which may reduce the productivity of fast-growing plantations. Poplars can exhibit several drought tolerance strategies that may impact productivity differently. Trees from two improved hybrids, Populus balsamifera?×?Populus trichocarpa Torr. & Gray (clone B?×?T) and P. balsamifera?×?Populus maximowiczii A. Henry (clone B?×?M), having P. balsamifera L. as a parent and trees from native and unimproved P. balsamifera were subjected to a 1-month drying cycle in a growth chamber and then rewatered. The unimproved and native B clone maintained higher stomatal conductance (g(s)) than the hybrids, and high photosynthetic activity and transpiration, even when soil water content was nearly zero. As a result, both instantaneous water use efficiency (WUE(i)) and leaf carbon isotope composition (δ(13)C) indicated that this clone was less affected by drought than both hybrids at maximal drought stress. However, this clone shed its leaves when the drought threshold was exceeded, which implied a greater loss of productivity. The B?×?M hybrid showed a relatively conservative response to water stress, with the greatest decrease in transpiring versus absorbing surface (total leaf area to root biomass ratio). This clone was also the only one to develop new leaves after rewatering, and its total biomass production was not significantly decreased by drought. Among the two hybrids, clone B?×?T was the most vigorous, with the greatest transpiration (E(i)) and net CO(2) assimilation (A) rates, allowing for high biomass production. However, it had a more risky strategy under drought conditions by keeping its stomata open and high E(i) rates under moderate drought, resulting in a lower recovery rate after rewatering. The opposite drought response strategies of the two hybrids were reflected by clone B?×?T having lower WUE(i) values than clone B?×?M at maximal drought, with a very low Ψ(min) value of -3.2 MPa, despite closed stomata and stopped photosynthetic activity. Positive linear relationships between A and g(s) for the three hybrids indicated strong stomatal control of photosynthesis. Moreover, the three poplar clones showed anisohydric behaviour for stomatal control and their use under long-term drought should be of interest, especially the B?×?M clone.  相似文献   

15.
Restricted gas exchange between the rhizosphere and aerial environment reduces the concentration of oxygen (O(2)) and elevates the concentration of carbon dioxide (CO(2)) in the root zone, thereby leading to increased resistance to root water uptake. In this study, the effects of hypoxia and 20% CO(2) on water flux (J(v)) through roots of hybrid poplar (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh) were measured in detached root systems under pressure in solution culture. Because stomata closed and there was no change in foliar water potential in hypoxic plants, root resistance was measured in detached systems as opposed to using whole plant measurements. However, under aerated conditions root resistance values were similar in intact plants and excised roots. Water fluxes through pressurized root systems treated with nitrogen and low oxygen (< 2% O(2)), elevated CO(2) (20% CO(2)), and low O(2) with elevated CO(2) concentrations were reduced to 40, 51 and 58%, respectively, of J(v) of plants aerated with ambient air. Reductions in J(v) occurred more rapidly in response to elevated CO(2) than to low O(2) concentrations. The effects of low O(2) and elevated CO(2) were not additive. Changes in pH that resulted from elevated CO(2) concentrations did not account for the reduction in J(v). When root systems of intact plants were pretreated for 24 or 48 h with low O(2) concentration, J(v) measured on pressurization was reduced by 33 and 48%, respectively, compared to aerated roots. Stomatal conductance was also reduced, however, so leaf water potential of plants with hypoxic roots were similar to those of aerated controls.  相似文献   

16.
Sellin A 《Tree physiology》2001,21(12-13):879-888
A study of how the water conducting systems of 30-50-year-old Norway spruce (Picea abies (L.) Karst.) trees growing at three sites adjust to shade and waterlogging indicated that water relations characteristics varied with the life histories of the trees. Xylem was more efficient at conducting water and stomata were more sensitive to atmospheric evaporative demand in trees subjected to favorable growth conditions (control trees) than in trees growing in shade or waterlogged conditions. At the same soil water availability, shade-grown trees suffered more severely from water deficit than control trees. Under conditions of high atmospheric vapor pressure deficit, foliage of shade-grown trees exhibited low water potentials, as a result of low hydraulic conductance of the vascular system and inefficient stomatal control. Because of the increased internal resistance to water flow, more negative leaf water potentials (Psi(x)) must be reached to provide an adequate water supply to the foliage. It is concluded that dynamic water stress is one of the main causes of the continuing growth retardation in suppressed Norway spruce trees after their release from the overstory. Trees growing in waterlogged soil (bog-grown trees) were characterized by weak stomatal control, resulting in large water losses from the foliage. Although bog-grown trees exhibited uneconomical water use, they possessed mechanisms (e.g., osmotic adjustment) that allowed leaves to tolerate low Psi(x) while stomata remained open. Under conditions of sufficient soil water availability and moderate atmospheric vapor pressure deficit, soil-to-leaf conductance was highest in bog-grown trees (1.45 +/- 0.06 mmol m(-2) s(-1) MPa(-1)), followed by control and shade-grown trees (1.04 +/- 0.04 and 0.77 +/- 0.05 mmol m(-2) s(-1) MPa(-1), respectively). The lowest soil-to-leaf conductance (0.45 +/- 0.04 mmol m(-2) s(-1) MPa(-1)) was recorded in control trees at high atmospheric evaporative demand, and was probably caused by tracheid cavitation.  相似文献   

17.
Root tips of intact willow (Salix dasyclados Wimm., Clone 81-090) plants were partially dried by exposure to ambient greenhouse air and then kept in water-vapor-saturated air for up to 3 days. The drying treatment increased abscisic acid (ABA) concentrations in both the root tips subjected to drying and in the xylem sap, while it reduced leaf stomatal conductance and leaf extension rate. Despite the decrease in stomatal conductance, leaf water potentials were unaffected by the root drying treatment, indicating that the treatment reduced hydraulic conductivity between roots and foliage. After roots subjected to drying were returned to a nutrient solution or excised, ABA concentrations in the remaining roots and in the xylem sap, stomatal conductance of mature leaves and extension rate of unfolding leaves all returned to values observed in control plants. The 4-fold increase in xylem sap ABA concentration following the root drying treatment was not solely the result of reduced sap flow, and thus may be considered a potential cause, not merely a consequence, of the observed reduction in stomatal conductance.  相似文献   

18.
Autumnal changes in organic-S, sulfate-S, total-S and the ratios of organic-S to total-N and sulfate-S to organic-S were followed in leaves and adjacent bark of actinorhizal (Frankia-nodulated) black alder (Alnus glutinosa (L.) Gaertn.) and eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees growing on a minespoil site high in extractable soil sulfate, and in black alder and white basswood (Tilia heterophylla Venten.) trees growing on a prairie-derived soil in Illinois. Organic-S concentrations decreased significantly (P < 0.05) during autumn only in foliage of trees growing on the prairie-derived soil where losses of leaf organic-S were 65% for black alder and 100% for white basswood. Leaf sulfate concentrations were relatively stable throughout autumn in white basswood growing on prairie-derived soil and in black alder at both sites. Sulfate-S concentrations in leaves were significantly (P < 0.05) higher in trees at the minespoil site than in trees growing in the prairie-derived soil (5.1 mg g(-1) for the minespoil site and 1.2 mg g(-1) for the prairie-derived soil), and in the non-actinorhizal species during late summer. During the autumn, the ratio of organic-S to total-N doubled in leaves of eastern cottonwood at the minespoil site, but in black alder and white basswood growing on the prarie-derived soil, it decreased by 60 and 74%, respectively. Organic-S concentrations in bark increased more during autumn in species unable to fix atmospheric N(2), than in black alder. The results suggest that patterns of autumnal translocation of leaf S can be site-dependent and that leaf S and leaf N are, at least in part, translocated independently in the fall. Black alder and eastern cottonwood seemed to incorporate sulfate-S readily into organic substances in leaves when grown in soils with a high sulfate content.  相似文献   

19.
We examined the tradeoffs between stand-level water use and carbon uptake that result when biomass production of trees in plantations is maximized by removing nutrient and water limitations. A Populus trichocarpa Torr. x P. deltoides Bartr. & Marsh. plantation was irrigated and received frequent additions of nutrients to optimize biomass production. Sap flux density was measured continuously over four of the six growing-season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production based on allometric relationships. Sap flux was converted to canopy conductance and analyzed with an empirical model to isolate the effects of water limitation. Actual and soil-water-unlimited potential CO(2) uptakes were estimated with a canopy conductance constrained carbon assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity and maximum electron transport. Net primary production (NPP) was about 43% of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the NPP/GPP ratio, we found that current irrigation reduced growth by about 18% compared with growth with no water limitation. To achieve maximum growth, however, would require 70% more water for transpiration, and would reduce water-use efficiency by 27%, from 1.57 to 1.15 g stem wood C kg(-1) water. Given the economic and social values of water, plantation managers appear to have optimized water use.  相似文献   

20.
Effects of mineral nutrition on susceptibility to cavitation were examined in four hybrid poplar clones. Two drought-sensitive and two drought-resistant hybrid clones of black cottonwood (Populus trichocarpa Torr. & Gray) and eastern cottonwood (P. deltoides Bartr.) were grown at three concentrations of nitrogen (N) applied factorially with two concentrations of phosphorus (P) in a greenhouse, and subjected to varying degrees of drought stress before measurement of cavitation and of anatomical features that might affect cavitation. Mean vessel pit pore diameters were 0.132 micro m at low P, and 0.074 micro m at high P, but no other significant effects of mineral nutrition on vessel dimensions were observed. Vessel diameter and specific conductivity were greater in the drought-resistant clones than in the drought-susceptible clones. Drought-resistant clones did not reach such low water potentials as drought-sensitive clones during the cavitation induction experiments, suggesting better stomatal and cuticular control of water loss. Scanning electron microscope observations showed less damage to pit membranes, also suggesting greater membrane strength in drought-resistant clones than in drought-sensitive clones. High concentrations of N increased cavitation, whereas high concentrations of P decreased cavitation as measured by both hydraulic flow apparatus and dye perfusion techniques. For one test, cavitation was 48% at high N and low P, but only 28% at high N and high P. We consider that N fertilization may make poplars more susceptible to cavitation on dry sites, but P fertilization may reduce this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号