首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voles and shrews are key species in northern forest ecosystems. Thus, it is important to quantify to what extent new forestry practices such as planting of non-native tree species impact these small mammals. In northern Norway stands of coastal subarctic birch forests have increasingly been converted to non-native spruce stands during the last century. This leads to changes in the forest floor vegetation and soil conditions that can be expected to negatively impact the community of ground-dwelling small mammals. In this 10-year trapping study we contrasted seasonal small mammal population abundances in spruce plantations with four birch forest varieties. Six different small mammal species were trapped (in descending order of abundance; common shrew Sorex araneus, red vole Myodes rutilus, field vole Microtus agrestis, grey-sided vole M. rufocanus, pygmy shrew S. minutus and water shrew Neomys fodiens). None of the voles appeared to exhibit temporal dynamics resembling population cycles. The three most numerous species were clearly less abundant in the spruce plantations compared to the other forest types. Autumn abundances were most impacted by spruce plantations, indicating that growth rates in the reproductive season were more influenced than winter declines. Species associated with productive forest habitats (i.e. field vole and common shrew) were most impacted by tree species conversion. Still young spruce plantations inter-mixed with birch trees and the ecotone habitat, sustained small mammal abundances comparable to the native birch forests. This implies that managing spruce plantations to maintain a mix of different tree species and high spatial heterogeneity (i.e. more ecotones), will reduce the negative impacts on the small mammal community. On the contrary, if young spruce plantations, as they age become spruce monocultures covering larger parts of the landscapes than they do presently, the negative effects on small mammal communities may be larger than observed in the present study.  相似文献   

2.
Voles inflict damage to silviculture by debarking or severing tree seedlings. The large-scale impacts of vole damage to silviculture, both in terms of severity and financial losses are, however, poorly known. In autumn 2005, cyclically fluctuating vole populations were at their highest in Finland for over 15 years, which led to extensive damage to silviculture during the winter 2005/06. We carried out a nationwide assessment of the incidence, spatial extent and economic value of damage and its relation to vole abundance in privately owned forests during this winter. Damage data were obtained with a questionnaire addressed to the directors of all Forest Management Associations (FMAs) operating in Finland, and vole abundance data from 15 long-term monitoring projects across the country. Voles were confirmed to have destroyed ca. 4.7 million tree seedlings, covering a total effective damage area of ca. 2600 ha. The directors of the FMAs estimated that the actual level of damage was likely to exceed 8.5 million seedlings, or 5400 ha. Roughly 80% of all damage was inflicted on Norway spruce (Picea abies), ca. 10% on Scots pine (Pinus sylvestris) and ca. 10% on birch (Betula sp.) and other species. Considering costs of replanting alone, a most likely very conservative estimate of the financial impact of vole damage during the winter 2005/06 lies between 2.2 and 4.0 million €. The occurrence of damage during the winter was positively related to vole abundance in the previous autumn. This validates vole population monitoring as an effective tool for forecasting near-future damage to silviculture. Our results suggest that if vole populations continue to fluctuate as they currently do, levels of damage to Finnish forests will be great also in the future, far exceeding damage levels recorded in earlier decades.  相似文献   

3.
Dry Douglas-fir (Pseudotsuga menziesii) forests offer a wide range of timber and non-timber values, which may benefit from a balanced timber harvest by variable retention systems with conservation of biodiversity. A major component of biodiversity are forest floor small mammal communities whose abundance and diversity serve as ecological indicators of significant change in forest structure and function from harvesting activities. This study was designed to test the hypotheses that abundance, reproduction, and survival of (i) the southern red-backed vole (Myodes gapperi, formerly Clethrionomys gapperi), will decline; (ii) the deer mouse (Peromyscus maniculatus), will be similar; and (iii) the meadow vole (Microtus pennsylvanicus) and northwestern chipmunk (Tamias amoenus), will increase, with decreasing levels of tree retention. Small mammal populations were live-trapped from 1994 to 1997 in replicated sites of uncut forest, 20% and 50% volume removal by single tree selection, 20%, 35%, and 50% patch cuts based on openings of 0.1–1.6 ha, and small 1.6 ha clearcuts in Douglas-fir forest near Kamloops, British Columbia, Canada. M. gapperi dominated the small mammal community, starting with an abundance of 74–98 animals/ha with mean values ranging from 33 to 51 animals/ha. In the two post-harvest years, abundance, reproduction, and survival of M. gapperi populations were consistently similar among uncut forest and the various levels of tree retention. Thereafter, M. gapperi was seldom found on the small clearcuts. M. pennsylvanicus, T. amoenus, and P. maniculatus occurred predominantly in clearcut sites. As with other types of forest disturbance, responses to our treatments were species-specific. The most striking result was the high abundance and productivity of M. gapperi populations in a dry forest ecosystem, a novel result for this bio-indicator species of closed-canopy forest conditions. At least with respect to small mammals, the retention systems studied seem to enable timber extraction and maintenance of mature forest habitat in these dry fir ecosystems.  相似文献   

4.
We sampled the small mammal (SM) community in mountain forest ecosystems of the Beskydy Mountains over 5 years in order to study associations with different types of forest habitat. Fourteen species were determined, three being eudominant (yellow-necked mouse—Apodemus flavicollis (45 %), bank vole—Clethrionomys glareolus (23.3 %) and field vole—Microtus agrestis (15.7 %) and one dominant common shrew—Sorex araneus (9.3 %)). Highest abundance was observed in young succession sites (plantations) with dicotyledonous plants dominant (>50 %) in the undergrowth. Highest diversity was observed in plantations and primeval forests. Lowest total abundance and diversity were observed in mature monocultures. Significant differences in diversity were only found between old monocultures and other sites. Using a faunistic similarity index, two basic SM community groups were determined: those inhabiting (1) early (plantation) and late (reserve) successional forest ecosystems with a dense dicotyledonous plant herb layer, and (2) plantations with a dense grass herb layer and forests with a dense canopy closure (fruiting monoculture). Redundancy analysis confirmed separate habitat preferences of the three eudominant species. Generalised linear model indicated increasing preference of field vole for plantations with dominance of grass and <10–15 % admixed dicotyledonous plants while decreasing preference at ratios >10–15 %, and increasing preference of bank vole for plantations with a dicotyledonous plant ratio of >10–15 %. The biotopes monitored proved suitable for long-term survival of the dominant SM species. Early successional plantations and forest reserves also represent important refuges for a number of rarer SM species presently under threat.  相似文献   

5.
In deciduous forests, tree seeds and seedlings are frequently exposed to high predation by small rodents, and this predation can have an important effect on forest regeneration. However, damage to large trees by small rodents has not been studied, except for damage observed during timber production. To determine factors affecting damage to large trees by the grey red-backed vole (Myodes rufocanus bedfordiae), the characteristics and spatial patterns of tree damage by voles at vole wintering sites were examined over 3 years in a deciduous forest in Hokkaido. This study found that the location of damaged trees was related to vole wintering sites. Vole damage was affected by tree species. Damaged trees were heavily concentrated in small areas. Leaning trees and trees that had suffered previous damage were more likely to be damaged. However, the diameter at breast height was not significantly related to vole damage. These differences in susceptibility to vole damage may result in different tree mortality.  相似文献   

6.
Voles have caused more damage by bark consumption to Picea abies and Pinus contorta seedlings from southern than those from northern origins when planted in northern Scandinavia. In field and laboratory experiments, indigenous Scandinavian tree species from different origins and of various phenological stages were tested for susceptability to vole attacks. Seedlings from northern sites and late phenological stages were most severely attacked by both bank voles Clethrionomys glareolus and field voles Microtus agrestis, while a few aspen clones differed independently of origin. Bark consumption by the two vole species was strongly and negatively related to the concentration of crude fibre in the examined twigs. Bank voles also reacted positively to the content of nitrogen‐free extracts. Differences in preferences for seedlings from different geographical regions appear to result from differences in the bark at the end of growth and in the frost‐hardening process in autumn. Plants transferred northwards probably will not harden in a climatically appropriate way, will contain low concentration of fibre in winter, and will be a preferred food for voles.  相似文献   

7.
对萧氏松茎象不同危害程度湿地松林地的枯落物及土壤物理性质比较研究结果表明:枯落物及腐殖质层厚度对萧氏松茎象危害程度的影响最大,其次是枯枝落叶干质量和土壤含水量,枯枝落叶含水率和吸水率影响最小,即枯落物及腐殖质层越厚,枯枝落叶越多,土壤湿度越大的林区,萧氏松茎象发生越重。单因素分析表明:枯落物及腐殖质层厚度、枯枝落叶干质量和土壤质量湿度与有虫株率的相关关系均达到显著水平。萧氏松茎象有虫株率火炬松和马尾松林发生林地明显低于湿地松发生林地。与不发生林地相比,发生林地的土壤更湿润,土壤的保水能力更好,孔隙度更高,石砾含量相对较低。  相似文献   

8.

Voles cause damage in forestry by eating the bark of seedlings and the seeds of conifers. Folivorous field voles ( Microtus agrestis ), restricted to various types of grassland, are mainly responsible for damage to bark, and granivorous bank voles ( Clethrionomys glareolus ), supported by most forest environments, for the consumption of seeds. Densities of bank and field voles, consumption of bark on indigenous and experimental woody plants, and consumption of experimentally supplied seeds were measured during the vole cycle 1997-2000 in relation to three habitat and three landscape variables. Landscape variables explained field vole densities and consumption of bark to a considerable extent, while habitat variables were more adequate for densities of bank vole and consumption of seeds. Field vole populations may demonstrate a ''mass effect'', where the success of early development and dispersal from subpopulations will decide peak numbers over entire landscapes. Numbers of field voles may affect numbers of the inferior bank vole. Thus, predicting the exact location of vole damage is principally difficult.  相似文献   

9.
The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photo-synthetic performance of Podocarpus falcatus seedlings in Eucalyptus plantation, Pinus plantation, adjacent natural forest and clear-felled plantation site. P. falcatus seedlings exhibited differences in architecture between Eucalyptus and Pinus plantations. They had higher leaf area, shorter internode length and greater number of lateral branches in Eucalyptus plantation. At similar vapor pressure deficit (VPD), P. falcatus transpired much less than E. saligna, especially at higher VPDs. Analysis of fluorescence parameters in the leaves showed no significant differences in the level of dark-adapted and light-adapted fluorescence yield (Fv /Fm and ΔF/Fm, respectively), electron transport rate (ETR) and nonphotochemical quenching (NPQ) among seedlings grown inside plantations and adjacent natural forest, indicating similar photosynthetic performance. Nevertheless, there was evidence of photoinhibition in P. falcatus in the clear-felled site which had low fluorescence yield but high values of NPQ as protection from photoamage. The light response curves of ETR, NPQ and ΔF/F m , showed similar light saturation behavior among the seedlings grown inside plantations and natural forest and suggested a sequence of light-adapted to shade-adapted behavior in Natural forest > Eucalyptus plantation > Pinus plantation. The results show the structural flexibility, better water-use and adaptability of P. falcatus in its use of the understory environment of plantation species.  相似文献   

10.
There is an increasing need to restore natural hardwood forests in landscapes dominated by monocultural conifer plantations. A convenient restoration approach is to exploit natural regeneration processes. Natural regeneration, however, is affected by diverse interacting factors, for which better understanding is required, in order to optimize restoration programs. To identify optimal management practices for improving natural regeneration of hardwood trees in coniferous plantations, we examined the effects of multiple factors on the abundance of seedlings, small saplings and large saplings (height <0.3, 0.3-1.3 and ?1.3 m, respectively) of hardwood tree and shrub species in both line thinned (LT) and unthinned (UT) plantations of sugi (Cryptomeria japonica) and hardwood forests (HF) in central Japan. The effects of management practices (number of the times of weeding and cleaning, thinning method, years after thinning and forest age), environment (slope position, slope angle and canopy openness), and landscape conditions (distance from nearest hardwood forest, altitude and landuse before planting) on the number of hardwood individuals were examined by using the data obtained from the LT plantations. We also compared hardwood density between LT and UT plantations to examine the effect of line thinning. Finally, we examined species composition of LT plantations and HF to identify hardwood forest components in the thinned plantations. The effects on hardwood regeneration of environmental conditions, landscape factors and management practices applied in the plantations varied, depending on the size class and life form of the regenerating species. The abundance of large saplings of tall tree species was affected by several management factors, especially number of the times of weeding. Landscape conditions (distance from the nearest hardwood forest and altitude) affected the abundance of small saplings and seedlings of tall tree species, but not the other classes. Seedlings and small saplings of many tall tree species that contribute to hardwood forest canopies were less abundant in the LT plantations. The results show that numerous factors affect the establishment and abundance of naturally regenerating hardwood tree species, and suggest that successful establishment during early plantation stages can have long-lasting effects on natural regeneration of tall tree species.  相似文献   

11.
为了探究固氮树种对我国南方亚热带地区第二代桉树人工林土壤微生物生物量和结构影响及其机制,采用磷脂脂肪酸分析方法分别在干季和湿季研究了第二代桉树纯林和第二代桉树/固氮树种混交林的土壤微生物群落生物量和结构。结果表明:与纯林相比,混交林土壤(0 10 cm)的有机碳含量、铵态氮、硝态氮、总氮、凋落物生物量分别提高了17.77%、41.62%、85.59%、25.38%、19.12%,除土壤有机碳外,其它在统计学上均达到了显著性差异(p0.05);混交林的细菌生物量显著增加,但其真菌生物量显著减少;同时,混交林的总细菌、革兰氏阳性细菌相对百分含量在干季显著提高,真菌的相对百分含量却显著降低;但在湿季,除总细菌外,其它微生物群落结构没有显著差异。主成分分析(PCA)表明:第二主成分轴能明显把第二代桉树混交林和纯林的土壤微生物群落区分开来(p0.05),这种差异主要体现在混交林具有较高的细菌相对百分含量和相对较低的真菌相对百分含量。冗余度分析(RDA)表明:凋落物生物量、凋落物C/N、铵态氮、有机碳含量是驱动我国南方第二代桉树人工林土壤微生物群落结构发生变化的主要因子。此外,壕沟切根试验表明根系及其分泌物可能是第二代桉树人工林土壤微生物的重要碳源。  相似文献   

12.
Despite the fact that tree plantations are not able to completely replace the ecological function of natural forests, the present study proposes to evaluate for which bird species or avian groups tree plantations act as habitat in fragmented landscape in southern Brazil. We compared the richness and abundance of bird species in a natural forest to adjacent plantations of Araucaria, a native tree species and of pine, an exotic plant in South America. Moreover, we evaluated the impact of tree plantations on richness of avian groups with different levels of dependence on forest habitat, feeding habits and foraging strata as well as on threatened species. The fixed 100 m radius point-counts method was used. A total of 114 bird species were recorded in all areas. Of those, 93 occurred in natural forest, 87 in Araucaria plantations and 81 in pine plantations. These results indicate that richness and abundance were lower in the pine plantations than in the natural forest and in the Araucaria plantations. Araucaria plantations can be used by a high number of bird species and their richness was not significantly lower than that observed in the adjacent natural forest. Our results suggest that Araucaria plantations could act as habitat for a large number of bird species, especially for forest-dependents species, insectivores, frugivores and species at different threat categories.  相似文献   

13.

This study investigated the impact of small rodents on young trees during three growing seasons (2018–2020) in the Czech Republic. Tree damage by small rodents, the quantity and quality of herbaceous plant biomass and the species composition of small mammals were monitored at two sites in European beech forest plantations. The number of trees damaged during three growing seasons correlated positively with fibre content and negatively with nitrogen content in herbaceous plant biomass. The importance of winter precipitation is reflected in the positive correlation with nitrogen content in herbaceous plant biomass. The observed tree-gnawing damage correlated positively with the abundance of one rodent species only—the bank vole. The highest damage occurred after the concurrence of a dry winter and a higher number of voles. Given current climate variability, this situation could become more common in the future. Gnawing may be a limiting factor for the successful restoration of trees with thin bark—in our case, European beech. In addition, the proportion of this woody species should be increased to achieve a more stable and closer composition in the Czech Republic.

  相似文献   

14.
Forest management activities may help reduce global net CO2 concentrations by capturing and storing atmospheric CO2. Research related to carbon sequestration potential of plantations in North America has focused predominantly on conifers, with relatively little emphasis thus far on temperate deciduous forest tree species. American chestnut (Castanea dentata (Marsh.) Borkh.), a former dominant tree species in eastern North America until its demise associated with the introduced chestnut blight (Cryphonectria parasitica (Murr.) Barr.), is a temperate deciduous species that holds promise for future carbon sequestration programs with expected availability of blight-resistant backcross hybrids. We quantified aboveground biomass and bole carbon of American chestnut interplanted with black walnut (Juglans nirga L.) and northern red oak (Quercus rubra L.) across four blight-free experimental sites varying in site quality and/or age (8, 8, 12, and 19 years) isolated from the native American chestnut range in the Coulee Region of southwestern Wisconsin, USA. American chestnut exhibited more rapid growth and greater aboveground biomass and bole carbon than either of the other interplanted species. Aboveground biomass ranged from 46.9, 60.7, 55.0, and 179.9 Mg ha−1 for the 8-, 8-, 12-, and 19-year-old sites, respectively, while bole carbon content ranged from 13.6, 18.6, 14.1, and 60.1 Mg ha−1 for the 8-, 8-, 12-, and 19-year-old sites, respectively. Cross-referencing our data to studies conducted within this same physiographic region using other important forestry species (i.e., Populus tremuloides Michx., Pinus resinosa Ait., and Pinus strobus L.) showed that American chestnut compared favorably in growth and carbon uptake. Incorporating American chestnut into carbon sequestration plantations provides additional ecological and economic benefits associated with consistent production of quality nuts for wildlife, valuable timber, and contribution toward species restoration. Our data lend support to building evidence demonstrating rapid and sustained growth of American chestnut and the potential role of plantation-grown American chestnut in helping to mitigate climate change through carbon sequestration.  相似文献   

15.
Mainly the following four species of voles (Arvicolidae) are harmful in forest plantations in Central Europe: the field vole (Microtus agrestis), the common vole (M. arvalis), the redbacked vole (Clethrionomys glareolus) and the water vole (Arvicola terrestris). Different possibilities of development of an integrated control programme are discussed. The most important factors are: identification and forecasting of damages, determination of control thresholds, optimized timing of control operation and selection of efficient control methods with minimized environmental hazards. Finally the system of surveillance of rodents in Bavarian forest plantations is described, whereby different preventive measures by means of forest cultivation play an important role. Furthermore new methods of forecast and of control such as bait station technique with new types of rodenticides and attractants are tested.  相似文献   

16.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

17.
In the humid and temperate areas of southern Europe, forest plantations are dominated by fast-growing species (Eucalyptus globulus, Pinus radiata and Pinus pinaster), which are grown on acidic soils with low reserves of available nutrients. In this study the amounts of nutrients exported from the plantations under different regimes and intensities of harvesting were evaluated and, on the basis of the results obtained, silvicultural management methods aimed at improving the nutritional status of the plantations were proposed. We found high ratios between nutrients exported by harvesting and those available in soil stores, indicating limitation for P, Ca and Mg over the long term, which is consistent with frequently found deficiencies of these nutrients. Current harvesting practices (removal of stem wood and bark) result in high rates of export of P, K, Ca and Mg, especially in eucalypt plantations, because of the high productivity and low nutrient efficiency of this species. Comparison of the amounts of nutrients exported by harvesting, with natural inputs (rainfall and weathering) and outputs (stream water), suggests that intensive exploitation of these plantations may result in negative budgets, especially if whole tree harvesting is carried out. The application of fertilizers containing P, Ca and Mg should be encouraged in all cases to favour the return of nutrients, especially where logging residues are extracted. The cost of harvesting in terms of nutrients can also be reduced by careful selection of the tree species planted and of the tree fractions harvested and by reducing the intensity of harvesting.  相似文献   

18.
The sub-Antarctic biome of South America is the world's southernmost forested ecosystem and one of the last remaining wilderness areas on the planet. Nonetheless, the region confronts various anthropogenic environmental impacts, such as the invasive North American beaver (Castor canadensis) and timber harvesting, particularly in stands of Nothofagus pumilio. Both of these disturbances can affect terrestrial and aquatic systems. To understand the influence and relative importance of these disturbances on sub-Antarctic watersheds, we characterized in-stream and riparian habitat conditions (pH, dissolved oxygen, conductivity, temperature, stream size, distance to riparian forest, bank slope, substrate heterogeneity, benthic organic matter) and benthic macroinvertebrate community structure (density, richness, diversity, evenness) and function (biomass, functional feeding group percent) in 19 streams on Tierra del Fuego Island. To explain the effects of beaver invasion and timber harvesting, we compared these physical and biotic variables among four habitat types: (a) beaver meadows, (b) shelterwood cut harvested areas without forested riparian zones, (c) variable retention harvested areas with riparian buffers, and (d) unmanaged old-growth primary forests. Most habitat variables were similar at all sites, except for dissolved oxygen (significantly higher in streams from old-growth primary forests). Benthic communities in beaver meadows had significantly lower diversity, compared to streams of unmanaged old-growth primary forests, and managed sites presented intermediate values between the two. Functionally, the benthic community in beaver meadows displayed a reduction of all functional feeding groups except collector-gatherers; again variable retention harvested areas with riparian buffers were similar to unmanaged old-growth primary forest streams, while shelterwood cut harvested areas occupied an intermediate position. These results indicated that current forestry practices that include both variable retention and legally mandated riparian forested buffers may be effective in mitigating impacts on stream benthic communities. Finally, these data demonstrated that C. canadensis invasion was a relatively larger impact on these streams than well-managed forestry practices.  相似文献   

19.
The recent outbreak of Lophodermium needlecast in North America first appeared in 1966 in forest nurseries on red pine (Pinus resinosa) and Scotch pine (P. sylvestris). Dispersal of infected nursery stock throughout North America has created a serious needlecast problem in Scotch pine Christmas tree plantations. Two biotypes of L. pinastri are present. The pathogenic strain may be a recent introduction. The fungicides maneb and chlorothalonil are being used for control.  相似文献   

20.
Effects of reforestation by native tree species on species assemblages of carabid beetles were studied between 40-year-old regenerating plantations and 100-year naturally regenerated forests in Southwestern China. Two old naturally regenerated forest types (ca.100 years old) were chosen: hemlock-spruce forests (Tsuga chinensis and Picea brachytyla) and birch forests (Betula albo-sinensis). Three young regenerating forest types (ca. 40 years old), including spruce plantations (P. brachytyla), larch plantations (Larix kaempferi and Larix mastersian), and natural broad-leaved forests, were established after the logging of the old naturally regenerated forests. Using pitfall traps, we compared the distribution of carabid beetles in the five forest types. Three replicated plots for each forest type were chosen, and each plot was investigated with four trap sites twice each month during the growing season (May to October) in 2004. Our results showed that species richness and abundance were significantly higher in the young regenerating forests than in the old naturally regenerated forests. Analysis of complementarity in carabid species lists across the forest ages and types showed that the old naturally regenerated birch forests had the lowest similarity with the young regenerating larch plantations, and the highest similarity was shown between the two young regenerating plantations. Although PCoA ordination grouped the carabid assemblages according to forest type and forest age, the overall similarity among all forest types was high. Moreover, quantitative character species analysis did not detect significant species associated with forest types and ages. Based on the specificity and fidelity, most carabid species were abundant in all habitats, and only a few species were restricted in one or two forest types. Multiple linear regression between the species richness, abundance and Shannon diversity of carabids and of five environmental variables showed that the cover of canopy and herbaceous layer, and the depth of leaf litter had significant effects in determining richness, abundance and diversity of carabid beetles. Thus, the young regenerating forests at the mature stage could provide an appropriate habitat for most forest species of carabids survived in adjacent old naturally regenerated forests and might replace the role in part of the old-growth forests in sustaining the diversity of carabid assemblages. But some species are still restricted in old naturally regenerated forests, so in order to protect the diversity of carabid assemblages, it is necessary to sustain the intact old naturally regenerated forests when reforesting with some native tree species following natural succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号