首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The importance of agroforestry systems in CO2 mitigation has become recognized worldwide in recent years. However, little is known about carbon (C) sequestered in poplar intercropping systems. The main objective of this study is to compare the effects of three poplar intercropping designs (configuration A: 250 trees ha−1; configuration B: 167 trees ha−1 and configuration C: 94 trees ha−1) and two intercropping systems (wheat–corn cropping system and wheat–soybean cropping system) on biomass production and C stocks in poplar intercropping systems. The experiment was conducted at Suqian Ecological Demonstration Garden of fast-growing poplar plantations in northwestern Jiangsu. A significant difference in C concentration was observed among the poplar biomass components investigated (P ≤ 0.05), with the highest value in stemwood and the lowest in fine roots, ranging from 459.9 to 526.7 g kg−1. There was also a significant difference in C concentration among the different crop components (P ≤ 0.05), and the highest concentration was observed in the corn ear. Over the 5-year period, the total poplar biomass increased with increasing tree density, ranging from 8.77 to 15.12 t ha−1, while annual biomass production among the crops ranged from 4.69 to 16.58 t ha−1 in the three configurations. Overall, total C stock in the poplar intercropping system was affected by configurations and cropping systems, and configuration A obtained the largest total C stock, reaching 16.7 t C ha−1 for the wheat–soybean cropping system and 18.9 t C ha−1 for the wheat–corn cropping system. Results from this case study suggest that configuration A was a relative optimum poplar intercropping system both for economic benefits and for C sequestration.  相似文献   

2.
Tree removal in Latin American coffee agroforestry systems has been widespread due to complex and interacting factors that include fluctuating international markets, government-supported agricultural policies, and climate change. Despite shade tree removal and land conversion risks, there is currently no widespread policy incentive encouraging the maintenance of shade trees for the benefit of carbon sequestration. In facilitation of such incentives, an understanding of the capacity of coffee agroforests to store carbon relative to tropical forests must be developed. Drawing on ecological inventories conducted in 2007 and 2010 in the Lake Atitlán region of Guatemala, this research examines the carbon pools of smallholder coffee agroforests (CAFs) as they compare to a mixed dry forest (MDF) system. Data from 61 plots, covering a total area of 2.24 ha, was used to assess the aboveground, coarse root, and soil carbon reservoirs of the two land-use systems. Results of this research demonstrate the total carbon stocks of CAFs to range from 74.0 to 259.0 Megagrams (Mg)?C ha?1 with a mean of 127.6?±?6.6 (SE)?Mg?C ha?1. The average carbon stocks of CAFs was significantly lower than estimated for the MDF (198.7?±?32.1?Mg?C?ha?1); however, individual tree and soil pools were not significantly different suggesting that agroforest shade trees play an important role in facilitating carbon sequestration and soil conservation. This research demonstrates the need for conservation-based initiatives which recognize the carbon sequestration benefits of coffee agroforests alongside natural forest systems.  相似文献   

3.
During the spring of 2006, three willow varieties (SV1, SX67 and 9882-41) were established on marginal land in an agroforestry tree-intercropping arrangement where plots of short rotation willows were planted between rows (spaced 15?m apart) of 21-year-old mixed tree species. As a control, the same varieties were established on an adjacent piece of land without established trees (conventional willow system). This study investigated the magnitude of carbon pools, fine root and leaf biomass inputs and clone yields in both the tree-based intercropping (agroforestry) and conventional monocropping systems. Willow biomass yield was significantly higher in the agroforestry field (4.86?odt?ha?1?y?1) compared to the conventional field (3.02?odt?ha?1?y?1). In both fields, varieties SV1 and SX67 produced higher yields than the variety 9882-41. Willow fine root biomass in the top 20?cm of soil was significantly higher in the intercropping system (3,062?kg?ha?1) than in the conventional system (2,536?kg?ha?1). Differences in fine root biomass between clones were similar to that observed for differences in biomass yield: SV1?>?SX67?>?9882-41. Leaf input was higher in the intercropping system (1,961?kg?ha?1) than in the conventional system (1,673?kg?ha?1). Clonal differences in leaf inputs followed the same trends as those for root biomass and yield: SV1?>?SX67?>?9882-41. Soil organic carbon was significantly higher in the agroforestry field (1.94?%) than in the conventional field (1.82?%). A significant difference in soil organic carbon was found between the three clones: soils under clone 9882-41 had the lowest soil organic carbon at 1.80?%.  相似文献   

4.
Community forests of developing countries are eligible to participate in the Reducing Emissions from Deforestation and Forest Degradation (REDD+) scheme. For this, estimation of carbon stock and the sequestration is essential. The carbon stock in the living biomass of nine community managed Shorea robusta forests of the mid hill regions of central Nepal (managed for 4–29 yr) were estimated. The carbon stock of trees and shrubs was estimated using an allometric equation while the biomass of herbaceous vegetation was estimated by the harvest method. The carbon stock in the living biomass of the studied forests ranged from 70–183 Mg ha?1(mean: 120 Mg ha?1) and it increased with increasing soil organic carbon. However, the carbon stock did not vary significantly with species richness and litter cover. The biomass and carbon stock in the forests managed for >20 yr were significantly higher than in the forests managed for < 20 yr. The carbon stock increased with the management duration (p < .05) with sequestration rate of 2.6 Mg C ha?1 yr?1. The local management has had positive effects on the carbon stock of the forests and thus the community forests have been acting as a sink of the atmospheric CO2. Therefore, the community managed forests of Nepal are eligible to participate in the REDD+ scheme.  相似文献   

5.
Nitrogen (N)-fixing tree and crop intercropping systems can be a sustainable agricultural practice in sub-Saharan Africa and can also contribute to resolving climate change through enhancing soil carbon (C) sequestration. A study conducted by Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) on the N-fixing tree gliricidia and maize intercropping system in southern Malawi provides a rare dataset of both sequestered soil C and C loss as soil carbon dioxide (CO2) emissions. However, no soil C gain and loss estimates were made so the study failed to show the net gain of soil C. Also absent from this study was potential benefit or negative impact related to the other greenhouse gas, nitrous oxide (N2O) and methane (CH4) emissions from the intercropping system. Using the data provided in Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) a C loss as soil CO2 emissions (51.2?±?0.4?Mg?C?ha?1) was estimated, amounting to 67.4% of the sequestered soil C (76?±?8.6?Mg?C?ha?1 in 0?C2?m soil depth) for the first 7?years in the intercropping system. An annual net gain of soil C of 3.5?Mg?C?ha?1?year?1 was estimated from soil C sequestered and lost. Inclusion of the potential for N2O mitigation [0.12?C1.97?kg?N2O?CN?ha?1?year?1, 0.036?C0.59?Mg CO2 equivalents (eq.) ha?1?year?1] within this intercropping system mitigation as CO2 eq. basis was estimated to be 3.5?C4.1?Mg CO2 eq.?ha?1?year?1. These results suggest that reducing N2O emission can significantly increase the overall mitigation benefit from the intercropping system. However, significant uncertainties are associated with estimating the effect of intercropping on soil N2O and CH4 emissions. These results stress the importance of including consideration of quantifying soil CO2, N2O and CH4 emissions when quantifying the C sequestration potential in intercropping system.  相似文献   

6.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

7.
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

8.
Ecosystem-level assessments of carbon (C) stocks of agroforestry systems are scarce. We quantified the ecosystem-level C stocks of one agroforestry-based oil palm production system (AFSP) and one agroforestry-based oil palm and cacao production system (AFSP+C) in eastern Amazonia. We quantified the stocks of C in four pools: aboveground live biomass, litter, roots, and soil. We evaluated the distribution of litter, roots, and soil C stocks in the oil palm management zones and in the area planted with cacao and other agroforestry species. The ecosystem-C stock was higher in AFSP+C (116.7 ± 1.5 Mg C ha?1) than in AFSP (99.1 ± 3.1 Mg C ha?1). The total litter-C stock was higher in AFSP+C (3.27 ± 0.01 Mg C ha?1) than in AFSP (2.26 ± 0.06 Mg C ha?1). Total root and soil C stocks (0–30 cm) did not differ between agroforestry systems. Ecosystem-C stocks varied between agroforestry systems due to differences in both aboveground and belowground stocks. In general, the belowground-C stocks varied spatially in response to the management in the oil palm and non-oil palm strips; these results have important implications for the monitoring of ecosystem-level C dynamics and the refinement of soil management.  相似文献   

9.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

10.
The poplar based agroforestry system improves aggregation of soil through huge amounts of organic matter in the form of leaf biomass. The extent of improvement may be affected by the age of the poplar trees and the soil type. The surface and subsurface soil samples from agroforestry and adjoining non-agroforestry sites with different years of poplar plantation (1, 3 and 6 years) and varying soil textures (loamy sand and sandy clay) were analyzed for soil organic carbon, its sequestration and aggregate size distribution. The average soil organic carbon increased from 0.36 in sole crop to 0.66% in agroforestry soils. The increase was higher in loamy sand than sandy clay. The soil organic carbon increased with increase in tree age. The soils under agroforestry had 2.9–4.8 Mg ha−1 higher soil organic carbon than in sole crop. The poplar trees could sequester higher soil organic carbon in 0–30 cm profile during the first year of their plantation (6.07 Mg ha−1 year−1) than the subsequent years (1.95–2.63 Mg ha−1 year−1). The sandy clay could sequester higher carbon (2.85 Mg ha−1 year−1) than in loamy sand (2.32 Mg ha−1 year−1). The mean weight diameter (MWD) of soil aggregates increased by 3.2, 7.3 and 13.3 times in soils with 1, 3 and 6 years plantation, respectively from that in sole crop. The increase in MWD with agroforestry was higher in loamy sand than sandy clay soil. The water stable aggregates (WSA >0.25 mm) increased by 14.4, 32.6 and 56.9 times in soils with 1, 3 and 6 years plantation, respectively, from that in sole crop. The WSA >0.25 mm were 6.02 times higher in loamy sand and 2.2 times in sandy clay than in sole crop soils.  相似文献   

11.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   

12.
The growth of Eucalyptus camaldulensis clean weeded, spot weeded and intercropped with maize and beans was studied. At 4 m × 4 m and 5 m × 5 m spacings trees were significantly shorter after 15 months under a conventional spot weeding regime than with clean weeding or intercropping with beans. A satisfactory maize yield (683 kg ha?1) was recorded from plots with trees spaced at 5 m × 5 m. Plots where trees were spaced at 4 m × 4 m and 3 m × 3 m gave significantly lower yields (444 kg ha?1 and 283 kg ha?1, respectively).  相似文献   

13.
Fast-growing poplar plantations are considered of great benefit to both timber production and carbon (C) sequestration, and are increasingly planted for multiple purposes worldwide. Irrigation and fertilization are common management practices in plantations in semiarid regions. However, quantitative investigation of the integrative effect of surface drip irrigation and fertigation (SDIF) on biomass and C storage in poplar plantations remains limited. In this study, we conducted a field experiment on a fast-growing poplar cultivar (Populus × euramericana cv. Guariento) plantation to compare the combination of surface drip irrigation and fertigation in growing seasons with conventional management (control; CK). Experiments repeated over 2 years showed that SDIF significantly increased biomass and C storage in both trees and soil in the plantation compared with the CK. Tree biomass C in SDIF-treated and CK stands after the first year of the experiment (age 5) was 6.20 and 4.05 t C ha?1, respectively, and the difference further increased, i.e., 15.18 and 8.63 t C ha?1, respectively, after the second year of the experiment (age 6). There was 53 and 76 % higher C storage in SDIF-treated trees than in the CK trees after the first and second years of the experiment, respectively. The SDIF increased the soil C concentration, especially in the surface soil at 0- to 40-cm depth. Soil organic C at a depth of 0–60 cm under the SDIF treatment was 45.42, 50.87 and 61.32 t C ha?1 in the 1st, 2nd and 3rd years, respectively, with annual increases of 12 and 21 % between the first and second, and second and third year, respectively. The corresponding soil organic C in the CK was 43.08, 43.57 and 47.92 t C ha?1 in the 1st, 2nd and 3rd years; the annual increases were only 1 and 10 %, respectively. The results confirmed the significant effect of the combined management on C storage in poplar plantations, thus we suggest it can be applied in forestry management, even though it generally did not change C concentrations of tree components.  相似文献   

14.
Phosphorus (P) in soil exists both in organic and inorganic forms and their relative abundance could determine P supplying capacity of soil. Differential input of exogenous and plant-mediated phosphorus and carbon in soil under different land-uses could influence P availability and fertilizer P management. While the effect of land-use on soil organic carbon (SOC) is fairly well-documented, its effect on soil P fractions is relatively less known. We investigated the effect of different land-uses including rice–wheat, maize–wheat, cotton–wheat cropping systems and poplar-based agroforestry systems on soil P fractions and organic carbon accrual in soils. Total P concentration was the highest under agroforestry (569 mg P kg?1) and the lowest under maize–wheat (449 mg P kg?1) cropping systems. On the contrary, soils under rice–wheat had significantly higher available P concentration than the agroforestry systems, probably because of higher fertilizer P application in rice–wheat and prevailing wetland conditions during rice growth. In soils under sole cropping systems viz. rice–wheat, maize–wheat and cotton–wheat, inorganic P was the dominant fraction and accounted for 92.2–94.6% of total P. However, the soils under agroforestry had smaller proportion (73%) of total P existing as inorganic P. Among soil P fractions, water soluble inorganic P (0.13–0.26%) represented the smallest proportion inorganic P in soils under different land-uses. Agroforestry showed significantly (p < 0.05) higher concentrations of SOC than the other land-uses. Soil organic C was significantly correlated with soil P fractions. It was concluded that poplar-based agroforestry systems besides leading to C accrual in soil result in build-up of organic P and the P supplying capacity of soil.  相似文献   

15.
Large amounts of plant litter deposited in cacao agroforestry systems play a key role in nutrient cycling. Organic matter, nitrogen and phosphorus cycling and microbial biomass were investigated in cacao agroforestry systems on Latosols and Cambisols in Bahia, Brazil. The objective of this study was to characterize the microbial C and N, mineralizable N and organic P in two soil orders under three types of cacao agroforestry systems and an adjacent natural forest in Bahia, Brazil and also to evaluate the relationship between P fractions, microbial biomass and mineralized N with other soil attributes. Overall, the average stocks of organic C, total N and total organic P across all systems for 0?C50?cm soil depth were 89,072, 8,838 and 790?kg?ha?1, respectively. At this soil depth the average stock of labile organic P was 55.5?kg?ha?1. For 0?C10?cm soil depth, there were large amounts of microbial biomass C (mean of 286?kg?ha?1), microbial biomass N (mean of 168?kg?ha?1) and mineralizable N (mean of 79?kg?ha?1). Organic P (total and labile) was negatively related to organic C, reflecting that the dynamics of organic P in these cacao agroforestry systems are not directly associated with organic C dynamics in soils, in contrast to the dynamics of N. Furthermore, the amounts of soil microbial biomass, mineralizable N, and organic P could be relevant for cacao nutrition, considering the low amount of N and P exported in cacao seeds.  相似文献   

16.
The establishment of biomass plantations with short-rotation forestry principles is one of the after-use options for cutaway peatlands. We studied biomass production and carbon sequestration in the above- and below-ground biomass of 25 naturally afforested, 10–30 years old downy birch (Betula pubescens Ehrh.) stands located in peat cutaway areas in Finland. Self-thinning reduced the stand density from 122,000 trees ha?1 (stand age of 10 years) to 10,000 trees ha?1 (25–30 years), while the leafless above-ground biomass increased from 17?Mg ha?1 up to 79–116?Mg ha?1. The total leafless biomass (including stumps and roots) varied from 46 to 151?Mg ha?1. The mean annual increment (MAI) of the above-ground biomass increased up to the stand age of 15 years, after which the MAI was on the average 3.2?Mg ha?1a?1. With below-ground biomass, the MAI of the stands older than 15 years was 4.7?Mg ha?1. The organic matter accumulated in the O-layer on the top of the residual peat increased linearly with the stand age, reaching 29.3?Mg ha?1 in the oldest stand. The O-layer contributed significantly to the C sink, and the afforestation with downy birch converted most of sites into C sinks.  相似文献   

17.
Agroforestry systems based on poplar (Populus deltoides) are becoming popular in eastern and northern parts of India. Therefore studies on the structure and function of the systems are important. The investigations included allometric equations for above- and belowground tree components, crop and plantation floor biomass and litter fall estimation at Pusa, Bihar, India. Biomass, floor litter mass, litter fall and net primary productivity (NPP) of plantations increased with an increase in age of trees whereas, crop biomass for any specific crop interplanted with poplar decreased with the age of the plantation. The total plantation biomass increased from 12.08 to 90.59 Mg ha−1 and NPP varied from 5.69 to 27.9 Mg ha−1 year−1. The biomass accumulation ratio ranged from 2.1 to 3.2. Total annual litter fall was in between 1.95 and 10.00 Mg ha−1 year−1, of which 92–94% was contributed by leaf litter. Compartmental models were developed for dry matter distribution in agroforestry systems involving young (3-year-old) and mature (9-year-old) poplar trees interplanted with various crops, the crops being grown in two rotations maize (Zea mays) – wheat (Triticum aestivum) – turmeric (Curcuma domestica) and pigeonpea (Cajanus cajan) – turmeric. This study substantiates the potential of Populus deltoides G3 under agroforestry combinations.  相似文献   

18.
Little is known on soil organic carbon (SOC) stocks in karst areas worldwide, although many of them have seen long-term application of agroforestry systems with a potential for carbon sequestration. Therefore, our study aimed to assess landscape-level SOC concentration and stock in the Silica Plateau, a part of the Slovak Karst Biosphere Reserve located in the Western Carpathians (Slovakia) with a centuries-long agroforestry record. The most represented local soil units are Chromi-Rendzic Leptosols and Chromic Cambisols with clayey loam texture, C/N ratio 9–12, and $ {\text{pH}}_{{{\text{H}}_{2} {\text{O}}}} $ 6.6–6.2 in their organo-mineral surface horizons. Mull surface humus form prevails under mixed forest stands dominated by hornbeam (Carpinus betulus L.), oak (Quercus petraea L.), and beech (Fagus sylvatica L.). A total of 2,700 soil samples were collected from 150 soil pits. Both SOC concentrations and stocks were determined for the 0–60?cm mineral soil layer. Soil stoniness was accounted for by means of electrical resistivity tomography. According to the analysis of covariance, cropland SOC concentration (0.026?g?g?1) is significantly lower compared to forestland (0.040?g?g?1) and pastureland (0.041?g?g?1) (P?<?0.01). During the period of 130?years after forest clearing, cropland SOC stock has been reduced at an exponential decay rate of ca 0.002?year?1, while the SOC stock in pastureland has increased following land use change from cropland by approximately 30% during the same period of time. Irrespective of land use history, overall SOC stock is high reaching on average 207.4?Mg?ha?1, out of which 66% are stored within 0–30?cm and 34% within 30–60?cm soil layers.  相似文献   

19.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

20.
Available information is applied to formulate quantitative hypotheses on the impact of intercropping Leucaena hedgerows with maize upon the physical productivity of grain and fuelwood. Data would indicate that productivity of organic nitrogen (N) by Leucaena hedgerows cut approximately every 8 weeks at a height of 15–30 cm and planted at a distance between rows wider than 150 cm is 45 g m?1 yr?1. When soil-N availability is the limiting factor, utilization of Leucaena-N by the maize crop appears to be negatively related to baseline maize production. The grain: Leucaena-N ratio declines from 20:1, when maize productivity is in the order of 500 kg ha?1, to 3:1, when the 4000 kg level is achieved. Hedgerow N productivity, N utilization by the maize crop, and proportion of land planted to maize were used to derive yield estimates per area of intercropped land under different intercropping arrangement. It seems that the impact of hedge intercropping on maize productivity, although substantial, would be limited to systems where existing production levels of maize are lower than 1500 kg ha?1. As expected, production per hectare decreases as spacing between Leucaena hedgerows increases. For a 1000 kg ha?1 baseline, hypothetical increments expressed as percentage of baseline production range from 112% to 28% for between-hedgerow spacings of 1.5 and 6 m respectively. Information analyzed would indicate apotential for Leucaena hedgerow intercropping to increase maize productivity. Research required to substantiate the formulated hypotheses is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号