首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Pine wilt disease is of major concern as it has destroyed pine forests in East Asia and Europe. Several studies have suggested that invasion by the pinewood nematode (PWN) Bursaphelenchus xylophilus, which causes this disease, evokes an excessive defence response in pine trees, resulting in tree death. However, few studies have quantitatively evaluated the correlation between PWN distribution and tree defence responses. Therefore, the present study aimed to quantify the number of PWNs and expression levels of putative pathogenesis‐related (PR) genes in different positions of Japanese black pine (Pinus thunbergii) seedlings over time. To quantify the number of PWNs in the seedlings, we used TaqMan quantitative real‐time PCR (qPCR) assay. During the early phase of infection, most PWNs were distributed around the inoculated sites, with only a small number being detected at distant sites, but the expression levels of PR genes were highly upregulated throughout the seedlings. Both the number of PWNs and expression levels of PR genes then increased drastically throughout the seedlings, all of which exhibited external symptoms. Thus, it appears that the rapid migration of PWNs induces a defence response throughout the seedling; however, this may not be effective in controlling these parasites, thereby ultimately leading to plant death.  相似文献   

2.
Pine wilt disease, caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), is a major threat to pine forests throughout East Asia. Nonetheless, its mechanism of invasion has not yet been described in detail. To better understand the pathology of this disease, it is important to examine the distribution of PWNs within pine tissue during the course of disease development. We attempted to stain nematodes with fluorescein-conjugated wheat germ agglutinin (F-WGA) as a means to locate and track the spread of PWNs. Although PWNs proliferated on Botrytis cinerea fungus were successfully stained only on their vulvas and spicule holes, PWNs extracted from inoculated Pinus thunbergii seedlings were stained on their surface. Stainability, or the percentage of PWNs stained with F-WGA over more than half of their surface, was about 20% by 1 day after inoculation, but increased to 80% at 10 days. The stainability of PWNs extracted from a 5-cm main stem segment that included the inoculation site was less than that of PWNs extracted from other parts of the main stem farther away (i.e., those that had dispersed). These results suggest that stainability is related to dispersal activity in time. Thus, to raise the stainability of PWNs at shorter timeframes after inoculation, PWNs with more than 80% stainability were re-inoculated into pine seedlings. This resulted in more than 70% stainability from 1 to 6 days after inoculation. In F-WGA stained thin paraffin sections of pine tissue of re-inoculated seedlings, PWNs brightly fluoresced under epifluorescence and were easily detected against the dark background of pine tissue. This staining technique with F-WGA is an excellent tool for detecting PWNs in pine tissue.  相似文献   

3.
Pine wilt disease caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, has been epidemic and has had disastrous impacts on pine forests and forest ecosystems in eastern Asia. Many pine species in this area are susceptible to this disease. Pinus thunbergii is particularly susceptible. In Japan, tree breeders have selected surviving trees from severely damaged forests as resistant candidates, and have finally established several resistant varieties of P. thunbergii. However, this breeding procedure requires much time and effort due to the lack of physiological and phenotypical information about resistance. To investigate the resistance mechanisms of selected P. thunbergii, we compared histochemical responses, tissue damage expansion, and PWN distribution in resistant and susceptible clones of P. thunbergii after PWN inoculation. The results suggested that the mechanisms of resistance are as follows: damage expansion in the cortex, cambium, and xylem axial resin canals are retarded in resistant trees soon after inoculation, probably due to the induction of wall protein-based defenses. Suppression of PWN reproduction was particularly caused by inhibition of damage expansion in the cambium. The slow expansion of damage in each tissue provides time for the host to complete the biosynthesis of lignin in the walls of cells that surround the damaged regions. This lignification of cell walls is assumed to effectively inhibit the migration and reproduction of the PWNs. The mechanism of initial damage retardation is presumed to be a key for resistance.  相似文献   

4.
The distribution of pine wood nematodes (Bursaphelenchus xylophilus, PWNs) in Japanese black pine (Pinus thunbergii) tissues was investigated by staining with fluorescein isothiocyanate-conjugated wheat germ agglutinin. After PWNs were inoculated to current-year stems of pine seedlings, their distribution at about 5 cm below the inoculation site was confined only to cortical resin canals 1 day after inoculation, and then spread to other tissues, including resin canals of short branches. When PWNs were inoculated onto cross or tangentially cut surfaces of stem segments, maximal PWN migration speed was estimated to be faster through cortical resin canals and xylem axial resin canals vertically (>6.7 and <2.3 mm/h, respectively) than through cortical tissues both vertically and horizontally (<1.2 and <0.2 mm/h). To examine whether PWNs in cortical resin canals could invade surrounding tissues, segments in which PWNs resided only in cortical resin canals were prepared by removing the top portion 6 h after inoculation. Additional incubation of such segments caused extended PWN distribution to xylem axial resin canals and then to other tissues. A similar experiment with top portions of girdled segments removed 12 h after inoculation also showed extended PWN distribution from xylem axial resin canals and pith to cortical resin canals and then to other tissues. These results provided direct evidence that PWNs have the ability to migrate from cortical resin canals and xylem axial resin canals to other tissues.  相似文献   

5.
6.
Pinewood nematode (PWN) is one of the most threatening invasive pests in the pine forests of Europe, and it has recently spread to the Iberian Peninsula via import of timber and wooden packaging material from East Asia. A cellular automaton (CA) model was developed to simulate and compare the potential spread of PWN by transportation and its vectors, Monochamus beetles in the pine forests of Finland and Iberian Peninsula. The model assumes that all pines are equally sensitive to PWN. The CA is a spatio‐temporal grid‐based model, which can easily be applied on different geographical scales. The effects of climate warming and number of entries from ports on the spread of PWN were studied. A sensitivity analysis was conducted on the most uncertain model parameters. Twenty years after hypothetical entries, the predicted area of symptomatic PWN infection (pine wilt disease, PWD) was very low in Finland compared to Iberia. This was because of the low probability of warm July in Finland. The increase in the mean July temperature increased the area of PWD‐infected pine forest relatively more in Finland than in Iberia. An increase in the number of entries also increased the area of PWD‐infected pine forest relatively more in Finland than in Iberia. The probability of PWD infection was the highest in pine forests that were close to entry points and in areas with low elevation and high human population density.  相似文献   

7.
Ichihara  Fukuda  Suzuki 《Forest Pathology》2001,31(3):141-147
In order to study the changes in ectomycorrhizal development during symptom expression of pine wilt disease, root window observations were conducted concurrent with measurements of leaf water potential as well as photosynthetic and transpiration rates of 5‐year‐old Pinus thunbergii trees that were inoculated with the pinewood nematode (PWN) Bursaphelenchus xylophilus. Infected trees were compared with girdled and uninfected control trees. Ectomycorrhizas developed constantly during the experimental period in control trees but did not develop in the girdled trees. Ectomycorrhizal development ceased within 2 weeks in those trees that finally died after PWN infection. In the trees that survived PWN infection, ectomycorrhizal development ceased within 1–4 weeks of inoculation but was resumed thereafter within 3–6 weeks. Ectomycorrhizal development ceased prior to a decrease in both photosynthetic rate and leaf water potential in the inoculated trees.  相似文献   

8.
The Japanese black pine (Pinus thunbergii) is highly susceptible to pine wilt disease caused by the pine wood nematode (PWN; Bursaphelenchus xylophilus). To cope with this disease, researchers and tree breeders selected PWN‐resistant individuals in a previous breeding program. In an attempt to understand the mechanisms of resistance in the Japanese black pine, we created four LongSAGE (serial analysis of gene expression) libraries. A total of 20 818 tags were studied, including 5194 tags from a PWN inoculated resistant pine, 5218 a non‐inoculated resistant pine, 5194 an inoculated non‐resistant pine, and 5212 a non‐inoculated non‐resistant pine. The analysis of the libraries indicated that 14 tag species were significantly up‐regulated (e.g., pathogenesis‐related proteins 2 and 4, osmotin, lipoxygenase, and chalcone synthase), and nine were down‐regulated (eukaryotic translation initiation factor SUI1, translationally controlled tumor protein, and xyloglucan endotransglycosylase) by the PWN inoculation in both the resistant and non‐resistant pines. On the other hand, 38 tag species were significantly expressed at a higher level only in the resistant pine (catalase, dienelactone hydrolase family protein) and 25 were expressed at a higher level in the non‐resistant pine (pathogenesis‐related proteins 1, 2, and 3, and leucoanthocyanidin dioxygenase). These differentially expressed genes are presumed to reflect some of the differences between the resistant and non‐resistant pines. Our results provide valuable information on the complex responses induced in the resistant and non‐resistant pine trees in response to PWN invasion.  相似文献   

9.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a serious quarantine pest first detected in Portugal and Europe in 1999. It is the causal agent of pine wilt disease (PWD). A resistance breeding programme has been initiated to contribute to control the evolution of the disease. Five hundred and four adult maritime pine, Pinus pinaster, trees were phenotypically selected as candidate trees for this programme from an area affected by PWD. To identify tolerance to the nematode, the selected trees were monitored monthly. Over the course of 1 year, 57 candidate trees died and were tested for the presence/absence of the PWN. As accuracy of detection is of major importance, an ITS‐PCR‐based method applied directly to wood from adult maritime pine trees was tested and compared with a standard morphological identification method. The results showed that the use of PCR to detect the pathogen provided more rapid and accurate results in comparison with the standard morphological identification. Thus, this method is suitable to be used in the survey of the breeding population for resistance/tolerance to PWD.  相似文献   

10.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD), which is a major problem in East Asia and West Europe. Quick identification of PWN is needed to prevent the dispersal of PWD to healthy forests. Various detection methods of PWN have been developed using anatomical characters and molecular markers. These methods are not suitable for rapid diagnosis because it is difficult to distinguish B. xylophilus from the non‐pathogenic species Bursaphelenchus mucronatus based on morphological characters without expertise in nematode taxonomy and most PCR or isothermal amplification detection methods require time‐consuming processes. In this study, we developed an on‐site PWN detection method using a recombinase polymerase amplification (RPA) assay with a novel extraction buffer (DAP buffer). This new PWN detection method is able to extract genomic DNA from PWN in pinewood by simple buffer consisting of sodium hydrate, polyethylene glycol 200 and dimethyl sulfoxide in 10 min without using the experimental devices and able to distinguish between B. xylophilus and other Bursaphelenchus spp. by amplifying the species‐specific 5S rDNA fragment of B. xylophilus in 10 min. Taken together, our protocol can obtain the result for the detection of PWN in pine tree samples within 30 min. This result suggests that RPA/DAP assay is much faster, easier and cheaper than the conventional methods for detecting PWN.  相似文献   

11.
The pinewood nematode (PWN) Bursaphelenchus xylophilus is an invasive pathogen that was introduced from North America to Asian countries and Portugal and is devastating native pine forests. Some native European and Asian Bursaphelenchus nematodes also have weak to moderate pathogenicity to native pine species. To evaluate the potential risk of native Bursaphelenchus species, we inoculated ten Japanese Bursaphelenchus species into native pine species (the dominant forest species) in Japan, and evaluated their pathogenicity using mortality and tracheal tissue damage as indices. Inoculation was conducted on August 3, 2007, and the symptoms were observed every 2 weeks until February 1, 2008. None of the inoculated trees, excluding the pathogenic PWN inoculated control, showed external disease symptoms; however, four species [a less pathogenic PWN isolate, B. luxuriosae, Bursaphelenchus sp. NK215 (undescribed), and NK224 (undescribed)] caused tracheal tissue damage in inoculated seedlings and showed weak pathogenicity. Therefore, we conclude that there are some potentially pathogenic native species of nematodes distributed in Japan. Interestingly, two of these weakly pathogenic species, B. luxuriosae and NK215, are not associated with Pinaceae trees, suggesting that nematode pathogenicity may be a pre-adaptive character. More experimental studies under different conditions are necessary to accurately evaluate the potential risk of these pathogens.  相似文献   

12.
The pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease and is transmitted to new host trees by beetles of the genus Monochamus. The increasing interest in imported wood chips from North America for paper production and energy purposes and the corresponding phytosanitary risk of non‐vector transmission of B. xylophilus has been discussed since 1984, the year of the first interception of B. xylophilus in wood chips in the European Union. The long‐term survival of B. xylophilus in wood chips and its non‐vector spread from infested wood chips to non‐infested trees were studied. Pinus sylvestris logs were inoculated with a suspension of B. xylophilus to produce infested wood chips. During the long‐term storage test, B. xylophilus in P. sylvestris wood chips were examined. Four variants, including sealed and openly stored wood chips at both 15°C and 25°C, were studied. For the test of non‐vector spread, B. xylophilus ‐infested wood chips were placed on three‐ to four‐year‐old P. sylvestris saplings under different conditions. Bursaphelenchus xylophilus survived for more than 1 year at both temperatures in the sealed wood chips, which was significantly longer than for the openly stored variant at 25°C. Temperature, tree condition and wood chip location all influenced non‐vector spread through wood chips. Of the 480 trees that were in contact with infested wood chips and showed clear symptoms of pine wilt disease, B. xylophilus were extracted from 42 pines at 25°C and one pine at 15°C. The highest B. xylophilus infestation rates resulting in clear pine wilt disease symptoms (75%) were found in infested wood chips directly attached to stem‐wounded trees at 25°C. However, more variants exhibited B. xylophilus infestation at this temperature; trees with stem or root injuries plus direct contact with infested wood chips to the wounded part were primarily affected. Moreover, non‐vector spread was also detected in stem‐ and root‐injured pines without any direct contact with infested wood chips. Our results confirmed that B. xylophilus can survive for long periods in wood chips and can be transmitted from infested wood chips to damaged trees, but the likelihood of such PWN establishment should be low compared to spread through vectors. These findings must be considered in the pest risk analysis of B. xylophilus, and studies using outdoor trials should be carried out to complete this pest risk analysis.  相似文献   

13.
To determine why pine wilt disease caused by the pinewood nematode (Bursaphelenchus xylophilus) recurs in the same pine stand even after thorough eradication of dead pine trees, the amount of oleoresin exudation from artificial wounds was measured from 72 Pinus koraiensis trees, highly susceptible to this disease, for 4 years. The amount of exuded oleoresin was rated from 0 to 4. All values obtained for each tree were summed at each measurement; thereby a cumulative curve was drawn to monitor the physiological condition of each test tree. Cumulative curves suggest that some pine trees that died had already been infected in the previous year or earlier and then had survived without any visible symptoms. If cessation of oleoresin exudation delays, and overlaps with activity of Monochamus alternatus, the vector beetle of pinewood nematodes, in the following season, such trees can be referred to as latent carriers or asymptomatic carriers. They could play a significant role as attractants for M. alternatus that could then transmit B. xylophilus to neighboring trees. Behavior of M. alternatus caged with several pine seedlings, only one of which acted as an asymptomatic carrier of B. xylophilus, confirmed this idea. The presence of asymptomatic pine trees, which harbored B. xylophilus nematodes or had reduced annual elongation, near stumps of newly dead trees in the study stand also substantiated this hypothesis.  相似文献   

14.
Early detection is of primary importance to enable rapid actions to prevent the spread and introduction of invasive species. The pinewood nematode (PWN), Bursaphelenchus xylophilus, a serious invasive and destructive species, is listed as a quarantine pest in the legislation of more than 40 countries. However, Baermann funnel extractions of wood from discs cut from trees at breast-height often do not detect the presence of PWN in infested trees. A serious consequence of such false negatives is the loss of the best window for implementation of eradication or quarantine measures to prevent establishment of incipient PWN infestations. Here we document the within-tree horizontal and vertical distribution of PWN in infested stands in China, using a newly developed kairomonal trapping technique. Our results provide a simple, effective, rapid and non-destructive sampling method that takes into account the changes of PWN within-tree distribution in relation to pine wilt disease (PWD) symptom development. When 60–80% of the foliage has become pale green, PWN is recovered from larger diameter branches. As disease symptoms progress, PWN moves into and down the trunk. As the needles turn yellow, PWN was recovered from the trunk at 1–2 m above the ground. The correlation between the within-tree distribution of PWN and the expression of symptoms indicated a strong association between the distribution of PWN and physiological and pathological changes that develop in attacked pines through the interaction between PWN and tree. This systematic sampling technique takes into account the within-tree distribution of the nematode and should greatly enhance early detection of PWN in field surveys, monitoring and phytosanitary inspections.  相似文献   

15.
16.
Pine wilt disease: a short review of worldwide research   总被引:1,自引:0,他引:1  
This article summarizes the results of the research papers presented at the International Symposium on pine wilt disease (IUFRO Working Party Meeting 4.04.03) held in July 2009, at Nanjing, China. The general topics covered were on pine wilt disease (PWD), its causal organism, the pinewood nematode (PWN) Bursaphelenchus xylophilus, plus other PWN-associated microorganisms that play a significant role in PWD such as bacteria (e.g. Pseudomonas fluorescens). Most of the papers that are reviewed are based on work on PWD-PWN in East Asia and Russia. Specific topics covered include: 1) the fundamental conceptions of PWD development, 2) pathogenicity, 3) host-parasite relationships including the histopathology of diseased conifers and the role of toxins from bacteria-nematode ecto-symbionts, 4) PWN life cycle and transmission, 5) B. xylophilus dissemination models, 6) associations (with other nematodes), 7) diagnostics, 8) quarantine and control of the PWN and 9) biocontrol of the PWN.  相似文献   

17.
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, leads to serious losses to pine forestry around the world. Pinus massoniana, which is vulnerable to be attacked by the PWN, is the dominant species used in pine forestry in China. The objective of this study is to develop a direct PCR‐based method for detecting B. xylophilus in the wood of P. massoniana without a separate nematode extraction step. A simple procedure was first developed for isolating B. xylophilus DNA in 5 mg pine wood tissue samples harbouring PWN for detection by PCR amplification. A B. xylophilus‐specific amplicon of 403 bp (DQ855275) was generated by PCR from the infested wood tissue. The entire procedure can be completed within 5 h with one pair of primers. This assay can serve as a rapid, cheap and environmentally friendly method to detect B. xylophilus in samples of P. massoniana.  相似文献   

18.
Asai  Futai 《Forest Pathology》2001,31(4):241-253
To elucidate the synergetic effects of acid rain on the development of pine wilt disease, we measured the sap flow rate in the stems and the chlorophyll content in the needles of 10‐year‐old Japanese black pine trees, Pinus thunbergii and 12‐year‐old Japanese red pine trees, Pinus densiflora, after exposure to simulated acid rain (SAR, pH 3) or tap water (TW, pH 6.3) as a control. The heat pulse method was used for the estimation of the sap flow rate. No apparent difference was found in the sap flow rate between the trees exposed to SAR and TW, but the chlorophyll content of needles at the end of the treatment was significantly higher in the trees exposed to SAR than in those exposed to TW. When the pinewood nematode, Bursaphelenchus xylophilus, the causal agent of pine wilt disease, was inoculated onto the Japanese black pines that had been exposed to SAR repeatedly for 1 year, the period to death was shortened. Japanese red pines that had been exposed to SAR for 2 years, however, did not show any development of symptoms after the nematode inoculation, suggesting that acid rain only affects pine wilt disease slightly, if at all.  相似文献   

19.
Pine wilt disease (PWD), caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle 1970 , is a serious threat to susceptible pine forests of the world. The PWN is primarily vectored by Monochamus species (Coleoptera: Cerambycidae). The first occurrence of PWD was reported from Japan in the early 1900s. Following this report, Japanese scientists documented the community of bark‐ and phloem‐inhabiting insects associated with the nematodes in dying trees to determine possible vectors of the nematode. Monochamus alternatus was reported to be the most effective vector in Japan. The primary vector in North America is Monochamus carolinensis, and in Europe, it is Monochamus galloprovincialis. Further studies have been expanded through the nematode‐invaded countries of Korea, Taiwan, China and Portugal. There is an interspecific association between the PWN and its insect vectors, and it is an obligatory component of the disease cycle. It is crucial to understand this relationship as well as the population ecology of the beetle to aid in monitoring and control of this worldwide threat to pine forests. Studies to date indicate a remarkable similarity among beetle species around the globe for a variety of life‐history traits, including lifespan, adult emergence numbers, flight capability, nematode transmission rates and attraction to pine volatiles. Wherever pines are found, there is a beetle species capable of transmitting the nematode. Although flight performance and range is generally poor for this group of beetle vectors, the cryptic nature of the species and the lack of interest in the beetles by countries in the absence of the nematode have led to the disease establishing a foothold in a variety of countries such as Portugal. In this paper, studies conducted in different countries on Monochamus vector species of the PWN are compared and discussed.  相似文献   

20.
The transmission ratio of the pinewood nematode (PWN), Bursaphelenchus xylophilus, to the emerging adult Japanese pine sawyer (JPS), Monochamus alternatus, in its pupal chamber is a determinant of the number of the nematodes carried by JPS beetles. To investigate the factors affecting the transmission ratio, we counted the number of the nematodes carried by 36 newly emerged JPS beetles and the number remaining in and around their pupal chambers, and then estimated the transmission ratio (the number of nematodes carried by a JPS adult as a percentage of the total number of nematodes aggregating in and around its pupal chamber). The total number of nematodes aggregating in and around a pupal chamber ranged from 0 to 19,041, and the number of nematodes carried by a beetle ranged from 0 to 18,920. The transmission ratio correlated with neither the water content of the wood around the pupal chamber nor the degree of wood discoloration caused by blue-stain fungus. The transmission ratio varied with the abundance of the nematodes aggregating in and around the pupal chamber. In pupal chambers with more than 1,000 nematodes, almost all the nematodes were transmitted to the beetle. However, in pupal chambers with fewer than 1,000 nematodes, the transmission ratio varied greatly, from 0 to 100%. These results suggest that aggregation of many PWNs in the pupal chamber might stimulate transmission of the PWNs to the JPS adult and that this abundance-related transmission might contribute to the large variation in the number of PWNs carried by the JPS beetle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号