首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The diurnal and seasonal dynamics of soil respiration in the A. ordosica shrubland on Ordos Plateau were investigated in the growing season (May-October) of 2006 and their environmental driving factors were also analyzed, Results indicated that diurnal dynamics of soil respiration rate and its temperature dependence showed some discrepancy in two different growth stages (the vegetative growth stage and the reproductive growth stage). During the vegetative growth stage, the diurnal variation of soil respiration was slight and not correlated with the daily temperature change, but during the reproductive growth stage, the daily respiration variation was relatively large and significantly correlated with the diurnal variation of air and soil temperature. In the growing season, the peak value of soil respiration occurred at July and August because of the better soil water-heat conditions and their optimal deployment in this period. In the shrubland ecosystem, precipitation was the switch of soil respiration pulses and can greatly increase soil respiration rates after soil rewetting. Moreover, the soil respiration rates in the growing season and the air temperature and soil surface water content were closely correlated (p〈0.05) each other. The stepwise regression model indicated that the variation of soil surface moisture accounted for 41.9% of the variation in soil respiration (p〈0.05).  相似文献   

3.
Water is usally thought of a limiting factor for the restoration of semi-arid ecosystem. In the growing season of 2006, a study was conducted to determine the effects of modeling precipitation on seasonal patterns in concentrations of soil-available nitrogen and to describe the seasonal patterns in soil nitrogen availability and seasonal variation in the rates of net nitrogen mineralization of topsoil at Daqinggou ecological station in Keerqin sand lands, Inner Mongolia Autonomous Region, China. Manipulation of water (80 mm) was designed to be added to experiment plots of sandy grasslands in dry season. Water addition (W) treatment and control (CK) treatment were separately taken in six replications and randomly assigned in 12 plots (4 m×4 m for each) with 2-m buffers betweens. Results showed that the content of soil inorganic nitrogen and net nitrogen mineralization rate were not affected by adding water in sandy grassland of Keerqin sand lands. Net ni- trogen mineralization rates ranged from 0.5μg·g^-1,month^-1 to 4 μg.g^-1.month^-1. The highest values of soil inorganic nitrogen and net nitrogen mineralization occurred on October 15 in control plots. The seasonal changes of soil inorganic nitrogen contents exhibited "V" shape pattern that was related to seasonal patterns of soil ammonium-N (ascending trend) and nitrate-N transformation (descending trend).  相似文献   

4.
We studied moist deciduous forests of Chhattisgarh, India (1) to assess the effect of four levels of historic wildland fire frequency (high, medium, low, and no-fire) on regeneration of seedlings in fire affected areas during pre and post-fire seasons, (2) to evaluate vegetation struc- ture and diversity by layer in the four fire frequency zones, (3) to evalu- ate the impact of fire frequency on the structure of economically impor- tant tree species of the region, and (4) to quantify fuel loads by fire fre- quency level. We classified fire-affected areas into high, medium, low, and no-fire frequency classes based on government records. Tree species were unevenly distributed across fire frequency categories. Shrub density was maximum in zones of high fire frequency and minimum in low- frequency and no-fire zones. Lower tree density after fires indicated that regeneration of seedlings was reduced by fire. The population structure in the high-frequency zone was comprised of seedlings of size class (A) and saplings of size class (B), represented by Diospyros melanoxylon, Dalbergia sissoo, Shorea robusta and Tectona grandis. Younger and older trees were more abundant for Tectona grandis and Dalbargia sis- soo after fire, whereas intermediate-aged trees were more abundant pre- fire, indicating that the latter age-class was thinned by the catastrophic effect of fire. The major contributing components of fuel load included duff litter and small woody branches and twigs on the forest floor. Total fuel load on the forest floor ranged from 2.2 to 3.38 Mg/ha. The netchange in fuel load was positive in high- and medium-frequency fire zones and negative under low- and no-fire zones. Repeated fires, how- ever, slowly reduced stand stability. An ecological approach is needed for fire management to restore the no-fire spatial and temporal structure of moist deciduous forests, their species composition and fuel loads. The management approach should incorporate participatory forest manage- ment. Use of c  相似文献   

5.
Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respiration on N addition is of great significance for understanding soil carbon (C) budgets along N gradients in forest ecosystems. In this study, four levels of N (0, 50, 100, 150 kg N ha^-1 a^-1) were added to soil in a Picea baifouriana and an Abies georgei natural forest on the Tibetan Plateau to investigate the effect of the N inputs on soil respiration. N addition stimulated total soil respiration (Rt) and its components including heterotrophic respiration (Rh) and autotrophic respiration (Ra);however, the promoted effects declined with an increase in N application in two coniferous forests. Soil respiration rate was a little greater in the spruce forest (1.05 μmol CO2 m^-2 s^-1) than that in the fir forest (0.97 μmol CO2 m^-2 s^-1). A repeated measures ANOVA indicated that N fertilization had significant effects on Rt and its components in the spruce forest and Rt in the fir forest, but had no obvious effect on Rh or Ra in the fir forest. Rt and its components had significant exponential relationships with soil temperature in both forests. N addition also increased temperature sensitivity (Q10) of Rt and its components in the two coniferous forests, but the promotion declined as N in put increased. Important, soil moisture had great effects on Rt and its components in the spruce forest (P<0.05), but no obvious impacts were observed in the fir forest (P>0.05). Following N fertilization, Ra was significantly and positively related to fine root biomass, while Rh was related to soil enzymatic activities in both forests. The mechanisms underlying the effect of simulated N deposition on soil respiration and its components in this study may help in forecasting C cycling in alpine forests under future levels of reactive N deposition.  相似文献   

6.
Zagros forests are mainly covered byQuercus brantii L. coppices and oak sprout clumps occupy the forest area like patches. We investigated post-fire herbaceous diversity in the first growing season after fire. For this purpose neighboring burned and unburned areas were selected with the same plant species and ecological conditions. The data were collected from areas subjected to different fire severities. Overall 6 treatments were considered with respect to fire severity and the mi-crosites of inside and outside of oak sprout clumps including: unburned inside and outside of sprout clumps (Ni and No), inside of sprout clumps that burned with high fire severity (H), inside of sprout clumps that burned with moderate fire severity (M), outside of sprout clumps that burned with low fire severity (OH and OM). Different herbaceous com-position was observed in the unburned inside and outside of oak sprout clumps. The species diversity and richness were increased in treatments burned with low and moderate fire severity. However, in treatment burned with high fire severity (H), herbaceous cover was reduced, even-ness was increased, and richness and diversity were not significantly changed. We concluded that besides the microsites conditions in forest, fire severity is an inseparable part of the ecological effect of fire on her-baceous composition.  相似文献   

7.
We investigated the effects of selective logging disturbances on tree diversity and soil characteristics in the Bia Conservation Area in southwest Ghana.The study was conducted in unlogged,29-35 years post-logged and swamp forests using ten 25 m×25 m plots.In total,we identified 310 individual trees belonging to 87 species.Mean ShannonWeiner index was highest in the post-logged forest but there were no significant differences in tree density,dominance,or DBH size class distributions between these forests.Soil physical properties such as pH and bulk density up to 30 cm depth were similar in the two of forests In terms of soil nutrient status,available P,exchangeable K and total N contents were all similar in the unlogged and post-logged forests.Our findings suggest that the effects of logging on tree diversity are comparatively long-term,in contrast to its short-term effects on some top soil physical and chemical characteristics.  相似文献   

8.
Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization rate in three successive rotations of Chinese fir plantations in subtropical China were investigated.Net N mineralization and nitrification rates in soils treated with phenolic acids were measured in an ex situ experiment.Compared with first-rotation plantations(FCP),the contents of total soil nitrogen and nitrate in second(SCP)-and third-rotation plantations(TCP)decreased,and that of soil ammonium increased.Soil net N mineralization rates in the second-and third-rotation plantations also increased by 17.8%and 39.9%,respectively.In contrast,soil net nitrification rates decreased by 18.0%and 25.0%,respectively.The concentrations of total phenolic acids in the FCP soils(123.22±6.02 nmol g^-1)were 3.0%and 17.9%higher than in the SCP(119.68±11.69 nmol g^-1)and TCP(104.51±8.57 nmol g^-1,respectively).The total content of phenolic acids was significantly correlated with the rates of net soil N mineralization and net nitrification.The ex situ experiment showed that the net N mineralization rates in soils treated with high(HCPA,0.07 mg N kg^-1 day^-1)and low(LCPA,0.18 mg N kg^-1 day^-1)concentrations of phenolic acids significantly decreased by 78.6%and 42.6%,respectively,comparing with that in control(0.32 mg N kg^-1 day^-1).Soil net nitrification rates under HCPA and LCPA were significantly higher than that of the control.The results suggested that low contents of phenolic acids in soil over successive rotations increased soil net N mineralization rates and decreased net nitrification rates,leading to consequent reductions in the nitrate content and enhancement of the ammonium content,then resulting in enhancing the conservation of soil N of successive rotations in Chinese fir plantation.  相似文献   

9.
Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development.The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.Methods:A paludification index was built using static(e.g.surficial deposits and soil texture)and dynamic(e.g.moisture regime and soil organic layer thickness)stand scale factors available from forest maps.The index considered the effects of three temperature increase scenarios(i.e.+1°C,+3°C and+6°C)and progressively decreasing fire cycle(from 300 years for 2011–2041,to 200 years for 2071–2100)on peat accumulation rate and soil organic layer(SOL)thickness at the stand level,and paludification at the landscape level.Results:Our index show that in the context where in the absence of fire the landscape continues to paludify,the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level,and no change in the paludification level of the study area between 2011 and 2100.However,including decreasing fire cycle to the index resulted in declines in paludified area.Overall,the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100,with slower rates of paludification.Conclusions:Slower paludification rates imply greater forest productivity and a greater potential for forest harvest,but also a gradual loss of open paludified stands,which could impact the carbon balance in paludified landscapes.Nonetheless,as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns,a significant proportion of the territory has high potential to remain a carbon sink.  相似文献   

10.
Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares,where we sampled soils in areas that were classified by fire severity: low(LS), high(HS) and medium severity(MS),and unburned(UB), which served as the control. In each severity class, 25 transect points were randomly selected for measurement. Around each transect plot center, 3 soil samples were selected randomly and soils collected from the 0 to 20 cm depth were combined into a composite sample that was used in laboratory analysis to represent conditions at that point. Plots in the UB and LS fire classes had similar soil conditions and had higher values of factors such as saturated moisture, organic carbon, carbon dioxide,and silt and clay content. In contrast, plots in the HS and MS fire severity classes were clustered in the positive direction along the first axis that represented gradients in soil acidity, electrical conductivity, cation exchangecapacity, accessible phosphorus, accessible potassium,bulk density, and sand. Soil attributes were similar in areas of HS and MS fire severity classes, whereas soil conditions in the LS class and UB controls were most similar. Fire in the LS areas either did not significantly alter the physical–chemical soil properties and microbial basal respiration, or soils were able to recover quickly after being burned.  相似文献   

11.
12.
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing’an Mountains (Greater Xing’an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.  相似文献   

13.
To examine the effects of frequent fires on species composition of the boreal forest in northern Mongolia, we investigated regeneration patterns, including reproductive pathways, post-fire seed sources, and site preferences, of four common tree species (Betula platyphylla, Larix sibirica, Picea obovata, and Pinus sibirica). Regeneration patterns differed among B. platyphylla, L. sibirica, and the two evergreen conifers. B. platyphylla regenerated vigorously only after fire irrespective of the presence/absence of nearby seed sources, whereas post-fire regeneration of L. sibirica was more dependent on the presence of nearby seed sources. These two species did not regenerate in mature stands where mature trees of these species were growing. In contrast, no post-fire recruitment of P. obovata and P. sibirica was observed, whereas continuous recruitment of these species was observed in mature stands. The frequent fires that accompany illegal logging may result in larger burned areas and increase the risk of local extinctions of seed sources. The enlargement of burned areas is likely to favor post-fire recruitment of B. platyphylla. Seed dispersal limitation seems to have less effect on B. platyphylla than on the other species because of the wider seed dispersal range and vegetative reproduction capability of this species. Consequently, fires in the northern Mongolian boreal forest likely promote the relative dominance of B. platyphylla and threaten the existence of the evergreen conifers.  相似文献   

14.
Bark beetle infestation is a well-known cause of historical low-level disturbance in southwestern ponderosa pine forests, but recent fire exclusion and increased tree densities have enabled large-scale bark beetle outbreaks with unknown consequences for ecosystem function. Uninfested and beetle-infested plots (n = 10 pairs of plots on two aspects) of ponderosa pine were compared over one growing season in the Sierra Ancha Experimental Forest, AZ to determine whether infestation was correlated with differences in carbon (C) and nitrogen (N) pools and fluxes in aboveground biomass and soils. Infested plots had at least 80% of the overstory ponderosa pine trees attacked by bark beetles within 2 years of our measurements. Both uninfested and infested plots stored ∼9 kg C m−2 in aboveground tree biomass, but infested plots held 60% of this aboveground tree biomass in dead trees, compared to 5% in uninfested plots. We hypothesized that decreased belowground C allocation following beetle-induced tree mortality would alter soil respiration rates, but this hypothesis was not supported; throughout the growing season, soil respiration in infested plots was similar to uninfested plots. In contrast, several results supported the hypothesis that premature needlefall from infested trees provided a pulse of low C:N needlefall that altered soil N cycling. The C:N mass ratio of pine needlefall in infested plots (∼45) was lower than uninfested plots (∼95) throughout the growing season. Mineral soils from infested plots had greater laboratory net nitrification rates and field resin bag ammonium accumulation than uninfested plots. As bark beetle outbreaks become increasingly prevalent in western landscapes, longer-term biogeochemical studies on interactions with other disturbances (e.g. fire, harvesting, etc.) will be required to predict changes in ecosystem structure and function.  相似文献   

15.
Taking different forests in Aershan of Inner Mongolia as sample plots,diversity and dominant species of arthropods were studied.The results show that two classes,17 orders,68 families,130 species and 3742 individuals were identified and 92.31% of total species appeared in natural forests,and 75.38% of total species appeared in plantations.The orders of Lepidoptera,Coleop-tera,Diptera and Hymenoptera covered most of the collected arthropods.In different forest types,diversity indices is natural mixed forests...  相似文献   

16.
研究内蒙古大兴安岭地区不同干扰类型下白桦次生林土壤理化性质特征,在内蒙古根河市选取3种干扰类型的白桦次生林样地的不同土层土壤作为研究对象,对土壤理化性质进行测量分析,探究不同干扰类型对土壤理化性质的影响。研究结果表明,白桦次生林在不同干扰方式下土壤理化性质存在显著差异。其中人工条带改造后的白桦次生林土壤pH值增大,火烧后白桦次生林容重增大,土壤有机碳、全氮、全磷、全钾、速效磷、速效钾含量在人工条带改造后显著增高,采伐干扰样地白桦次生林样地土壤含水量、速效氮含量最高。不同干扰类型的白桦次生林样地土壤理化性质间相关性不同。人工条带改造干扰样地白桦次生林土壤综合指数较高,火干扰样地白桦次生林土壤综合指数较低。  相似文献   

17.
In three different plant communities growing in Mediterranean old fields we studied the short-term changes in soil nitrogen availability that occur after the fire. Two of these communities were grasslands with great capacity of resprouting and contrasted N availability, one dominated by Brachypodium retusum, and the second one dominated by B. retusum and the N fixing shrub Genista scorpius. The third community was an obligate seeder community (shrubland) with low N availability and was dominated by Rosmarinus officinalis. We selected six plots for each type of vegetation and therefore performed 18 experimental fires. During fires we measured temperatures at the soil surface. Maximum temperature recorded during fire and time–temperature integral were used as indexes of fire severity. During the 6 months following fires we measured Net N mineralization and plant uptake by field incubations using the resin-core technique in paired burnt and control plots.Fire severity increased with plant biomass. In grasslands heating of the soil surface increased with plant biomass up to a limit of 1 kg m−2 of above-ground biomass. For high biomass a large proportion of heat released during fire was probably transmitted to the atmosphere or to the deeper soil horizons. The increase of soil mineral N was larger in fires of greater severity. Most mineral nitrogen released to the soil during fire was ammonia. Increases of ammonia post-fire depends on the temperatures measured on the soil surface while increases of the less volatile N form (nitrate) were related to the amount of burnt biomass and were highly dependent on the type of vegetation.The amount of nitrogen released to soil during fire represented a small proportion of the N mineralized during the 6 months following fire and thus the amount of nitrogen mineralized per unit of N released during fire was very different across the different types of vegetation. In grasslands fire induced changes in N mineralization decreased as fire severity increased. In contrast, in shrublands we observed the opposite trend. Differences in potentially mineralizable and in net mineralization N between unburnt grasslands and shrublands could account for this fact. Despite the depression in nitrification that we observed in grasslands between 40 and 80 days after the fire, high nitrate concentration in the soil during that period increased N leaching in burnt plots. No plant uptake was detected at that time. In grasslands the onset of plant uptake in burnt plots was delayed as compared to control. Cumulative changes in N did not depend on the burnt biomass in grassland communities, but it did in the seeder community. On the contrary, soil temperatures measured during fires related to changes in N observed in grasslands but not in the seeder community. It appears therefore, that post-fire N mineralization and leaching in grasslands may have been driven by the changes induced by heating the soil surface while in shrublands it may have been driven by the quantity of ash deposited on the soil surface.  相似文献   

18.
Since the advent of widespread suppression in the mid-20th century, fire has been relatively rare in deciduous forests of the eastern United States. However, widespread prescribed burning has recently been proposed as a management tool to favor oak (Quercus spp.) regeneration. To examine the potential effects of fire introduction on the understory community, we experimentally burned small plots and simulated aspects of fire at a forested site in southeastern Ohio. Treatments included two burn intensities, litter removal, increased soil pH, and a control. Treatments were arranged in a randomized block design in two landscape positions (dry upland and moist lowland) and two canopy conditions (gap, no gap). Post-fire vegetation was identified to species, and stems were counted 1, 3, and 14 months after burning. Community composition was more strongly affected by fire in upland plots than in lowlands, but was not affected by canopy openness. Both cool and hot burns reduced post-fire seedling emergence of Acer rubrum, a common overstory tree. Hot burns facilitated germination of Vitis spp., Rhus glabra, and Phytolacca americana, species common in disturbed habitats, and increased graminoid abundance. Cool burns and litter removal facilitated germination of Erechtites hieracifolia and Liriodendron tulipifera suggesting that litter removal is the mechanism by which fire favors colonization. These results suggest that fire applied frequently in the Central Hardwoods Region would cause compositional shifts to graminoids and disturbance-adapted forbs by increasing germination from the seed bank. Fire did not favor species with dormant underground buds, as studies in other ecosystems would suggest. Vegetational responses were noticeably weaker in the second year after burning, indicating that a single fire has only a short-term effect.  相似文献   

19.
Ecological processes within forests provide vital ecosystem services to society, most of which depend on the persistence of tree cover that can be altered after the impact of a disturbance. The aim of the present study was to examine the role of seed dispersal and resprouting that mediate resilience to large fires and evaluate the economic costs that these ecological functions provide. We used field data from 412 plots of the Spanish National Forest Inventory providing information on pre- and post-fire conditions of Mediterranean Pinus spp. and Quercus spp.-dominated forests. Then, we determined the need for restoration (N Rest) and estimated the minimum pre-fire densities needed to ensure adequate post-fire cover. Economic valuations were assessed through three different scenarios (Sc) of possible human-management actions aimed at ensuring proper post-fire tree cover: Sc. 1) a pre-fire management scenario evaluating the costs of planting Quercus spp. seedlings in the understory, mimicking the whole dispersal function; Sc. 2) a pre-fire scenario in which enrichment plantations increased the densities of natural oaks; and Sc. 3) a post-fire scenario where the restoration is done through planting pines within the burned area. Approximately 90% of the burned area (371 out of 412 plots) was able to recover after fire supporting the view that Mediterranean forests are resilient to fire. This resilience was primarily mediated by biotic seed dispersal and posterior resprouting of tree species. These ecological functions saved between 626 and 1,326 €/ha compared to the human-management actions. Ensuring key ecological processes within forests increases forest resilience and recovery after fire leading to a generally significant saving of economic resources. In a perspective of increased future impact of disturbances and decrease availability of economic resources for forest management, the implications of the present study can be far reaching and extended to other forest planning exercises.  相似文献   

20.
To test the direct regeneration hypothesis and support natural disturbance-based forest management we characterized the structure and composition of boreal mixedwood forests regenerating after large wildfires and examined the influence of pre-fire stand composition and post-fire competing vegetation. In stands which had been deciduous (Populus sp.)-dominated, conifer (white spruce)-dominated, or mixed pre-fire we measured regeneration stocking (presence in 10 m2 plots), density and height 10–20 years post-burn in five wildfires in Alberta, Canada. Most plots regenerated to the deciduous or mixed stocking types; plots in the older fire and in stands that were pure conifer pre-fire had higher amounts of conifer regeneration. Surprisingly, regeneration in pre-fire ‘pure’ white spruce stands was most often to pine, although these had not been recorded in the pre-fire inventory. Pre-fire deciduous stands were the most resilient in that poplar species dominated their post-fire regeneration in terms of stocking, density and height. These stands also had the highest diversity of regenerating tree species and the most unstocked plots. High grass cover negatively affected regeneration density of both deciduous and conifer trees. Our results demonstrate the natural occurrence of regeneration gaps, pre- to post-fire changes in forest composition, and high variation in post-fire regeneration composition. These should be taken into consideration when developing goals for post-harvest regeneration mimicking natural disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号