首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过研建落叶松生长量各组份的生长模型,初步揭示了落叶松生物量各组分的生长发育规律,并以此为基础,分析了落叶松生物量各组份生长过程和各组份比率随年龄的变化规律。结果表明,树木生物量的生长与树木材积生长有相似的特点,各组份的数量成熟龄比较接近,分别为:总量28a,树干和树皮27a树枝30a树叶27a。在成熟林中,各组份保持罗稳定的比率。对于落叶松而言,各组的比率约为:树干72%,树皮9%,树枝16%,  相似文献   

2.
华北落叶松人工林生物量分配格局   总被引:3,自引:0,他引:3  
采用相对生长模型W=a(D2H)b对不同林龄华北落叶松人工林生物量进行了研究。结果显示,随着林龄的增大,树干的生物量增长的速度最快,树皮、树枝和树叶的生物量所占全株的比例随着林龄的增大而减小;6a生林中,乔木层各器官生物量分配规律为树枝〉树干〉树皮〉树叶〉树根;12a生林、22a生林和32a生林中,分配规律为树干〉树枝〉树根〉树皮〉树叶;灌木层和草本层所占比例随着林龄的增大而减小,由6a生林的9.28%和15.72%减小到0.46%。  相似文献   

3.
树木地上和地下生物量是森林生态系统中重要的碳汇,了解林木地下部分和地上部分的生物量分配情况对于估算森林碳汇具有重要作用。以海南岛北部菠萝蜜、荔枝和龙眼树为研究对象,每个树种各选取30株不同径阶的样木进行整株挖掘,对其生物量、碳储量及其分配特征进行了研究。结果表明:不同经济林树种在各组分生物量最优模型的选择上,基本以W=a D~bH~c模型为最优;3种经济林树种各组分生物量的大小均表现为树干根系树枝树叶;菠萝蜜、荔枝和龙眼树树枝的含碳比率相差不大,分别为0.39、0.41、0.40,但其树干、根系、树枝和全树的含碳比率却均存在差异,各组分碳储量的大小均表现为树干根系树枝树叶。文中分析认为,基于树高和胸径的相对生长模型,可以实现对经济林树种各组分生物量的准确拟合和碳储量的有效估算。  相似文献   

4.
为了给塞罕坝人工华北落叶松生物量建模提供依据,采用样木调查法,对不同径阶和树高华北落叶松的树根、树枝、树皮、树叶、树干木质部的含水率进行测定,计算各器官的生物量、总生物量及各器官在单株总生物量中所占的比例,结果表明:华北落叶松单株器官生物量的分配,在胸径达到20cm以前,树干木质部分的生物量所占比例呈逐渐增大的趋势;当胸径在20cm以上,树干木质部分的生物量所占比例相对有所降低,树冠(包括树枝与树叶)生物量与树干(包括树干木质与树皮)的生物量在单株生物量中所占的比例呈现此消彼长的趋势,而树根所占的生物量比例基本趋于稳定,大约占20%左右;此外,应用2种生物量模型W=a(D2 H)b和W=aDb进行拟合,经比较分析发现,W=aDb模型不仅方便而且精度更高,应为首选模型。  相似文献   

5.
该文以塞罕坝机械林场不同年龄落叶松为研究对象,研究了不同年龄阶段华北落叶松单株各部分(树干、树枝、树叶、根系)生物量之间的关系,并分析了不同年龄阶段落叶松各组分生物量的变化规律。结果表明:落叶松各组分生物量由大到小依次为树干>根系>树枝>树叶。随着林龄的增加,树干、树枝、树叶、根生物量逐渐增大。但各组分变化仍有所差异,其中树枝、树叶的生物量增长幅度相对较小,树干的生物量增长幅度最大,且树干生物量与其他器官生物量增长幅度差距逐渐变大,处于较明显的优势地位。  相似文献   

6.
长白落叶松人工林生物量的结构与分布   总被引:1,自引:0,他引:1  
采用径级标准木和样方收获法,对24a生长白落叶松人工林的生物量和生产力进行了研究。结果表明:24a生长白落叶松人工林分生物量为120.55t/hm2,年平均净生产力为8.47 t/(hm2.a),生态系统的生物量分配格局为乔木层>枯枝落叶层>下木层>草本层,其中乔木层生物量为102.17t/hm2,净生产力为8.09t/(hm2.a),其生物量分配格局为树干>树根>树皮>树枝>树叶;在林分产量结构方面,8 m以下树干生物量占其总量的81.80%,树枝和树叶的生物量主要分布在10~14 m,分别占树枝和树叶总生物量的71.11%和73.05%,地下根系生物量分配格局为粗根(直径大于5 cm)>根头>中根(0.5~5 cm)>细根(<0.5cm),粗根生物量占根总生物量的53.98%。  相似文献   

7.
辽东山区不同林龄落叶松林分林木各器官生物量分配特征   总被引:1,自引:1,他引:0  
以辽东山区落叶松人工林为研究对象,采用样地调查和实测生物量等方法,测定落叶松幼龄林、中龄林和近熟林的生物量及其在一个年龄序列上的空间分配特征。结果表明:不同林龄落叶松林分生物量分布依次为中龄林(119.39t·hm~(-2))近熟林(94.69t·hm~(-2))幼龄林(31.44t·hm~(-2))。各器官生物量大小关系略有差异,中龄林和近熟林为树干树根树枝树叶;而幼龄林为树干树枝树根树皮树叶。落叶松人工林经营应定期采取抚育间伐,改善林木生长条件,提高落叶松人工林的生产力,以实现生态系统健康、稳定发展。  相似文献   

8.
刘化桐 《福建林业科技》2013,40(1):26-28,98
对20年生北美鹅掌楸人工林生产力及碳氮积累研究表明:北美鹅掌楸福建北部生长潜力较大,树高达15.61~24.54m,胸径为21.37~33.31 cm,单株材积为0.259~0.990 m3。北美鹅掌楸对立地条件敏感,Ⅰ类地树高、胸径、材积生长分别比Ⅲ类地增加63.62%、55.90%、281.91%;全树总生物量可达580.27 t.hm-2,各生长器官的生物量大小顺序为树干>树枝>树根>树皮>树叶,分别占到总生物量的58.80%、20.61%、11.94%、5.58%和3.07%;树干、树叶、树皮、树枝、树根碳含量分别为52.13%、50.61%、49.20%、46.85%、45.34%,氮含量分别为0.72%、0.91%、0.96%、0.88%、0.83%;全树碳总积累量可达290.26 t.hm-2,树干、树枝、树根、树皮、树叶分别为177.86、56.02、31.43、15.92、9.03 t.hm-2;全树氮总积累量可达4.56 t.hm-2,大小顺序依次为树干>树枝>树根>树皮>树叶。  相似文献   

9.
基于60株辽东山区日本落叶松样木生物量的实测数据,分析不同林龄条件下立木各部分生物量的变化情况,并应用度量误差方法建立立木相容性生物量模型。结果表明:树叶、树枝、树皮生物量占总生物量的比值随林龄增长呈下降趋势,干材占总生物量的比值随林龄增长呈上升趋势。在筛选出总生物量与各分量最优独立模型的基础上,应用三级控制的方法建立生物量相容性模型,并采用加权回归方法消除总量和各分量模型的异方差。建立的总量、地上部分、树干、干材、树皮生物量模型,其R2均大于0.9;树根、树冠、树叶和树枝生物量的R2略低,介于0.7 0.9之间。通过独立样本对模型的相容性和预测精度进行检验,各分量预测值所占总生物量的百分比之和为1,模型完全相容;根、冠、叶和枝的模型预测精度略低于90%,其他部位模型的预测精度都在95%以上,模型的预测精度较高。  相似文献   

10.
桂西北马尾松人工林生物量生长规律及其分配模式   总被引:2,自引:0,他引:2  
对桂西北马尾松人工林的单木生物量相对生长模型、林分生物量及其分配规律的研究结果表明:(1)马尾松树干、树皮、地上生物量、地下生物量以及总生物量以方程W=a×(D2H)b的拟合效果为好,树枝和树叶以方程W=a×Db的拟合效果为好。(2)不同林龄马尾松林分标准木各器官的生物量所占总生物量的百分比出现明显的变化。在不同的马尾松林龄中,各器官的生物量均以树干为最高,同时随着林龄的增加,其所占百分比例出现明显的升高,随着林龄的继续增大,其所占百分比逐渐趋于稳定。与树干的变化趋势相反,树皮、树枝、树叶和树根的所占总生物量百分比随着林龄的增加而呈现下降。(3)林分生物量随着林龄的增大而出现明显的增加。林分树干和树枝的总生物量和所占百分比均出现明显的上升;树皮和树叶的总生物量随林龄的增加而增加,但其所占乔木层总生物量的百分比则随着林龄的增加而下降;地下生物量随林龄的增大而无显著变化。  相似文献   

11.
桂西南米老排人工林单株生物量回归模型   总被引:1,自引:0,他引:1  
通过对桂西南大青山林区28a生米老排(Mytilaria laosensis)人工林林分进行每木检尺和生物量的测定,建立了米老排各器官生物量与胸径、树高和胸径平方乘树高(D2 H)的相关关系;分别选用幂函数等5种模型,用回归分析方法对米老排人工林单株生物量模型进行了拟合。结果表明:树叶和树根生物量分别与胸径和树高的相关关系最显著,而树干、树枝、树皮和全株的生物量都与D2 H的相关关系最为显著。胸径、树高和D2 H与各器官生物量拟合的模型中,全株、树干和树皮的拟合效果最好,树叶和树根的拟合效果中等,树枝的拟合效果较差。除树皮外,各器官均以幂指数模型的拟合效果最好。  相似文献   

12.
天然麻栎单木地上生物量模型研究   总被引:2,自引:0,他引:2  
通过对铜陵叶山林场麻栎样木地上生物量调查,以胸径、树高为自变量,地上总生物量、树干、树枝、树叶生物量为因变量,选择相对生长式、幂函数式和多项式为生物量回归模型,拟合各模型参数、相关指数、回归剩余离差,并计算生物量估测误差。结果表明:麻栎树干、树枝、树叶和地上总生物量与胸径、树高存在显著幂函数关系,其方程分别为:树干W=6.571×10-4D1.8473H2.411、树枝W=1.163×10-4D2.9497H1.3223、树叶W=0.0032D1.5148H0.8821、总生物量W=9.354×10-4D2.0825H2.1154。树干与总生物量的预估精度均达90%以上。  相似文献   

13.
基于50株样木的实测数据,运用相关分析和回归分析方法,采用四种模型构建了西伯利亚云杉的地上、地下和各组分器官的生物量估测模型,对比分析了各拟合结果得出以下结论:各生物量模型对比得知,地上和树干生物量模型估计精度均高于树枝、树叶和地下生物量模型;最优的二元模型拟合度和预估精度都优于一元模型,其中地上和树干生物量二元模型精度提高显著;树枝、树叶和地下生物量模型二元模型精度提高有限,建议实际应用时采用一元模型W=a Db。各生物量二元模型拟合优度和预估精度对比分析显示,不同的变量组合拟合效果不同,常用变量D2H在估计树枝、树叶生物量时效果不如一元模型精度,而变量D3/H对树枝树叶生物量的估计最有效。  相似文献   

14.
为了探索贵州雷公山常绿阔叶林优势树种的生物量特征,在典型植被甜槠栲群落中通过样地调查核实了群落基本特征,并选取常绿优势树种甜槠栲、长蕊杜鹃,采用标准木法研究了其地上部分生物量分配特征及生物量模型。结果表明:雷公山甜槠栲群落内,甜槠栲单木树干、树枝、树叶生物量平均分别为12.96 kg、4.65 kg、2.08 kg,长蕊杜鹃相应生物量分别为15.85 kg、7.77 kg、1.64 kg;生物量分配上,甜槠栲各组分所占地上部分比例大小为:树干(53.21%)树枝(23.84%)树叶(12.68%),长蕊杜鹃为:树干(54.79%)树枝(31.10%)树叶(10.90%);生物量模型拟合显示,一元模型(W=aDb)与二元模型(W=a(D2H)b)在两树种干、皮、枝、叶各组分生物量拟合中都能满足精度需要,但单木地上部分总生物量的拟合则以二元模型的精度更高。  相似文献   

15.
为了探究华北落叶松的生物量最优生长模型,以承德围场县北沟营林区华北落叶松人工林为研究对象,通过设置标准地,对其17~43a生林分进行详细调查,利用Spass曲线估计方法,最终确定其生物量估算模型。结果表明:二次函数为生物量最优模型,地上总生物量W总=-53.846-0.486 D+0.558 D2,树干生物量W干=-65.067+2.648 D+0.312 D2,树枝生物量W枝=-0.701+0.024 DH-4.868×10-6(DH)2,树叶生物量W叶=-2.205-0.479 D+0.066 73 D2,树皮生物量W皮=-3.536+0.004 D2 H-7.998×10-8(D2 H)2。  相似文献   

16.
贺兰山灰榆疏林单株生物量回归模型的研究   总被引:1,自引:0,他引:1  
对贺兰山东麓天然灰榆疏林林分进行了调查研究。实测灰榆单株的地上和地下生物量,应用相关分析方法,探讨灰榆单株各器官生物量与树高(H)、胸径(D)、1/2树高处直径(D1/2)和胸径平方乘树高(D2H)的相关关系,结果表明:1)贺兰山东麓天然灰榆疏林单株各器官生物量分配比率为树干>树根>树枝>树皮>树叶。2)各器官生物量拟合的预测模型中,树干、树枝和树叶的生物量预测模型拟合效果较好,而且具有一定的实用价值;树枝和树皮的生物量预测模型拟合效果一般;任一自变量与单株生物量拟合的预测方程适用性均较好。  相似文献   

17.
阿尔泰山优势树种的生物量模型构建及其生物量分配特征   总被引:1,自引:0,他引:1  
森林生物量准确测定是科学管理和利用森林生态系统的前提。基于阿尔泰山5个优势树种生物量的实测数据,分别对不同林分的树干生物量、地上生物量、地下生物量及总生物量与实际测量值进行对比,构建了西伯利亚落叶松、西伯利亚红松、西伯利亚云杉、西伯利亚冷杉和疣枝桦的生物量模型。结果表明:W=a DbHc模型为估算阿尔泰山林区5种林分类型生物量的最优模型,并且这5个优势种各器官的生物量大小排序均为树干树根树枝树叶,西伯利亚落叶松林的总生物量最大,对阿尔泰森林生态系统的稳定和发展起着关键的作用。  相似文献   

18.
文章对辽宁省不同林龄的油松林分总生物量及各分项生物量的分配进行了分析,随着林龄的增长,树干生物量所占比例呈现增加趋势,树枝、树叶和树根生物量的占比都呈不同程度的降低。在各个生长阶段,各分项所占平均比例排序均为树干树根树枝树叶。同时以较易调查的林分因子为自变量建立了总生物量和各分项生物量模型,模型拟合精度较高,可以为当地油松林分生物量调查提供参考。  相似文献   

19.
以不同林地条件下落叶松人工林为研究对象,根据5块标准地里的25株解析木数据,建立了落叶松人工林单木各分量(包括树干,树枝,树叶和全树重)的预测模型。结果表明:文中所建立树干、全树重的模型精度都高于95%,误差很小,可很好的用于预测落叶松人工林单木的生物量。  相似文献   

20.
以吉林省东部山地林区长白落叶松为对象,研究地上生物量异速生长模型,利用生物量与蓄积量关系,估算不同林龄长白落叶松林碳储量与碳密度,结果表明:长白落叶松林地上总平均生物量为215.021 kg;树干生物量占地上总生物量67.15%;枝、叶、皮分别占17.09%、6.00%、9.76%。树干生物量异速生长方程为Y=0.059DBH1.32.171H0.420;树皮、活枝、针叶和地上总生物量可以通过Y=a DBH1.3b进行预测。生物量与蓄积相关方程分别为:树干y=448.68 x+4.433 1;活枝y=105.21 x+3.944 9;针叶y=32.89 x+2.639 8;树皮y=57.39 x+3.099 7,相关系数均大于0.9。长白落叶松不同林分生物量、碳储量、碳密度范围分别为2.38×106~7.52×106t、1.19×107~3.76×107t和38.89~69.37 t·hm-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号