首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
木材的化学组成与阻燃技术的发展方向   总被引:8,自引:0,他引:8  
本文研究和讨论了木材的主要化学组分的热解性质及其与木材燃烧和阻燃的关系,反应型木材阻燃剂与木材各组分的反应途径,指出200~300℃是阻燃剂促进木材脱水成炭、发挥阻燃作用的关键温度。文中还分析了木材阻燃技术的发展方向,指出反应型木材阻燃剂是解决阻燃剂吸潮和流失问题的有效途径,纳米阻燃是亟待开发的高效阻燃技术。  相似文献   

2.
美国阻燃处理木材的现状   总被引:1,自引:0,他引:1  
总结美国阻燃处理木材的规范与标准,介绍美国主要阻燃处理木材生产商的阻燃木材产品,分析主要阻燃剂的配方及合成工艺、处理木材的工艺与技术特点,为国内阻燃处理木材行业的技术发展提出建议.  相似文献   

3.
叙述了近几年国内新型阻燃剂的研究进展,包括卤系阻燃剂、金属系阻燃剂、磷-氮-硼复合类阻燃剂;简述欧盟、美国、日本、中国的阻燃木材的分级标准及影响木材阻燃的因素,如载药量、发烟性、吸湿性方面的研究;对我国在木材阻燃的发展提出了建议,开发低吸湿低烟高阻燃型木材、开发新的阻燃处理方式,推动我国木材阻燃技术的进步。  相似文献   

4.
不会燃烧的木材最近,美国匹滋堡市场销售一种遇火不会燃烧的木材及胶合板,特别适合于制做家具。这种木材之所以能够阻燃是因为经过了阻燃处理。木材阻燃处理的过程是这样的;先把木材及胶合板,装入一个可以加  相似文献   

5.
木材的阻燃处理及应用   总被引:5,自引:0,他引:5  
袁振君 《林业科技》2001,26(6):40-42
论述了木材燃烧的特性,木材阻燃处理的机理及其性能的变化,讨论了阻燃木材的应用。  相似文献   

6.
用CONE法研究木材阻燃剂FRW的阻燃性能   总被引:29,自引:4,他引:29  
利用锥形量热仪 (CONE)系统地测定了新型木材阻燃剂FRW的阻燃性能 ,讨论了FRW对阻燃木材在燃烧时的热释放、质量变化及耐点燃性的影响 ,并与Dricon阻燃剂进行了对比。结果表明 ,在 5 0kW·m2 的热辐射功率下 ,FRW阻燃处理木材的热释放速率 (RHR)和总热释放量 (THR)随FRW载药率的升高而降低 ,至载药率达到 10 %左右时 ,RHR及THR降低为未处理木材的 5 0 %左右 ,并且降低的趋势明显变缓 ;FRW与Dri con阻燃木材的有效燃烧热 (EHC)曲线基本重合 ,说明二者的阻燃机理类似 ;FRW阻燃木材的质量损失速率(MLR)曲线与RHR曲线相似 ,失重和热释放主要发生在有焰燃烧阶段 ;FRW阻燃处理能显著提高木材燃烧时的成炭率 ,但对木材的点燃时间影响不大 ;FRW与Dricon的阻燃效力相当 ,属高效木材阻燃剂。  相似文献   

7.
木材阻燃剂FRW的阻燃机理   总被引:10,自引:2,他引:10  
王清文  李坚 《林业科学》2005,41(5):123-126
在综合分析热分析法、锥形量热仪法和FTIR法获得的FRW阻燃机理研究结果并吸收木材阻燃机理研究现有成果的基础上,推导进而提出了木材阻燃剂FRW的阻燃机理。其主要内容是:1)FRW阻燃木材受热时,阻燃剂FRW分解产生不燃性气体和不挥发的酸性熔融物质,具有降低体系温度和氧气浓度及屏蔽热辐射的作用,降低了木材的热解速度;2)FRW的组分硼酸和GUP的酸性分解产物催化木材脱水、降解,以及木材热解产物的缩合、聚合、芳构化等反应,能改变木材的热解途径并使其向着有利于炭化的方向变化,FRW显著的催化成炭作用,使阻燃木材的燃烧放热量大大降低,这是FRW阻燃机理的主要方面;3)硼酸与GUP起阻燃作用的温度和方式不同,并且有相互补充的作用,因而表现出阻燃协同效应。  相似文献   

8.
选用新型木材阻燃剂SLB对马尾松和南洋楹两种木材进行了阻燃处理,并用氧指数法和木垛法对处理后木材的阻燃性能进行了测试。结果表明:用SLB阻燃剂处理木材,载药量达到40 kg/m^3以上时,阻燃性能达到相关标准的要求,阻燃效果随着载药量的增大而增强。在载药量相近时,南洋楹木材比马尾松木材的阻燃效果显著。  相似文献   

9.
本研究以ZR-M-301型木材阻燃剂为浸渍药液,樟子松和水曲柳为木材试样,选择常压浸渍、压力浸渍、微波处理后常压浸渍、超声波加压浸渍和微波处理后超声波加压浸渍五种木材阻燃处理方法,经过试验,探索在生产阻燃木材的浸渍方法中引入微波和超声波技术的可行性,找到效果好的木材阻燃处理方法.本研究的创新点是将微波处理与超声波辐射技术应用于木材阻燃处理中,利用微波加热处理改善木材构造的渗透性能,利用超声波的空化作用强化阻燃剂浸入性能,并提出了新的技术路线.  相似文献   

10.
磷酸铵盐处理人工林木材的燃烧性能   总被引:11,自引:0,他引:11  
利用锥形量热仪对磷酸铵盐处理的人工林杉木、杨木和马尾松木材的燃烧性能进行研究。结果表明 :磷酸铵盐阻燃处理木材的引燃时间与阻燃剂量有关 ,对 3种木材而言 ,阻燃剂量超过 10 0kg·m- 3,木材才不会被点燃 ;磷酸铵盐对降低木材的释热性能效果明显 ,释热速度降低 ,释热总量减少 ,气相燃烧放热降低 ,而且随着阻燃剂量的增加 ,降低程度更加明显 ;经磷酸铵盐阻燃处理 ,木材失重降低 ,这对保证结构外形的稳定性具有重要作用 ;磷酸铵盐阻燃剂的抑烟作用不理想 ,虽然降低了最强发烟过程的强度 ,但是也提高了最弱发烟过程的强度 ,而且随着阻燃剂量的增加 ,发烟量呈增加的趋势 ;在阻燃研究中 ,阻燃剂在木材内分布状态是一个不可忽视的影响因素 ,特别是木材这种非均质性材料 ,阻燃剂分布的不均匀性将会影响材料整体的耐火性能  相似文献   

11.
阻燃剂WFRJ1改性木材的体积稳定性和涂饰性能   总被引:3,自引:0,他引:3  
用阻燃剂WFRJ1处理大青杨木材并对处理材的阻燃性能、涂饰性能和体积稳定性进行测定。结果表明:WFRJ1可用于木制品的阻燃处理。当WFRJ1浓度为10%时,氧指数可达到50%以上,与水溶性RF树脂复配,可大幅度提高处理材的抗胀缩率和阻湿率,增加体积稳定性。经WFRJ1处理后杨木单板的涂饰性能未受影响。  相似文献   

12.
酚类阻燃剂处理杉木热解过程的热动力学研究   总被引:8,自引:0,他引:8  
胡云楚  刘元 《林业科学》2003,39(3):116-120
抗流失阻燃剂是当前阻燃剂研究开发的一个重要方向。采用TG DTA热分析技术研究了酚类阻燃剂处理杉木热解过程各阶段的木炭产量和热动力学参数。结果表明 ,酚类阻燃剂阻燃处理杉木的产炭量因苯环上取代基不同而不同 ,其阻燃作用的大小顺序为 :氨基 >溴 >硝基。同时具有氮元素和溴元素的二溴硝基苯酚和二溴氨基苯酚的产炭量都大于相应的单取代苯酚衍生物。浸泡实验后 ,磷酸氢二铵的产炭损失率是二溴硝基苯酚的 5倍。阻燃处理后产炭量的增大总是对应于炭化阶段热解反应峰温降低、反应速率常数增大 ,但产炭量的增大程度与这些热动力学参数的改变是负相关的。因此 ,氮和溴的苯酚衍生物不仅对木材具有很强的阻燃作用 ,而且具有很强的抗浸泡能力 ,氮元素的阻燃作用与其在阻燃剂中的氧化态关系极大 ,氮和溴在木材阻燃中存在协同增效作用 ,阻燃处理对木材的吸湿性也有影响。  相似文献   

13.
阻燃处理马尾松的热动力学分析   总被引:3,自引:0,他引:3  
将硼酸、硼砂混合制成均匀的阻燃剂,并以脲醛预缩液为载体,采用动态热重法来分析马尾松木材阻燃处理前后的热动力学特性。经定性与定量分析,结果表明,该阻燃体系能使松木的热解温度降低;平均热解失重率降低、失重过程变缓;产炭量增加,在炭化阶段的失重减少。  相似文献   

14.
利用质轻、松软、强度低、径极小的杉木间伐材,经阻燃液浸渍处理、干燥后,生产阻燃杉木胶合层积材。制出的胶合层积材物理力学性能满足日本农林集成材标准,同时又具有一定的阻燃效果,可供作室内装饰和家具等用材。  相似文献   

15.
阻燃刨花板阻燃剂的研制   总被引:4,自引:0,他引:4  
以氨基树脂为载体,磷-氮系阻燃液与固体无机耐火剂所构成的刨花板用阻燃体系,采用阻燃剂与刨花直接混合的添加工艺,不会造成阻燃剂的浪费,不污染环境。所生产的阻燃刨花板主要物理力学性能达到国家标准。阻燃性能:氧指数40%~50%.1000℃火焰穿透时间15~25分钟,发烟等级为一级。对人低毒。  相似文献   

16.
该研究采用BL-阻燃剂溶液浸渍处理杨木单板,比较分析BL-阻燃杨木与未阻燃杨木的吸湿性和尺寸稳定性的影响。结果表明:①在不同的湿度条件下,阻燃处理后试件的吸潮率递增值明显高于未处理材。②BL-阻燃剂浓度越高的试件吸潮率也越高,相同浓度的试件在不同湿度中,湿度越高,其吸潮率也越高。③阻燃后杨木单板的尺寸变化率明显高于未处理材的,BL-阻燃剂具有较高的吸湿性,其对杨木单板尺寸稳定性的影响规律为:厚度弦向径向。  相似文献   

17.
Summary The exposure of wood treated with a commercial fire retardant chemical to fire conditions resulted in different patterns of char and fissure development than are seen in untreated whole wood. In addition microstructural observations demonstrated the existence of particulate fire retardant residues in char from treated wood. The source and mode of growth of these particles is considered as well as effects of fire retardants on crack growth, char development and overall appearance of chars from treated wood.The authors wish to acknowledge the general support of the University of California Berkeley Fire Research Group (NSF-RANN-S-22053, NFPCa-S-22584), University of California Berkeley Electron Microscopy Lab. (NSF-GB-38359) and the University of California, Davis Department of Botany (NSF-GB-29653). In addition we would also like to thank Dr. Arno P. Schniewind, University of California Forest Products Laboratory and Dr. R. Falk, University of California, Davis, Department of Botany  相似文献   

18.
Chemical mechanism of fire retardance of boric acid on wood   总被引:5,自引:0,他引:5  
It is commonly accepted that the fire retardant mechanism of boric acid is a physical mechanism achieved by the formation of a coating or protective layer on the wood surface at high temperature. Although a char-forming catalytic mechanism has been proposed by some researchers, little direct experimental support has been provided for such a chemical mechanism. In this paper, new experimental results using thermal analysis, cone calorimetry (CONE), and gas chromatography–Fourier transform infrared spectroscopy (GC–FTIR) analysis are presented and the fire retardant mechanism of boric acid on wood is discussed. Basswood was treated with boric acid, guanylurea phosphate (GUP), and GUP–boric acid. Treated wood was then analyzed by thermogravimetry (TG/DTG), differential thermal analysis (DTA), CONE, and GC–FTIR analysis. Thermogravimetry showed that the weight loss of basswood treated with boric acid was about three times that of untreated or GUP-treated wood at 165°C, a temperature at which GUP is stable. The DTA curve showed that boric acid treated basswood has an exothermal peak at 420°C, indicating the exothermal polymerization reaction of charring. CONE results showed that boric acid and GUP had a considerable synergistic fire retardant effect on wood. The GC–FTIR spectra indicated that compounds generated by boric acid treated wood are different than those generated by untreated wood. We conclude that boric acid catalyzes the dehydration and other oxygen-eliminating reactions of wood at a relatively low temperature (approximately 100–300°C) and may catalyze the isomerization of the newly formed polymeric materials by forming aromatic structures. This contributes partly to the effects of boric acid on promoting the charring and fire retardation of wood. The mechanism of the strong fire retardant synergism between boric acid and GUP is due to the different fire retardant mechanisms of boric acid and GUP and the different activation temperatures of these two chemicals.The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   

19.
采用杉木和泡桐为试材,对经过KY-FW阻燃剂处理的木材与未经处理的木材进行对比研究,分析KY-FW阻燃剂对木材力学性能的影响.结果表明,木材经KY-FW阻燃剂处理后,除冲击韧性降低外,其它主要力学性能指标(如抗弯强度、顺纹抗压强度及硬度)都有所提高.KY-FW阻燃木材的力学性能达到了一级水基型阻燃剂标准规定的相应指标.  相似文献   

20.
落叶松木材的FRW阻燃处理技术   总被引:5,自引:0,他引:5  
许民  李坚  王清文 《林产工业》2001,28(5):8-10
研究采用真空加压法、以新型木材阻燃剂FRW对难以浸注处理的落叶松木材进行阻燃处理。结果表明,在压力为1.4MPa、加压时间为180min、前后真空度均为0.098MPa、前真空时间为30min及后真空时间为15min的工艺条件下,能初步实现落叶松木材的有效处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号