首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[目的]为了解森林土壤氮素转化特征及土壤氮供应能力,为森林生态系统合理经营管理提供科学依据。[方法]以东北寒温带人工红松针叶林和天然次生阔叶混交林表层土壤为研究对象开展室内培养试验,采用15N同位素成对标记技术和FLUAZ数值优化模型,研究不同深度的土壤氮初级转化速率特征。[结果]林地土壤的氮初级转化速率受林型、土壤深度及二者间交互作用的影响。人工红松针叶林土壤氮初级矿化速率和无机氮固定速率显著低于天然次生阔叶混交林土壤,而初级硝化速率显著高于天然次生阔叶混交林土壤,2个林型土壤的氮初级转化速率都随着土壤深度的增加显著降低。土壤氮初级矿化速率和固定速率与土壤pH、有机碳、水溶性有机碳与水溶性有机氮含量呈显著正相关,土壤初级硝化速率与土壤pH呈显著负相关。人工红松针叶林土壤初级硝化速率与铵态氮固定速率比值显著高于天然次生阔叶混交林土壤,而对硝态氮的固定速率显著低于天然次生阔叶混交林土壤。[结论]2种林型土壤氮素转化特征差异明显,人工红松针叶林土壤的硝态氮产生能力较强而无机氮固持能力较弱,容易发生硝态氮的淋溶风险,天然次生阔叶混交林土壤氮矿化-固定过程耦合较好且硝化作...  相似文献   

2.
以辽东山区原始红松混交林为研究对象,对比分析了不同树种组成下原始红松混交林土壤有机碳含量的差异,研究了土壤有机碳与土壤属性因子和植被覆盖因子的相关关系,并研究了土壤碳密度的分布规律。结果显示,3种原始红松混交林土壤有机碳含量均随着剖面深度的增加而降低;0~10 cm土层深度土壤有机碳含量为红松阔叶林阔叶红松林针阔混交林,表层土壤有机碳主要来源于枯落物层的分解,表层土壤有机碳的特征表明原始红松混交林树种构成不同,潜在地影响着生态系统内的碳循环。对土壤属性因子而言,碳氮比与有机碳含量呈极显著的正相关关系,而容重、pH值呈显著的负相关关系;对植被覆盖因子而言,枯落物有机碳、全氮、碳氮比与土壤有机碳含量则无相关关系;0~100 cm深度内红松阔叶林的土壤碳密度最大,为181.4 t/hm2,针阔混交林次之,为180.56 t/hm2,阔叶红松林最小,为150.78 t/hm2,且接近70%的土壤碳储存集中在40 cm以上的土层内。旨在为揭示原始红松混交林对土壤有机碳的影响因素和探索我国原始红松混交林土壤碳分布格局提供科学依据。  相似文献   

3.
【目的】探究硫和锰添加对长白山森林土壤和腐殖质顽固性有机碳的矿化速率及其温度敏感性(Q_(10))的影响,为评估长白山森林碳元素的生物地球化学循环对大气硫输入的响应提供科学依据。【方法】采集长白山阔叶红松林、杨桦林和高山苔原土壤以及阔叶红松林和杨桦林腐殖质样品,进行室内培养试验。首先将样品置于25℃预培养90天,以移除易分解的活性碳组分,之后分别加入2 mL MnCl_2、NaCl、MnSO_4和Na_2SO_4溶液(Mn添加量为3 mg·g~(-1)有机碳),对照处理加入等体积的双蒸水,分别置于25和35℃下培养30天,于第1、3、6、10、15、21和30天测定释放的CO_2量,并计算顽固性有机碳矿化速率、累积矿化量和有机碳矿化的温度敏感性(Q_(10))。在培养结束时(第30天),采用磷脂脂肪酸生物标记(PLFA)法测定土壤和腐殖质样品的磷脂脂肪酸总量。【结果】在MnCl_2和NaCl处理间及在MnSO_4和Na_2SO_4处理间,土壤和腐殖质的顽固性有机碳矿化速率、累积矿化量和Q_(10)无显著差异(P0.05);腐殖质的顽固性有机碳矿化速率在4种处理之间无显著差异;土壤顽固性有机碳矿化速率在MnSO_4处理下得到提高(P0.05),而MnCl_2处理对其无显著影响;添加可MnSO_4和Na_2SO_4显著提高3种土壤和杨桦林腐殖质顽固性有机碳累积矿化量(P0.05),而添加MnCl_2和NaCl处理则无显著影响,表明供试土壤和腐殖质有机碳矿化受到硫添加的影响,而不是锰添加;添加硫和锰可显著降低阔叶红松林土壤顽固性有机碳矿化速率Q_(10)(P0.05),而对杨桦林和高山苔原土壤无显著影响;阔叶红松林和杨桦林腐殖质的微生物总量在MnSO_4处理下显著提高(P0.05),而MnCl_2处理对其无显著影响;MnSO_4添加可提高土壤的微生物总量,特别是高山苔原土壤显著高于对照(P0.05)。【结论】硫添加可显著提高长白山森林土壤的顽固性有机碳矿化速率和累积矿化量,而锰添加则无显著影响。考虑到硫对土壤有机碳矿化的重要性,今后建立土壤有机碳矿化模型时应将硫输入作为一个重要参数。  相似文献   

4.
测定并分析了不同经营模式下硬阔叶混交林的土壤有机碳含量,结果显示:采伐强度和采伐后是否更新都对土壤有机碳含量有显著影响,中度采伐的硬阔叶混交林土壤有机碳含量较高,弱度和强度采伐都会对造成土壤有机碳含量的减少;采伐后更新的林分土壤中有机碳含量较未更新和对照的林分高,表层土壤的有机碳含量较深层土壤高。  相似文献   

5.
[目的]分析凉水国家级自然保护区不同林型天然红松混交林林隙大小、凋落物放置位置和采样时间对土壤微生物碳(SMBC)的影响,揭示影响本地区SMBC变化的因素,为天然红松混交林生态系统碳循环的研究提供基础数据。[方法]在天然红松混交林3种林型的大、中、小林隙内不同位置的土壤表层放置装有红松、椴树、枫桦枯叶的分解袋,并以各自的郁闭林分为对照,在2012年植物生长季的6—9月,每月采集枯叶分解袋下0 10 cm土层土样,采用氯仿熏蒸-K2SO4浸提法测定SMBC。[结果]在椴树红松混交林(TP)内,林隙大小对SMBC的影响依次为小林隙大林隙中林隙;在云冷杉红松混交林(PAP)内,依次为中林隙大林隙小林隙;在枫桦红松混交林(BP)内,依次为大林隙中林隙小林隙。3种林型下,采样时间(月份)对SMBC均有显著的影响(P0.05);林隙大小对其影响均不显著(P0.05);枯叶分解袋放置位置对大、中、小林隙内SMBC的影响均不显著(P0.05)。[结论]不同林型下林隙大小对SMBC的影响排列顺序不同;枯叶分解袋放置位置对天然红松混交林3种林型大、中和小林隙内SMBC的影响均未达到显著水平。  相似文献   

6.
【目的】了解中国小兴安岭阔叶红松不同演替系列土壤有机碳库和各组分的积累及分配特征,准确评价森林生态系统碳储量,为科学评价小兴安岭阔叶红松林土壤固碳功能和固碳潜力提供理论依据。【方法】以阔叶红松林不同演替系列(中生系列、旱生系列、湿生系列)的典型群落为研究对象,采用空间代替时间的方法,研究阔叶红松林不同演替系列土壤总有机碳、易氧化有机碳、惰性有机碳、矿化碳、可溶性有机碳含量,探讨有机碳各组分对总有机碳的贡献率,分析调控土壤有机碳及各组分的影响因子。【结果】小兴安岭阔叶红松林不同演替系列土壤总有机碳含量表现为湿生旱生中生;阔叶红松林不同演替系列土壤总有机碳表现为随土壤剖面的加深而减少的趋势,即40~60 cm土层20~40 cm土层10~20 cm土层0~10 cm土层;中生、湿生和旱生演替系列土壤惰性碳占总有机碳比例分别为34.42%,13.27%和12.17%,可中生、湿生和旱生演替系列溶性有机碳占总有机碳比例分别为0.09%,0.07%和0.08%,旱生、中生和湿生演替系列易氧化有机碳占总有机碳比例分别为33.59%,65.18%和54.53%,湿生、中生和旱生演替系列矿化碳占总有机碳比例分别为0.58%,0.53%和0.37%;总有机碳含量与矿化碳含量、易氧化有机碳含量和惰性碳含量极显著正相关(P0.01),惰性碳含量与矿化碳含量和可溶性有机碳含量极显著正相关(P0.01),与易氧化有机碳含量显著负相关(P0.05);不同演替系列土壤有机碳含量及各组分含量影响因子各不相同,总有机碳含量与土壤全氮含量极显著正相关(P0.01),惰性碳含量与土壤全氮含量显著正相关(P0.01),与沙粒比极显著负相关(P0.01),矿化碳含量与土壤酸碱度极显著负相关,与凋落物现存量和土壤含水率极显著正相关(P0.01)。【结论】小兴安岭阔叶红松林不同演替系列土壤碳库及各组分动态特征存在显著差异。群落演替时间及土壤理化性质是导致有机碳及各组分特征不同的主要原因。  相似文献   

7.
森林土壤有机碳分布及碳储量特征是研究森林生态系统碳循环的基础。采用不同林型土壤样品室内分析方法,研究了罗浮山5种不同林型土壤中有机碳、碳储量分布特征及其与其他土壤理化性状关系。结果表明:保护区的土壤有机碳储量随海拔高度增加而降低,其中,华润楠-密花树常绿阔叶林的土壤有机碳储量最高,马尾松+木荷针阔混交林、黄樟+华润楠+青冈常绿阔叶林的土壤有机碳储量最低;各林型土壤有机碳与土壤容重、土壤的pH值呈显著负相关,与全氮、全磷呈显著正相关。  相似文献   

8.
毛竹扩张对常绿阔叶林土壤性质的影响及相关分析   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]为探讨毛竹向邻近常绿阔叶林扩张对土壤性质的影响。[方法]本研究选取江西大岗山森林生态定位站常绿阔叶林、2∶8竹阔混交林、8∶2竹阔混交林和毛竹纯林为研究对象,对土壤有机碳、密度、孔隙度、持水量和贮水量等土壤性质和水分特征进行研究。[结果]常绿阔叶林在毛竹扩张过程中,土壤碳元素含量呈先增后降的趋势。相关分析表明:土壤有机碳与非毛管持水量和现有贮水量呈极显著相关,与土壤密度和总孔隙度呈显著相关,各指标相互作用共同影响了土壤有机碳含量在扩张过程中的变化特征。[结论]常绿阔叶林表层土壤密度、孔隙度和持水量等特征综合优于混交林和毛竹纯林,这为竹鞭扩张后竹笋萌发创造了条件;当常绿阔叶林演替到毛竹纯林时,10 60 cm土壤物理性质和持水能力都有所改善,但有机碳含量降为4个林分最低值,大量竹鞭虽然优化了土壤物理性质,但无性繁殖导致土壤碳元素大量消耗,加之择伐和挖笋等人工干扰,毛竹纯林土壤有机碳含量较低。调节土壤碳含量以及土壤结构和水分特征可能是今后控制毛竹林扩张,维持群落生态系统稳定性的重要生态策略。  相似文献   

9.
土壤有机碳损失及影响因子研究进展   总被引:2,自引:0,他引:2  
综述了国内外关于土壤有机碳储量及分布、土壤有机碳组成及分组、土壤有机碳的迁移和流失产生的机理及其后果、土壤有机碳矿化及其影响因素、外源物质对土壤有机碳矿化的激发效应及其机理等方面的研究进展。  相似文献   

10.
为研究人工阔叶红松混交林的土壤变化,以辽东山区人工营造的5种典型阔叶红松混交林为研究对象,对其土壤理化性质进行了测定,结果表明:各类型阔叶红松混交林单位面积凋落物现存量(未分解和半分解)均低于红松纯林,其中白桦-红松的凋落物现存量为红松纯林的91.9%,而紫椴-红松混交林的凋落物现存量仅为红松纯林的35.7%;不同类型的阔叶红松林土壤有机质含量均高于红松纯林,其中紫椴-红松混交林的土壤有机质含量最高。不同土层不同类型阔叶红松林的碱解氮含量均高于红松纯林,其中紫椴-红松的碱解氮含量最高;各阔叶红松林的速效磷、速效钾含量均高于红松纯林,水曲柳-红松混交林不同土层速效磷含量最高,色赤杨-红松混交林不同土层速效钾含量最高。各类型阔叶红松混交林的土壤渗透速度高于红松纯林,土壤理化性质均好于红松纯林。  相似文献   

11.
随着食品安全问题不断挑动人们的神经,一些标榜天然无污染的绿色有机食品日渐成为市场新宠。“更健康、更放心”,贴有“有机食品”标签的食品以高昂的价格出现在人们的视野中。有机蜂蜜每公斤358元、有机猪肉每公斤160元、有机杂粮每盒(268克)268元……近年来,一些食品包装上纷纷标注“有机食品”字样,标榜“高质高价”。  相似文献   

12.
详细论述了有机溶剂防腐剂,主要内容包括有机溶剂防腐剂的定义、活性成分、溶剂、制备、性质、处理、用途,最后,展望了有机溶剂防腐剂在我国的使用前景。  相似文献   

13.
介绍了有机农业、有机食品的概念,阐述了辽宁有机农业、有机食品的发展现状并分析了发展过程中面临的问题,提出了解决问题的对策和建议.  相似文献   

14.
总结了近年有机电致磷光材料的发展概况,分析了电致磷光二极管材料发光机理及有机配体结构对金属配合物的稳定性、发光效率、发射波长的影响,论述了金属有机配合物电致磷光材料的发展前景,并提出今后磷光材料的发展方向。  相似文献   

15.
有机溶剂法制浆研究最新进展   总被引:5,自引:0,他引:5  
综述了国内外关于有机溶剂制浆的最新研究进展,提供了一条解决制浆造纸行业环境污染和天然高分子资源充分利用的有效技术途径.  相似文献   

16.
巴旦杏的有机栽培技术   总被引:2,自引:1,他引:2  
阐述了近几年在新疆南疆喀什地区英吉沙试验总结的巴旦杏(纸皮、双果、鹰嘴、麻壳、晚丰等品种)建园、树体与水肥管理、病虫草害防治及果实采收、贮运等的有机栽培技术,适用于有机认证的巴旦杏的栽培。  相似文献   

17.
指出了随着分子生物学的发展和完善,生物农药已成为全球有机农业快速发展中的有力保障,分析了国内外生物农药在发展状况、趋势,并对我国有机农业发展中生物农药的开发与发展进行了展望.  相似文献   

18.
改性蛭石对对硝基苯酚吸附特性的研究   总被引:1,自引:0,他引:1  
用溴化十六烷基三甲铵(CTMAB)对蛭石进行改性,并研究了改性蛭石对水中对硝基苯酚的吸附特性.结果表明:改性蛭石的层间距明显变大,对硝基苯酚的去除率可达90%以上;对硝基苯酚的等温吸附曲线符合Langmuir方程;改性蛭石对对硝基苯酚的吸附既有水相与有机相之间的分配过程,又有物理吸附、静电吸附和离子交换吸附等吸附过程;改性蛭石的脱附率为80%.  相似文献   

19.
利用菇渣、畜禽粪、枯枝落叶等农林废弃物为主要原料研制有机环保型栽培基质,既可以减少农业面源污染,变废为宝,又可节省土壤、草炭等难再生资源。经3批田间栽培试验表明:以菌苞为主要原料发酵的基质处理均效果良好,而以枯枝落叶发酵的基质处理均出现异常,表现不及对照。3批栽培试验中综合表现最好的基质配方为处理1:菌苞60%+畜禽粪30%+草炭10%+发酵菌1。  相似文献   

20.
The leaves of Calotropis procera yielded an organic carbonate (1), along with stigmasterol and beta-sitosterol, identified by spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号