首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在我国南方,天然次生阔叶林转变为杉木人工林是一种常见的管理措施。为研究森林利用方式转变对土壤微生物量的影响,我们在中国科学院会同森林生态实验站比较了天然次生阔叶林、第一代和第二代杉木人工林土壤理化性质和微生物量。杉木人工林土壤有机碳、全氮、铵态氮和微生物量碳氮含量明显低于天然次生阔叶林。第一代、二代杉木人工林土壤微生物量碳仅为天然次生阔叶林的53%和46%,微生物氮为97%和79%。杉木人工林土壤微生物量碳占有机碳的比例也低于天然次生阔叶林土壤,但微生物量氮则相反,为杉木人工林高于天然次生阔叶林。因此可以得出,天然次生阔叶林转变为杉木人工林以及杉木林连栽引起了土壤生物学特性和土壤质量降低。图2表3参36。  相似文献   

2.
Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China.  相似文献   

3.

Context

Soluble organic nitrogen is considered to reflect the effect of forest types on soil nitrogen status. As a major process affecting the soil-soluble organic nitrogen pool, degradation of insoluble organic nitrogen in the production of soluble organic nitrogen is mediated by a suite of soil enzymes.

Aims

This study aims to examine soil-soluble organic nitrogen pools and their relationships with the activities of soil enzymes in natural secondary forest stands and adjacent larch plantation stands.

Methods

Four pairs of larch plantation stands and secondary forest stands were randomly selected from a mountainous area, and the top 15?cm of the mineral soils were sampled from each field.

Results

The soil-soluble organic nitrogen concentrations were up to 2-fold greater in the secondary forest stands than in the larch plantation stands, whereas the ratio of soluble organic nitrogen/total nitrogen was comparable between the two forest types. The concentrations of soluble organic nitrogen were positively correlated with approximately 2-fold differences in urease and protease activities, a 1.2-fold difference in N-acetyl-??-glucosaminidase and a 1.7-fold difference in l-asparaginase between the two forest types.

Conclusions

Our results suggest that relationships between soil-soluble organic nitrogen and enzyme activities are independent on sampling time, and that the soil enzyme activities can be used as potential indicators of soil soluble organic nitrogen pools in the temperate forest ecosystem.  相似文献   

4.
闫德仁  陈景莲 《林业研究》1999,10(4):239-242
IntroductionThesoildegradationofaFtificialforestisthecoreofresearchforplantationtostabilityandafforestationinChina.lnrecentyears,studiesonsoilfertiIityofplantationshavegradua[Iyincreased.forChinesefir,massonpine,popIar,Iarch,etc.Manyspecificmeas-ureshavebeenputfotwardtomaintainthesoilfertil-ityIevelinaFtificialforest(Pan1997,Yan1997lYan1996).owingtovariabilityofsoilfertilityinplantation,ithasmanydifficuItiestostudythesoiIfertility.Forexample,thesoiIsampIeplothastobemovedhori-zontalIyino…  相似文献   

5.
【目的】研究不同林龄杉木人工林土壤理化性质以及微生物对碳源利用的差异,明确林龄对土壤微生物功能多样性的影响,为杉木人工林可持续经营管理提供理论依据。【方法】在福建武夷山脉选择3、12和38年生的杉木人工林,采用Biolog-ECO法研究不同林龄杉木人工林表土层(0~20cm)土壤微生物对碳源的利用特征,并对土壤微生物利用各类碳源的特性进行热图分析、主成分分析(PCA)和相关性分析,揭示利用碳源的差异及导致差异的主要影响因素。【结果】不同林龄杉木人工林土壤微生物群落的代谢活性、Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson优势度指数、McIntosh多样性指数和McIntosh均匀度指数均随林龄的增加而增加。在96~168h培养时间内,38年生杉木人工林土壤微生物群落的代谢活性显著高于12年生和3年生(P<0.05)。38年生对酚酸类、胺类和氨基酸的利用强度较大,12年生对酚酸类、多聚物和氨基酸的利用强度较大,3年生对多聚物、羧酸和碳水化合物的利用强度较大,并且38年生土壤微生物群落代谢碳水化合物、氨基酸、羧酸和胺类的强度显著高于3年生,而12年生和3年生土壤微生物群落对6类碳源的利用率差异不显著(P>0.05)。热图分析结果表明:38年生和12年生杉木人工林土壤微生物群落能够代谢31种碳源底物,而3年生杉木人工林土壤微生物群落仅能代谢19种碳源底物。环境因子中,土壤pH、全氮、速效钾和碳氮比能够显著影响微生物群落的代谢功能。【结论】38年生杉木人工林表土层(0~20cm)土壤微生物群落代谢活性和多样性最高,3年生最低,pH、全氮含量随林龄的增加而上升,碳氮比则随林龄增加而下降,因此林龄是驱动杉木人工林土壤生物学和非生物性质变化的重要因素。  相似文献   

6.
以落叶松人工纯林及落叶松与大豆混农间作人工林下土壤为研究对象,对不同林分下土壤物理性质和化学性质进行测定及比较分析,结果表明:混农林的土壤容重低于纯林,土壤总孔隙度和含水量大于纯林。另外,落叶松与大豆间作使土壤有机质含量增加,全N、速效N、P、K的含量增加,其中间作林土壤中N素含量增加尤为明显。  相似文献   

7.
为了了解人工造林过程对土壤碳储量的影响,对燕山西部山地常见的华北落叶松人工林和杨桦天然次生林土壤有机碳含量进行了研究。结果表明,华北落叶松人工林和杨桦天然次生林的土壤剖面平均有机碳含量分别为30.45g/kg和28.45g/kg,二者没有明显差异;2种林分的土壤有机碳含量均随着土层深度的增加而降低,下降幅度则随深度的增加逐渐减缓,表层土壤对土壤的碳存储贡献更大。总的来看,土壤有机碳含量在深层(30cm以下)相邻土层之间差异不显著,说明深层土壤中,有机碳含量变化较小。由以上结果可以得出结论,在造林措施适当、人为干扰较少的条件下,人工林同样可以维持与天然林相近的较高的土壤碳储量。  相似文献   

8.
Soil inorganic N is one of the most important soil quality indexes, which may be influenced by land-use change. The historical conversion of land-use from native vegetation to agriculture resulted in sharp declines in soil N dynamics. This study was conducted to determine the soil inorganic N concentrations and net N mineralization rate in four common types of land-uses in the mountain forest area in the north of Iran, namely arable land, pine plantation, ash plantation, and beech stand. The soil samples were taken from top mineral soil layer (5cm) in each site randomly (n=6) during August- September 2010. Beech stand and ash plantation showed significantly higher total nitrogen compared with arable land and pine plantation, while extractable NH 4 + -N concentration was significantly greater in Beech stand compare to arable soils (p<0.05). No significantly difference was found in Net N mineralization, net nitrification and net ammonification rates among different land-uses. Results showed that net N mineralization and ammonification were occurred just in the soil of Ash plantation during the incubation time. Our findings suggested that conversion of Hyrcanian forests areas to pine plantation and agricultural land can disrupt soil natural activities and affect extremely soil quality.  相似文献   

9.
落叶松为华北地区高山针叶林带中的主要森林树种。随着我国经济的快速发展,对木材的需求量加大,落叶松人工林种植面积持续增加。目前,由于其林分结构不合理、林分密度过大,出现了林地土壤肥力持续下降,并引起了林木生长量的下降等问题。本文综述了目前我国落叶松人工林土壤肥力的研究现状及改善措施,并指出一是通过自然干预可以大大减少人力及财力的消耗,二是进行科学合理的造林经营管理,可以防止土壤肥力下降,这可为落叶松造林可持续发展提供有力支撑。  相似文献   

10.
通过对二代落叶松幼龄林、樟子松幼龄林、天然次生林、落叶松水曲柳混交林土壤交换性阳离子的分析,得到了同林龄土壤交换性阳离子变化趋势,为评价土壤供肥蓄肥能力、改良土壤和合理利用林地、营造速生丰产林提供重要依据.  相似文献   

11.
Larch (Larix spp.) is widely distributed in the boreal and temperate areas. Nitrogen (N) is considered as the major limiting element for these areas. Thinning is a common forest management practice. Thus, it is imperative to obtain a better understanding on how thinning could affect N status of larch plantations, and thus optimize the thinning intensity for sustainable forest management. In this study, we measured N concentrations and 15N natural abundance (δ15N) of needles and surface soil (0–10?cm) in a larch plantation with T0, T25 and T50 treatments (0%, 25% and 50% thinning intensities, respectively) in Northeast China. We found that needle and soil δ15N in T25 was the lowest, and the highest in T50. No significant differences were observed for needle and soil N concentrations among the thinning intensities. T25 exhibited the highest N resorption efficiency, indicating highest N use efficiency. Overall, N cycling in T25 was more closed than the control, and with lower soil N availability, while N cycling in T50 was more opened. Our study indicates that foliar 15N natural abundance is sensitive to thinning and can be potentially used to optimize thinning intensity from the perspective of N cycling.  相似文献   

12.
TllcbiologicalcycIingofnutricntclc-lllcntslntl1cccosystclnisthecyclingbctweentllcplantconununityandsoilwitl1intheccosys-tclll(Ot/ington,l986).ltformsol1ebranchofbiogQochcn1icalcyclesandislnarkedwitl1higl1spccdal1dil1tcl1sit}'.Biologicalcyclcofnutri-cntclenlcntsiscorrelatedwithforestproduc-tit'it3'closcly-tbeabsorptionandutilizatio11ofthe11utricntelemcntsoftheplantareillflu-cnccddircctl3'orindirectlybykindsofenvi-ronn1cntallbctorsandsomephysiologicalandlllatcrialproducingprocessareattectcd.Sot…  相似文献   

13.
胡桃楸落叶松纯林与混交林中根际土壤的养分特征(英文)   总被引:6,自引:0,他引:6  
与非根际土壤相比较,研究了胡桃楸落叶松纯林与混交林中根际土壤pH值、有机质及氮 、磷、钾等养分元素的特征。结果表明:各林分中,除胡桃楸纯林外,根际土壤的pH值均不 同程度低于非根际土壤;除混交林中落叶松根际土有机质含量略低于非根际土外,根际土壤 有机质含量均高于非根际土壤;根际土壤存在氮的相对累积,磷和钾在根际则具有一定的亏 缺趋势,其程度与树种相关;各林分下,氮、磷、钾在根际中均得以活化,表现为根际土壤 速效氮、磷、钾含量偏高;混交林中落叶松根际速效氮含量明显高于其纯林,而混交林中胡 桃楸根际速效磷、钾含量明显高于其纯林。  相似文献   

14.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

15.

Key message

Forty years after clear-cutting mixed old-growth forest (broadleaf/Korean pine) in the Changbai Mountain area (Northeast China), a mixed forest with natural broadleaf regeneration and larch plantation displayed larger microbial biomass and activity in the soil than either a naturally regenerated birch forest or a monospecific spruce plantation.

Context

Clear-cutting with limited restoration effort was until the end of the twentieth century the norm for managing primary forests in Northeast China. Forest restoration plays an important role in the recovery of soil quality after clear-cutting, but the effects of different regeneration procedures on forest soil quality remain poorly known in Northeast China.

Aims

We assessed the effects of three regeneration procedures, i.e., (i) naturally regenerated birch forest, (ii) spruce plantation, and (iii) naturally regenerated broadleaf species interspersed with planted larch on soil quality and microbial activity in the Changbai Mountain area. An old-growth mixed broadleaf/Korean pine forest was used as a reference.

Methods

Physical and chemical properties and microbial biomass were recorded in the soil. Basal respiration and carbon mineralization were measured with a closed-jar alkali-absorption method.

Results

Microbial biomass was smaller in the birch forest and spruce plantation than in the old-growth and the mixed broadleaf/larch forests. Moreover, microbial biomass, microbial quotient, and potentially mineralizable carbon were larger in the mixed broadleaf/larch than in the birch forest, while no difference was found between spruce plantation and birch forest for microbial biomass and microbial quotient. Basal respiration and metabolic quotient were larger in the birch forest as compared to the three other forest types, indicating a larger energy need for maintenance of the microbial community and lower microbial activity in the naturally regenerated birch forest.

Conclusion

Mixed broadleaf/larch forest displayed a larger microbial biomass and higher substrate use efficiency of the soil microbial community than either naturally regenerated birch forest or spruce plantation. The combined natural and artificial regeneration procedure (mixed broadleaf-larch forest) seems better suited to restore soil quality after clear-cutting in the Changbai Mountain.
  相似文献   

16.
本文选择四川盆地的川东北山地、川西南山地、川西高山峡谷区的日本落叶松幼龄林、中壮龄林、近熟林,对日本落叶松人工林的林分结构、郁闭度、密度、蓄积量、生产力等调查和树干解析分析,根据日本落叶松人工林胸径连年生长量下降时间的变化,林分郁闭度需要恢复的时间,自然稀疏规律的综合分析,提出抚育间伐技术,并对初植密度与日本落叶松人工林合理间伐的相关关系提出建议。  相似文献   

17.
The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao’er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)/soybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm−3 and 1.058 g·cm−3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the pure ash plantation. Biography: FAN A-nan (1972–), female, Ph. Doctor in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China.  相似文献   

18.
以辽宁冰砬山地区落叶松人工林、天然次生林综合流域森林为研究对象,采取林分、坡面径流场、集水区测流堰水文因子测定的方法,对综合小流域森林降水截留、坡面径流、区域径流输出等方面进行了研究。结果表明:辽宁冰砬山落叶松人工林和天然次生林冠层能有效的截留大气降水,其截留率分别为24.8%和16.6%;以Kostiakov方程对两种林地土壤入渗速率的模拟较好,模拟方程分别为iL=6.652t-0.179(R2=0.97)和iC=21.147t-0.162(R2=0.93);森林对大气降水的滞留时间随大气降水量和降水强度的增加而减少,但是小流域径流峰值出现的时间却是随着降水量的增加而延长,森林能够有效延缓和降低流域径流峰值出现的时间和高峰流量。  相似文献   

19.
15N and 13C natural abundances of foliage, branches, trunks, litter, soil, fungal sporophores, mycorrhizas and mycelium were determined in two forest stands, a natural forest and a Norway spruce plantation, to obtain some insights into the role of the functional diversity of saprotrophic and ectomycorrhizal fungi in carbon and nitrogen cycles. Almost all saprotrophic fungi sporophores were enriched in 13C relative to their substrate. In contrast, they exhibited no or very little shift of δ15N. Judging from the amount of C discrimination, ectomycorrhizal fungi seem to acquire carbon from their host or from dead organic matter. Some ectomycorrhizal species seem able to acquire nitrogen from dead organic matter and could be able to transfer it to their host without nitrogen fractionation, while others supply their host with 15N-depleted nitrogen. Moreover ectomycorrhizal species displayed a significant N fractionation during sporophore differentiation, while saprotrophic fungi did not.  相似文献   

20.
Bird species diversity and bird species richness were surveyed in a natural mixed forest (mature forest) and in a coniferous plantation (30–40 years old) monthly from 1990 to 1994. These forests were 20 km apart and had similar weather conditions and soil types. There were larch and cedar plantations, and hardwoods along streams in the coniferous plantation. In the natural mixed forest, 55 bird species were found, whereas 40 species were recorded in the coniferous plantation. The species diversity of bird communities was significantly higher in the natural mixed forest than in the coniferous plantation mixed with hardwood trees. This result indicates that the coniferous plantation mixed with hardwood trees, presumed to be a more simplified environment, is likely to be less inhabitable for many bird species than the natural mixed forest, suggesting a relationship between the diversity of the forest environment and the diversity of the bird community. A higher number of bird species was recorded in the small coniferous forest mixed with hardwood trees compared with those in the coniferous plantation. The mixing of broad-leaved trees in a coniferous plantation was suggested to be effective in increasing number of bird species. These tendencies were recorded all through the year during our study. In snow-covering periods, both the diversity and the bird species richness fell in all study sites every year. Snow cover would have greater effect on bird species diversity in the coniferous plantation than in other forest types probably due to diet shortages caused by the snow cover over the forest floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号