首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Effects of climatic factors and material properties on the development of surface mould growth on wooden claddings were investigated in a laboratory experiment. Specimens of aspen (Populus tremula), Siberian larch (Larix Sibirica), American white oak (Querqus alba), Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and thermally modified pine were incubated in eight climatic chambers at specified wetting periods (2 or 4?h per day), relative humidity (58–86%) and temperature conditions (10–27°C). Surface mould growth was assessed weekly for 13 weeks, and the results were evaluated statistically using Generalized Estimating Equations logistic regression models. All tested climatic factors had significant effects on the mould growth, and there were significant differences between the materials. The ranking of the materials varied with temperature and over time. Aspen, pine sapwood and oak were overall most susceptible to mould growth, and thermally modified pine least susceptible. There were significant differences between sapwood and heartwood for pine and spruce. The effect of density was tested on the spruce heartwood material, but was not found to be significant. The results can be used to further develop prediction models for mould growth on wooden claddings.  相似文献   

2.
Abstract

Development in surface mould growth on painted/unpainted wooden claddings and acting climatic factors were investigated over a period of 3 years. Eight wood substrates, including modified, preservative-treated and untreated wood, were tested in combination with three types of paint: (1) water-borne alkyd modified acrylic paint without fungicide; (2) solvent-borne alkyd paint without fungicide; and (3) ICP (internal comparison product). One set of samples was exposed unpainted. The samples were tested according to a modified version of EN 927-3. A logistic regression model was fitted to the data. The degree of mould growth varied with exposure time, coating typology, wood substrate, temperature and relative humidity. Exposure time and coating typology contributed most to the model. After 3 years of outdoor exposure unpainted panels and panels coated with solvent-borne paint without fungicide had more mould growth than panels coated with ICP and water-borne paint without fungicide. Unpainted oil/copper–organic preservative-treated claddings had higher resistance to mould growth than other unpainted wood substrates. Coated untreated pine and coated acetylated pine were more susceptible to mould growth than other coated wooden substrates.  相似文献   

3.
Two greenhouse experiments were conducted to study intraspecific variation in growth of the root rot fungus Heterobasidion annosum in living host sapwood. In experiment 1, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings were inoculated with H. annosum isolates, 14 each of the S-and P-intersterility groups, collected from various parts of Sweden. In pine, the P-group isolates were more virulent than the S-group isolates both in terms of infection frequency, induced mortality rate (p < 0.05), and fungal growth in sapwood (p < 0.05). In spruce, the P-group isolates were also more virulent on average, but the difference was not statistically significant. Both S and P isolates had a higher infection frequency and a significantly longer sapwood growth on spruce than on pine. The P-group caused higher mortality on pine than on spruce. The length of the lesion in the inner bark was strongly correlated with fungal growth in spruce, but not in pine where the lesions were short or absent. In experiment 2, ten Norway spruce clones were inoculated with 18 S-isolates, originating from nine live-decayed trees and from nine spore-infected stumps in a single Norway spruce stand. The objective was to test whether any selection for growth rate in sapwood was detectable among individuals of H. annosum originating either from stumps or trees. The results gave no support for such selection since no difference in sapwood growth between the two groups of isolates was found.  相似文献   

4.
Red pine (Pinus resinosia Ait) and southern pine (Pinus spp.) sapwood blocks were pressure treated with CCA-C at retention of 6.4, 2.0, 1.5 kg?m-3 followed by fixation using 11 post-treatment schedules ranging from 50-70 °C and 5 different relative humidity conditions. The effect of these post-treatment schedules on fixation rate, chemical leachability and decay resistant once were evaluated to better understand the effects of fixation/drying conditions on leachability and biodeterioration. Southern pine blocks fixes slightly slower than red pine. Fixation of CCA at high temperature high humidity, essential initially fixation at high humidity for fixation/drying schedules, resulted in lower leaching of chromium and arsenic elements than high temperature low humidity or initially fixation at the high temperature low humidity conditions. Copper leaching was indicated no significant difference under 11 fixation/drying conditions for both species. Weight losses for southern pine by Chaetomium globosum was lower than red pine by Gloeophyllom trabeum. There were some different capacities of decay resistance for both species under those post treatment conditions.  相似文献   

5.
Mould growth on coated wood is today a genuine challenge for house owners. Environmentally sound wooden facades with long service lives and acceptable appearance are desired. The objective in this study was to investigate the accumulated mould growth on 13 different wood substrates with 3 surface coating systems by identifying the factors that contribute to the variation and to predict future performance. A generalized linear mixed model was fit to the data with the analysis showing that coating and exposure time both had highly significant influences on mould growth. Further, wood substrate was significant, but comparatively less than coating and exposure time. A smaller coefficient for mould coverage in the beginning of the exposure period gave the panels with one of the coating systems, BAP, a delay in mould growth, and the extrapolated values for years 6–12 indicate a longer aesthetic service life than panels with the two other coating systems. Coated heartwood as wood type was less susceptible to mould growth than coated mixed wood and coated sapwood. Acetylated pine as wood substrate and aspen as wood species had lower resistance to mould growth than the other wood substrates and wood species, respectively.  相似文献   

6.
Red pine (Pinus resinosia Ait) and southern pine (Pinus spp.) sapwood blocks were pressure treated with CCA-C at retention of 6.4, 2.0, 1.5 kgm-3 followed by fixation using 11 post-treatment schedules ranging from 50–70 °C and 5 different relative humidity conditions. The effect of these post-treatment schedules on fixation rate, chemical leachability and decay resistant once were evaluated to better understand the effects of fixation/drying conditions on leachability and biodeterioration. Southern pine blocks fixes slightly slower than red pine. Fixation of CCA at high temperature high humidity, essential initially fixation at high humidity for fixation/drying schedules, resulted in lower leaching of chromium and arsenic elements than high temperature low humidity or initially fixation at the high temperature low humidity conditions. Copper leaching was indicated no significant difference under 11 fixation/drying conditions for both species. Weight losses for southern pine byChaetomium globosum was lower than red pine byGloeophyllom trabeum. There were some different capacities of decay resistance for both species under those post treatment conditions.  相似文献   

7.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

8.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

9.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

10.
郭爱龙  P.A.Cooper 《林业研究》1999,10(3):141-146
introductionWaterbornepreservativesareamajorcomponentofthewood-treatingindustrybecauseoftheireaseofapplication,lowcost,andthecleanappearanceofthewoodattertreatment.Theuseofchromatedcopperarsenate(CCA)preservativesintheUSAhasgrownfroma14%shareofthewoodpreservativesmarketin1977to73%in1987(Micklewright1993).ThisismainlyduetotheincreasinguseofCCAtreatedwoodasdecksandoutdoorstructures.ThewaterbornepreservativeCCAhasbecomeoneofthemosteffectivetreatmentsforNorthAmericanwoodproduCts,usedinapplic…  相似文献   

11.
Summary This study compared the susceptibility of five UK‐grown conifer species to colonization by sapstain fungi in two trials carried out in consecutive years. The conifers consisted of Sitka spruce (Picea sitchensis), Japanese larch (Larix kaempferi), Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and lodgepole pine (Pinus contorta). Freshly cut 1‐m logs were exposed to the available inoculum of sapstain fungi from April to August in a woodland environment in the south east of England. Logs of each species were removed after 1‐, 2‐ and 4‐month exposure and sampled destructively to assess the amount of sapstain. In the second trial, per cent moisture content and concentrations of nitrogen, carbohydrate and phenolic compounds in the sapwood were also measured at the start and end of the trial. After 2 months, only the sapwood of both pine species had significant levels of sapstain; mean values of 37% and 19% for lodgepole pine (year 1 and year 2 respectively) and 12% and 1% for Scots pine. After 4 months, the levels of sapstain in both pine species exceeded 60% in both years. By contrast, very little sapstain developed in the other conifer species with maximum mean values of 10% for Norway spruce, 3.5% for larch and less than 1% for Sitka spruce. Overall, the moisture content of the logs decreased progressively in all species over the length of the trial. However, pine logs tended to retain higher levels of moisture throughout the trial compared with spruce or larch. The relatively higher moisture content of pine sapwood may be closer to the optimal moisture content that sapstain fungi require for infection and colonization, thereby contributing to the increased susceptibility of pine compared with the other conifer species. The pine logs also suffered from some colonization by bark beetles (Ips sexdentatus), which increased the inoculum potential and the opportunity for colonization by sapstain fungi. In addition, particular phenolic compounds in conifer sapwood may play a role in determining the resistance of some species to sapstain. Notably the most resistant species, Sitka spruce, was the only softwood that still retained detectable levels of phenolics in the sapwood to the end of the trial.  相似文献   

12.
The xylem surface of seedlings, stem material and roots of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) were inoculated with strains of Heterobasidion annosum s. str. and H. parviporum s. str. The depth of necrosis in wounded spruce increased at a linear rate for at least seven weeks of incubation, but the rate of necrotic spread was significantly faster in infected wounds. In wounded pine the necrosis was maintained at a more superficial level for several weeks. Both spruce and pine sapwood were initially infected by hyphae of both species. In spruce, the hyphae advanced at a constant rate behind the necrotic front. On the contrary, after 1–2 weeks living H. parviporum hyphae were rare in pine rays. Heterobasidion annosum hyphae survived in pine rays, phloem and tracheids, despite a heavy accumulation of phenolics and resins and were able to penetrate into the sapwood at a linear rate although slower than infections in spruce. Histochemistry and quantitative estimates demonstrated that peroxidase activity was initially higher in spruce sapwood than in pine. Within three days of incubation, the activity in spruce sapwood disappeared concurrently with deepening necrosis. However, in pine, in both control and infected samples, there was a significant increase in peroxidase activity in the area surrounding the superficial necrosis, up to the wound surface and in the cambium and phloem around the wound. After wounding and infection, the content of soluble protein increased significantly in wood of older trees but not in seedlings. Infection resulted in an increased formation of lipophilic extractives in both spruce and pine but to a significantly greater degree in the latter, whereas the amount of hydrophilic compounds decreased in both. High‐performance liquid chromatography (HPLC) analyses of lipophilic extracts showed that inoculation of pine with the two species of Heterobasidion increased the amounts of pinosylvin, its monomethylether and several other phenolics as also resinous compounds. The results obtained may be relevant in explaining the known higher resistance of Scots pine to H. parviporum.  相似文献   

13.
The aim of the study was to examine how the thickness and species of softwood influence cupping during cyclic conditions. The study was conducted with full-scale test walls in laboratory conditions. On the basis of the results, the thickness and species of softwood both have a significant influence on cupping of the cladding board. The boards made of Norway spruce were considerably more resistant to cupping than those made of Scots pine sapwood. Boards made of Scots pine sapwood were more likely to remain curved after each drying period. It appears probable that the cupping sensitivity of Scots pine sapwood affects the durability of the cladding, e.g., causing cracking formation on the surface and peeling of the coating. From the curving results, it is possible to estimate surface elongation and durability of the wood surface and of the coating in cyclic conditions.  相似文献   

14.
Variation of sapwood thickness in terms of a linear measurement and a growth ring count with reference to the age was studied in dominant and suppressed Norway spruce trees. In the trees of both dominance classes the sapwood thickness increased in absolute terms, while its relative portion decreased with the age of the trees growing. Great differences were found in sapwood thickness between dominant and suppressed trees in linear measurements but not in the number of sapwood rings or the rate of the heartwood formation. The number of sapwood growth rings reached 40 in old trees. The index of vigour differed considerably in dominant and suppressed trees.  相似文献   

15.
Abstract

The heartwood and sapwood from Scots pine (PS), Norway spruce (PA), and Oriental spruce (PO) were tested for susceptibility to discoloring fungi and water uptake. In addition, annual ring width and density were measured. The methods used were Mycologg for testing growth of fungi and a modified version of EN 927-5 to investigate water uptake. For pine, the heartwood showed a lower water uptake and no discoloring fungi growing in the tests. The heartwood had a significantly higher density and smaller annual ring width than the sapwood. In PA the heartwood had significantly lower discoloration than sapwood. The total water uptake in g/m2 was significantly higher in sapwood, but not the calculated moisture content. As for wood properties, the density was significantly higher in sapwood compared to heartwood, although there were no differences in annual ring width. Regarding PO, differences in water uptake could be seen between sapwood and heartwood although the densities were similar. These results show that susceptibility to discoloring fungi and water uptake is hard to correlate to a single inherent property when looking at different wood species.  相似文献   

16.
First‐ and second‐year containerized Norway spruce seedlings were inoculated with conidia of type A (large tree type) and type B (small tree type) of Gremmeniella abietina var. abietina at different times during the summer. The appearance of symptoms after artificial inoculation and natural infection on spruce seedlings were recorded the following spring and compared with the disease symptoms on Scots pine seedlings. The proportion of diseased seedlings after inoculation reached as high as 80%. The susceptible period during the summer began later on the first‐year seedlings than on the second‐year seedlings, and was similar for the pine seedlings. Susceptibility of first‐year seedlings was highest in August and on second‐year seedlings in July. The accumulated temperature sum, relative humidity and height growth for first‐ and second‐year seedlings was assessed. Natural infection in 2002 caused more disease on pine than on spruce seedlings. Experimental thinning of seedlings had no effect on disease incidence. In a preliminary comparison between the ability of A and B types to cause disease in Norway spruce seedlings, type B caused more damage than type A after inoculation. However, type A caused a high disease frequency in other experiments in this study. Symptoms on Norway spruce seedlings often first occurred in the mid‐section of the shoot, and were similar to those observed on pine seedlings: needles turned brown, starting at the needle base, in the spring following inoculation. On first‐year spruce, diseased needles were shed rapidly, in contrast to a slower rate of shedding on first‐year pine seedlings. Pycnidia developed about 2 years after inoculation (on pine 1 year after inoculation). On Norway spruce seedlings the lower part of the shoot, including the lateral shoots, often remained alive. The experiments show that G. abietina can cause disease on containerized Norway spruce seedlings under nursery conditions in Finland. The coincidence of spore dispersal, seedling susceptibility and predisposing factors are important in disease development.  相似文献   

17.
该文使用 6 4kg·m-3 的CCA C木材防腐剂 ,在 11个后处理基准 (其温度为 5 0℃~ 70℃和 5个不同的相对湿度 )条件下 ,研究了固化干燥条件对处理北美红松和南洋松木材的固化速度和化学元素的流失的影响 .实验样品内的液体通过挤压方法被定期检测并分析其六价铬的含量 .调节固化后的样品按美国木材防腐协会E11 97标准进行流失实验 .一般情况下 ,对于大多数基准 ,红松固化比南洋松少、快 ,并且高温高湿的固化条件比低湿度的固化条件导致较快的固化速度和较少的铬和砷的流失 .对于2个材种在 11个固化干燥条件下 ,铜元素的流失没有很大的差异 .所有的CCA化学元素的流失情况 ,红松比南洋松更明显 .更进一步的工作需要CCA处理大尺寸样品 ,优化干湿球温度差 ,以便考察其固化干燥条件对流失的影响  相似文献   

18.
A desorption isotherm is a very important basis in the understanding of drying process. In this study, the desorption isotherms from the sapwood of Mexican pine (Pinus pseudostrobus Lindl.) were determined by the gravimetric method (discontinuous control of sample weight) at 30℃ and 50℃. The salt method was used in the range of water activities from 0.11 to 0.89. The results show that the desorption ability of Mexican pine sapwood increased with temperature at a given relative humidity. The experimental data was further simulated with the models, i.e., BET, GAB, Oswin and Henderson models. The GAB, Oswin and Henderson models allow the representation of the entire desorption isotherms. The BET model showed a better fit for water activity lower than 0.35, with a mean relative deviation of 0.0286 at 30℃ and 0.0167 at 50℃. Simultaneously, the BET model gave a better representation of moisture content in the monolayer saturation region. Overall, the GAB model ensured the best simulation of the entire isotherm, while the Henderson model displayed the worst simulation.  相似文献   

19.
Norway spruce [Picea abies (L.) Karst.] heartwood and sapwood have differing wood properties, but are similar in appearance. An investigation was made to see whether near-infrared spectroscopy (NIRS) could be used with multivariate statistics for separation between heartwood and sapwood in dry state on tangential longitudinal surfaces. For classification of wood into sapwood and heartwood, partial least square (PLS) regression was used. Orthogonal signal correction (OSC) filtering was used on the spectra. This study shows that a separation of sapwood and heartwood of spruce is possible with NIR spectra measured in a laboratory environment. The visible-wavelength spectra have significant influence on the predictive power of separation models between sapwood and heartwood of spruce. All 44 specimens in the calibration set were correctly classified into heartwood and sapwood. Validation of the model was done with a prediction set of 16 specimens, of which one was classified incorrectly.  相似文献   

20.
We analyzed the influence of climate change over the past 50 years on the radial growth of two tree species: Korean pine (Pinus koraiensis) and Yezo spruce (Picea jezoensis), located on Changbai Mountain, Northeast China, using a dendrochronology approach to understand factors that limit the altitude for tree species. Elevated temperatures increased the radial growth of Korean pine and decreased that of Yezo spruce. The positive response of tree growth to hydrothermal conditions was the key reason that the upper limit of elevation of Korean pine followed the temperature fluctuation pattern. Increased temperatures and precipitation and longer growing seasons accelerated Korean pine growth. As the temperature increased, correlations between Korean pine ring-width chronology and precipitation changed from negative to positive. In Yezo spruce, increasing monthly temperatures and inadequate precipitation during the middle and late parts of the growing season led to narrow growth rings, whereas decreasing monthly temperatures and sufficient precipitation during the late growing season promoted growth. Rising temperatures and adequate precipitation increases Korean pine growth, possibly elevating the upper range limit in altitude for this species. In contrast, Yezo spruce growth is negatively affected by warming temperatures and limited precipitation. Under future temperature increases and precipitation fluctuations, the upper limit altitude of Korean pine can reasonably be expected to shift upward and Yezo spruce downward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号