首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shortened fallows have resulted in declining upland rice yields in slash-and-burn upland rice systems in northern Laos. We studied the benefit of planted legume fallows for rice productivity, weeds, and soil nitrogen and phosphorus availability. Four systems were evaluated over a 5-year period: 1-year fallow with native species, 1-year Cajanus cajan fallow, 1-year Leucaena leucocephala fallow, and continuous annual rice cropping. Rice was grown either once each year as continuous annual cropping or in alternate years of 2001, 2003, and 2005. C. cajan and L. leucocephala were sown with rice during the 2001 growing season. In subsequent years, L. leucocephala regenerated from root stock and did not have to be resown, whereas C. cajan was resown in 2003. Establishment of either C. cajan or L. leucocephala had no significant effect on rice yield in 2001, and rice yields ranged from 2.0 to 2.3 t/ha. Rice yields declined rapidly in succeeding years, and rice yields in the four systems ranged from 0.7 to 1.1 t/ha in 2003 and from 0.3 to 0.5 t/ha in 2005. Although two planted fallow systems increased nitrogen input because of greater biomass accumulation in 2003 and 2005 and soil phosphorus availability was higher following L. leucocephala fallow in 2005, there were no significant differences in rice yields among the four systems in either year. Weed biomass during the rice growing season increased each year in all systems and increased more rapidly for continuous annual rice cropping, in which the dominant weed species was Ageratum conyzoides L. Among the other three systems, there were no significant differences in the weed biomass in 2003 and 2005. We conclude that C. cajan and L. leucocephala as 1-year fallows do not offset the negative effects of increased cropping intensity on rice yield in this region.  相似文献   

2.
As traditional slash-and-burn systems with prolonged fallow periods are no longer feasible in most parts of the tropics, improved agroforestry systems have high potential to increase the productivity of farming systems and sustain continuous crop production. Our objective was to assess biophysical and economic performance of planted leguminous tree fallow (using Inga edulis) compared to the traditional slash-and-burn farming system, practiced by farmers on fields infested with noxious weedy grass Imperata brasiliensis around the city of Pucallpa, Peru. An existing agroforestry model SCUAF was used to predict biophysical factors, such as changes in soil characteristics and farm outputs (crop and tree yield). While a cost–benefit analysis spreadsheet, which uses the output from SCUAF and economic data on input/output levels and prices, calculates economic performance of the systems. The Inga fallow system can provide improvements to a range of soil biophysical measures (C, N, P content). This enables higher levels of farm outputs to be achieved (higher cassava yields). However, for smallholders the improved system must be more economically profitable than the existing one. At prices currently encountered, the Inga fallow system is more profitable than the Imperata fallow system only in the long-term. In adopting the Inga fallow system, smallholders will incur lower profits in the first years, and it will take approximately 10 years for smallholders to begin making a profit above that achievable with the Imperata fallow system. Unless smallholders are capable of accepting the lower profitability in first years, they are less likely to adopt the new system.  相似文献   

3.
An experiment was carried out in a slash-and-burn production system in northern Laos to evaluate legume establishment methods and effects of legume species on fallow vegetation, weeds, yield of upland rice, and soil parameters. Cajanus cajan, Calliandra calothyrsus, Crotalaria anagyroides, Flemingia congesta, Leucaena leucocephala, and Sesbania sesban were dibbled separately or mixed with rice. Legume and planting method had no effect on rice yield. Legume establishment was slightly improved and vigor after rice harvest was higher when planted in separate hills. Compared to control (no legume), the above ground fallow biomass observed 13 months after establishment, consisting mostly of Chromolaena odorata, was reduced by 68% with C. anagyroides and by 40% with L. leucocephala, while other species had no effect. Most of the C. cajan and S. sesban plants died. In March 1995, 22 months after planting, the biomass was 0.21, 0.25, 1.62 and 2.56 kg m-2 for F. congesta, C. calothyrsus, C. anagyroides, and L. leucocephala, respectively. Legume species had no effect on rice yield or weed biomass in the rice crop. The species tested can influence fallow vegetation but do not allow for field preparation without burning. Compared to mulching, burning of residue reduced weed biomass by 42%, soil organic C by 9% and the C/N ratio by 6% but increased extractable P by 90% and pH by 8%. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
In northern Lao People’s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities' carbon stocks, and established the relationship between the fallow period and fallow-period-average carbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province, northern Lao People’s Democratic Republic. Based on measurements by destructive sampling, we devised a model and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities established after slash-and-burn cropping, we estimated community biomass using the above model and others, and measured deadwood and litter stocks. The communities’ biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg ha−1 after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C ha−1. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community’s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.  相似文献   

5.
Crop and livestock production in the Guinea savanna zone of northern Ghana has been declining over the past years as a result of increasing pressure on land. To sustain soil productivity, pigeon pea(Cajanus cajan), a leguminous perennial crop was evaluated for its potential as a short duration fallow crop for fodder and grain, and maize (Zea mays)production. It involved comparing a natural fallow (i.e., control) and four improved fallows of pigeon pea pruned annually at 30 cm, 60 cm and 90 cm from the ground, and unpruned pigeon pea over a two-year period. After this time, the land was cleared manually and planted to maize. The highest mean annual biomass of pigeon pea over the two-year period of 6.1 t ha−1 dry matter (DM) was obtained by pruning at 60 cm. The highest leaf litter production and pigeon pea seed yield was obtained from the no pruning treatment. The mean maize grain yield from the improved fallow (3.02 t ha−1) in the first year after clearing was significantly (P < 0.05) greater than that of the natural fallow (1.54 t ha−1). Considering the biomass of pigeon pea from pruning, pigeon pea seed yield and maize grain yield after the pigeon pea, pruning pigeon pea at 60 cm is the most promising regime for crop-livestock production systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Sesbania [Sesbania sesban (L.) Merr.] fallows are being promoted as a means for replenishing soil fertility in N-depleted soils of small-scale, resource-poor farmers in southern Africa. Knowledge of soil water distribution in the soil profile and water balance under proposed systems is important for knowing the long-term implications of the systems at plot, field and watershed levels. Soil water balance was quantified for maize (Zea mays L.) following 2-year sesbania fallow and in continuous maize with and without fertilizer during 1998–1999 and 1999–2000 at Chipata in eastern Zambia. Sesbania fallow increased grain yield and dry matter production of subsequent maize per unit amount of water used. Average maize grain yields following sesbania fallow, and in continuous maize with and without fertilizer were 3, 6 and 1 Mg ha−1 with corresponding water use efficiencies of 4.3, 8.8 and 1.7 kg mm−1 ha−1, respectively. Sesbania fallow increased the soil-water storage in the soil profile and drainage below the maximum crop root zone compared with the conventionally tilled non-fertilized maize. However, sesbania fallow did not significantly affect the seasonal crop water use, mainly because rainfall during both the years of the study was above the normal seasonal water requirements of maize (400 to 600 mm). Besides improving grain yields of maize in rotation, sesbania fallows have the potential to recharge the subsoil water through increased subsurface drainage and increase nitrate leaching below the crop root zone in excess rainfall seasons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The structural features of bast fiber and core lignins in kenaf (Hibiscus cannabinus), bark and wood lignin of paper mulberry (Broussonetia papyrifera (L.) Vent × Broussonetia kazinoki Sieb.) and mulberry (Morus bombycis) were characterized by alkaline nitrobenzene oxidation, ozonation and methoxyl group determination. Bj?rkman lignins were isolated from bast fiber and core, and bark and wood fractions of the plant samples, and structural characteristics were investigated by 1H NMR and 13C NMR spectroscopies. Kenaf bast fiber gave very high molar ratio of syringaldehyde to vanillin (S/V) of alkaline nitrobenzene oxidation products, while methoxyl content was about the same as that of the core fraction. Results of 1H NMR and 13C NMR of Bj?rkman lignin suggested the presence of aliphatic fragments in lignins isolated from paper mulberry and mulberry bark, but not in kenaf bast fiber. The lower yield of alkaline nitrobenzene oxidation products from bast fiber and bark might be due to the higher content of condensed structure of lignin compared to core fraction. Total yield of erythronic (E) and threonic (T) acids of ozonation products and the molar ratio of erythronic acid to threonic acid (E/T) of the bast fibers and bark were lower than the corresponding core and wood fractions, suggesting that the contents of arylglycerol-β-aryl ether intermonomer linkages in the bast fiber and bark lignin were lower than those of the core and wood fractions. Methoxyl content of bark lignin was lower than the corresponding wood lignin. The methoxyl content of the extract-free kenaf bast fiber was similar to that of the core fraction, while the values of paper mulberry and mulberry bark were about one-half of the corresponding wood fractions, respectively. In bark lignins, the methoxyl contents of Klason lignin and Bj?rkman lignin from bark were lower than those of the extract-free barks. This result suggests that the purity of Klason lignin and Bj?rkman lignins of bark may be rather low.  相似文献   

8.
We analyzed the growth patterns of Thujopsis dolabrata var. hondai trees in an old plantation (161 years old), where no silvicultural treatments (e.g., thinning) have been conducted since the initial planting. The analysis focused on understanding individual growth under a long-term self-thinning process, and the stand-level stemwood production at the mature stage was evaluated. Nine canopy-layer trees and one suppressed tree were used for the analysis of annual increments in stem diameters, heights, and stemwood volumes for a given past year using the ring-width data. Both the diameter (at basal portion) and height of all the canopy-layer trees increased at similar rates during the early stage (i.e., 60–70 years after planting); however, after this period, only the height growth rates declined sharply. The annual growth rates of stemwood volume also simultaneously leveled off at the stand age of 40–60 years. Subsequently, the patterns diverged conspicuously, e.g., the growth rates were maintained or increased in some individuals, while it gradually decreased in the case of others until the present year. The divergence of growth pattern was likely to be triggered by intertree competition at several decades after the onset of canopy closure. The current stemwood production of the sample trees, including the suppressed one, was positively correlated with certain size parameters such as stem diameter at breast height and sapwood area at a height of 4 m. Based on the diameter-base allometry, the total stand stemwood production was estimated to be about 12.8 m3 ha−1 year−1. This estimate was higher than those of some old natural T. dolabrata forests (2.0–8.6 m3 ha−1 year−1) that have been well managed by repetitive selection thinning. Furthermore, individual mean stemwood production of the study plantation (0.03 m3 tree−1 year−1) was within the range of these natural stands (0.01–0.05 m3 tree−1 year−1). These comparisons suggested that the old T. dolabrata plantation still maintained a relatively high stemwood production potential despite the absence of artificial controls of tree density in the past. In terms of timber production, this fact implied that a rather long rotation (>100 years) can be applicable in the management of T. dolabrata plantations.  相似文献   

9.
A field-based study was carried out to broaden our knowledge of fully mechanized cut-to-length harvesting productivity in naturally grown forests in the northern European part of Russia (NEPR). The recorded data comprised 38 midsized single-grip harvesters (JD 1270D) in clear-cutting operations in the Karelia, Komi, Vologda, Leningrad, Tver, and Kirov regions in NEPR, 4.3 million felled trees, and 1.4 million m3 u.b. (under bark) of processed timber. Harvesting operations were conducted in forest stands composed of spruce (48% on average), pine (19%), birch (22%), and aspen (11%), with an average stem volume 0.31 m3 u.b. The cut-to-length harvesters produced from 4.3 to 14.9 m3 u.b./productive machine hour (PMH) and 16.0–49.5 m3 u.b./stem processing machine hour (S proc MH). A machine evaluation analysis and a regression analysis were used to formulate models for predicting cutting productivity of modern single-grip harvester. The regression models were developed to estimate the productivity of the harvesters in the regions taking into account two significant factors influencing the productivity: the stem volume and tree species of the felled trees. Productivity/cubic meter u.b. of processed timber/PMH was calculated according to stem volume and tree species distributions in most forest-covered NEPR regions. Further research is suggested to improve the developed productivity models and to allow prediction of system performance over a broad range of stand and site conditions.  相似文献   

10.
A study was carried out in the Lama forest reserve of Benin to characterize the habitat of Afzelia africana Sm., an endangered multipurpose tree species (found in African humid, dry forests and woodlands), in order to define a sustainable management strategy for its conservation. An estimation of species density was done on 100 square plots of 1 ha each, while tree height and dbh of all the species were measured on subplots of 50 m × 30 m within the 1 ha plots. The regenerations of A. africana (dbh < 10 cm) were counted in the diagonal quadrats of the principal plots. Presence–absence data of the species was subjected to multidimensional scaling and results showed four vegetation communities including: young fallow, old fallow, typical dense forest and degraded dense forest. Significant differences were noted between the four communities with respect to dendrometric parameters of the species. High values of these parameters were noted for the species in typical dense forest (5.2 stems/ha, 66.7 cm, 17.9 m, 7.9 m2/ha and 38.8% for the tree-density, the mean diameter, the mean height, basal area and basal area contribution of the species, respectively) whereas the lowest values were obtained for the old preforest fallow as far as the mean diameter (59.7 cm), the mean height (15.7 m) and the basal area contribution (27.7%) of the species were concerned. In general, the basal area of A. africana in the over vegetation types was less than 3 m2/ha. No A. africana tree was found in the young preforest fallow while more than 80% of A. africana trees were found in the typical dense forest community. Stem diameter and height structures of the species in all the four communities showed a left dissymmetric Gaussian shape and were well adjusted to Weibull distribution.  相似文献   

11.
Growing of trees as woodlots on farms for five to seven years in rotation with crops was considered as a potential technology to overcome the shortage of wood, which is a common problem to many parts of sub-Saharan Africa. The paper summarizes the results of trials conducted at Tabora and Shinyanga in northwestern Tanzania on rotational woodlots, to evaluate tree species for wood production and yields of maize grown in association with and after harvest of trees. On acid sandy soils at Tabora, Acacia crassicarpa A. Cunn. ex Benth. grew fast and produced 24 to 77 Mg ha−1 of wood in four to five years. On alkaline Vertisols at Shinyanga, seven years old woodlots of Acacia polyacantha Willd. and Leucaena leucocephala (Lam.) De Wit. produced 71 and 89 Mg ha−1 of wood, respectively. Intercropping of maize between trees was possible for two years without sacrificing its yield. The first maize crop following A. crassicarpa woodlots gave 29 to 113% greater yield than the crop after natural fallow. Acacia polyacantha and L. leucocephala woodlots also increased the subsequent maize yields over a three-year period. The increase in crop yields after woodlots was attributed partly to accumulation of greater amounts of inorganic N in the topsoil compared to the traditional fallow, and partly to other effects. Thus medium-term rotational woodlots are likely to contribute to meet the wood requirements of rural people and thereby help protect the natural woodlands in sub-Saharan Africa. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
C. acuminata seedlings cultivated in greenhouse were transplanted into the fields with 5 designed planting densities (11, 16, 25, 44 and 100 plants·m−2) in May of 2004 and were harvested in the middle of September of 2004. The seedling growth indexes including plant height and crown width, biomass allocation, camptothecin (CPT) content and CPT yield of different organs (young leaf, old leaf, stem, and root) were studied. For the 5 selected planting densities, the plant biomass, height, crown width, and total leaf area ofC. acuminata seedlings all showed highest values at the planting density of 25 plants·m−2. CPT content in young leaves was higher than that in other organs of seedlings and presented an obvious change with the variation of planting densities and with the highest value at density of 100 plants·m−2, while for other organs no significant variation in CPT content was found with change of planting density. The accumulation of CPT was enhanced significantly at the planting density of 25 plants·m−2. It is concluded that for the purpose to get raw materials with more CPT fromC. acuminata, the optimal planting density ofC. acuminata seedlings should be designed as 25 plants·m−2. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 3970086) and Heilongjiang Province Foundation for Distinguished Youth Scholars (JC-02-11) Biography: Wei Huan-yong (1978-), male, Graduate in College of Life Sciences, Northeast Forestry University, Harbin 150040, P. R. China. Responsible editor: Zhu Hong  相似文献   

13.
Photosynthetic photon flux density (PPFD) during the growing season and regeneration growth (height and base stem diameter) were investigated in two natural stands in the Patagonian region of Chile, one without silvicultural management and another with a regenerative felling under a shelterwood system. PPFD was measured by means of fifteen sensors (quantum Li-190SA) installed in each stand and distributed within three canopy openness grades. Four regeneration plots (1 m2) were established around each sensor. In each of the plots, the height and base diameter of ten labelled plants within the upper regeneration layer were measured in the growing seasons 2001–2002 and 2002–2003. In the stand with regeneration felling total PPFD in the growing season was 2.5–2.9 times higher than in the stand without intervention. In both stands, total PPFD in the growing season increased by about 420 mmol/m2 when the relative canopy, which was in the range between 30 and 70%, was reduced by 10%. An identical behaviour was observed for the height and base stem diameter increases reflecting a clear effect of intervention and canopy coverage on the magnitude of PPFD received by the regeneration and its development.  相似文献   

14.
Striga hermonthica (striga) weed is a major threat to crop production in sub-Saharan Africa, and short duration improved fallow species have recently been found to reduce the effects of this weed because of their ability to replenish soil nitrogen. The objective of this study was to compare the efficacy and profitability of coppicing improved fallow species (Gliricidia sepium [gliricidia], Leucaena trichandra [leucaena] and Calliandra calothyrsus [calliandra]) and non-coppicing species (Sesbania sesban [sesbania], Mucuna pruriens [mucuna], and Tephrosia vogelii [tephrosia]), in controlling striga. Natural fallow and a sole maize crop were included as control treatments. The fallow treatments were split into two and either fertilized with N or unfertilized. The results showed that coppicing fallows produced higher biomass than non-coppicing fallows. For example, Callindra (coppicing fallow species) produced 19.5 and 41.4 Mg ha−1 of leafy and woody biomass, respectively after four cumulative harvests as compared with Sesbania (non-coppicing species), which produced only 2.3 and 5.9 Mg ha−1 leaf and woody biomass, respectively. Improved fallows reduced striga population in proportion to the amount of leafy biomass incorporated into the soil (r = 0.87). N application increased cumulative maize yield by between 15–28% in improved fallow systems and by as much as 51–83% in the control treatments. Added total costs of the coppicing fallows did not differ significantly from those of the non-coppicing fallows and control treatments. However, the added net benefits of the coppicing fallows were significantly higher (US$ 527 for +N and 428 for −N subplots; P < 0.01) than those of the non-coppicing fallows (US$ 374 for +N and 278 for −N), and the least for the control treatments. The most profitable fallow system was Tephrosia with net added benefits of US$ 453.5 ha−1 season−1 without N, and US$ 586.7 ha−1 season−1 with added N.  相似文献   

15.
The bark ofPteroceltis tatarinowii is a raw material for manufacturing Xuan Paper. The effects of Ca2+ concentrations on the accumulation of mineral elements in the bark, leaf and root ofPteroceltis tatarinowii were studied under controlled conditions. The types of Hoagland nutrient solution with three Ca2+ concentrations levels (200, 400 and 600 μg·g−1) and a control (without Ca2+ were designed to culturePteroceltis tatarinowii. After 6 months, contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and bark were analyzed. The results indicated that Ca accumulations content in the root, leaf and bark had positively relation with Ca2+ concentrations (200, 400, 600 μg·g−1), and the order of the Ca content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g−1 Ca2+ concentrations was 5.5 times as high as that of the control, and about 1.4 times as high as that of the root treated in 200 and 400 μg/g Ca2+ concentrations respectively. On the contrary, K and Mg contents in the root, leaf and bark were negatively related to Ca2+ concentrations, especially in the bark, and their accumulation trend followed the order of leaf>root>bark. K content in the bark treated with 600 μg·g−1 Ca2+ concentrations was 39.3% of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200μg·g−1 and 400μg·g−1 Ca2+ concentrations respectively; Mg content in the bark treated with 600μg·g−1 Ca2+ concentrations was 23.4% of that of the control, and was 27.1% and 35.4% of that of the bark treated with 200 and 400 μg·g−1 Ca2+ concentrations respectively. Compared with the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca2+ concentrations and their contents were in the order: root>leaf>bark. Based on the results of this study, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil. Foundation item: This paper is supported by National Natural Science Foundation of China (No. 39970608). Biography: Fang Shengzun (1963), male, Professor in Stiiviculture, Nanjing Forestry University, Nanjing 210027, P.R. China. Responsible editor: Zhu Hong  相似文献   

16.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

17.
The Sheanut tree (Vitellaria paradoxa Gaertn.), a multi-purpose species highly valued for the oil obtained from its seeds, is commonly maintained in the semi-arid parklands of sub-Saharan West Africa. An inventory in the West Gonja District, Northern Region, Ghana, revealed that on intensively farmed land this species constituted 79.7 ± 7.2% (Basal area = 2.19 ± 0.64 m2 ha−1) of the woody biomass, on low intensity farmland 84.2 ± 10.0% (2.16 ± 0.57 m2 ha−1) and only 10.2 ± 3.3% (0.92 ± 0.23 m2 ha−1) in unmanaged woodland, with similar environmental characteristics. No significant differences were found between total Sheanut tree densities on different land use intensities, although as a proportion of all trees surveyed, large trees were more common on farmed land. Participatory surveys revealed that these populations are a direct result of anthropic selection as local farmers eliminate unwanted woody species on farmland, leaving only those Sheanut trees that meet criteria based on spacing, size, growth, health, age and yield. Characteristics that could affect population dynamics during traditional management and harvesting including short viability seeds and cryptogeal germination are also discussed with reference to unconscious selection. Tree improvement is currently constrained, as true to type varieties are difficult to propagate. It is proposed that Sheanut trees on farmland are semi-domesticated having been subject to long-term anthropic selection during cycles of traditional fallow and crop cultivation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Shifting cultivators in Thailand widely attribute the maintainance of crop productivity to pada (Macaranga denticulata (Bl.) Muell. Arg.), rotation cycles having become much shorter than the customary 10–20 years. This paper examines the use of pada in a 7-year rotation on an acid soil with low available soil P (2–4 mg kg–1 by Bray II). Dense pada patches in 7-year-old fallow averaged 43 tons ha–1 of above ground biomass, 20% more than sparse patches. The biomass in dense pada contained disproportionately more P, K, Ca and Mg (34%, 92%, 80% and 107% more, respectively) than in sparse pada patches. Slashing and burning 7-year-old fallow with dense pada produced a subsequent rice yield that was three time that with sparse pada. Rice grown after dense pada had been slashed and burned after three years yielded less than one third of that after a full 7-year rotation. It is, as yet, unclear how rice yield in dense pada patches is enhanced in the full 7-year rotation. Nutrient concentrations in the mature rice were generally either the same or higher in the sparse than dense pada patches. In dense pada patches rice accumulated twice to four times as much nutrients as in sparse pada patches, and a much larger fraction of the nutrients was stored in the fallow. Uptake of nutrients in the sparse pada patches may have been limited by some factor that either governs availability of the nutrients released by burning or depressing rice growth and so its nutrient demand.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
In West Africa, natural regeneration of oil palms (Elaeis guineensis Jacq.) can be favoured by agricultural practices. The structure of palm groves may thus reflect the history of land use. In this study, we examined the connection between biophysical factors, land use and the structure and dynamics of semi-wild palm groves in the village of Nienh, in the forest region of Guinea (Forest Guinea), in order to determine to what extent semi-wild palm groves could be considered as an ecological indicator of the history of regional landscapes. Grove management strategies of farmers were also determined and related to farm characteristics. In Nienh, semi-wild palm groves were found in three cropping systems with differing characteristics in each. Palms were scarce in lowland agricultural areas (8 palms ha−1), while they were significantly taller (15.8 m on average) and less dense (36 palms ha−1) in agroforests than in slash-and-burn cropping systems (9.4 m and 55 palms ha−1 respectively). Interviews with farmers showed that it was possible for a farmer to have a global strategy of semi-wild palm grove densification combined with oil palm elimination on a plot scale. The lack of regeneration of palms in agroforests resulted from the almost systematic elimination of young palms by farmers. Conversely, in slash-and-burn cropping systems, young palms were often preserved. As the structure of semi-wild palm groves was partly explained by agricultural practices, it could be used as an ecological indicator of changes in practice in relation to socio-economic context.  相似文献   

20.
In 2004 and 2005, the yield, leaf area, dry weight and dry weight partitions of soybeans were determined at the Agroforestry Research Site (ARS) (est. 1987, Ontario, Canada). Soybean was intercropped with poplar (Populus deltoides x nigra DN-177 L., 556 m3crown tree−1), silver maple (Acer saccharinum L., 308 m3), black walnut (Juglans nigra L., 148 m3) and pecan (Carya illinoensis Wangenh., 114 m3), or grown alone (monoculture). Yield of soybean was not different in either year between the monoculture and the black walnut or pecan intercrops. In the poplar and silver maple treatments, yield was 66 and 85% (2004 and 2005) lower than in the monoculture. Despite the fact that different tree species were used, there was a significant negative linear regression between yield and tree crown volume (R 2 = 0.76, P = 0.0049 and R 2 = 0.93, P < 0.0001 in 2004 and 2005, respectively). With increasing tree crown volume, soybean tended to partition more dry matter to the photosynthetic and reproductive parts and less to structural tissue and petiole. This demonstrates the phenotypic flexibility of the crop component in agroforestry systems. Contrary to theoretical predictions, soybean leaves were thicker as shade increased (increase by 6.2 × 10−4–1.2 × 10−3 mg cm−2, per unit of crown volume), pointing to competitive interactions specific to tree-based intercrops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号