首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
天然木材由于其本身的构造及化学组成原因,呈现出不透明性,而以纳米纤维素为骨架随后浸渍树脂,可制备出透明木材,兼具高透光和高雾度特性且力学性能优异。进一步在树脂中添加不同纳米粒子,还能使之具有发光性、磁性等功能化特性。透明木材在新一代环保建筑、光学器件等方面具有潜在的应用价值,是当前改性木材领域的研究热点。笔者综述了目前制备透明木材的有效方法,通过木质纳米纤维素骨架的制备、折射指数匹配的树脂浸渍、树脂的固化等工艺过程,达到高透光率和高雾度的实现。并对制备透明木材的现有方法进行了归纳和分析,为寻求快速、便捷、可工业化生产的制备方法提供新的研究思路,并为实现透明木材的工业化制造提供理论基础。同时,对透明木材应用前景进行了论述,系统介绍了其在节能建筑、光电子器件及家居材料方面的应用前景展望。最后,对未来透明木材的发展趋势进行了初步描述。  相似文献   

2.
透明木材是一种新型工程复合材料,具有良好的光学特性和优异的机械性能。根据所填充聚合物类型的不同,可将透明木材应用于透明建筑节能材料、电子器件、阻燃、光学等领域。本文从机理、制备工艺、透明木材改性与应用等方面归纳分析了近年来透明木材的相关研究成果,着重分析并总结了透明木材的光学合成机理,及其功能化改良,论述了透明木材在功能化材料等方面的应用。最后,对透明木材现存问题进行了讨论,以期对透明木材未来的研究提供理论基础。  相似文献   

3.
人工林是当前我国木材供应的主要来源,其材质问题限制了应用。糠醇树脂改性是一种环境友好的木材改性技术,具有改性剂天然可再生和对生物、环境毒害小的独特优势,为国内外学者广泛关注。作者系统总结利用糠醇树脂木材改性技术的机理、工艺、性能及影响因素的研究现状,以期为糠醇树脂改性技术的产业化提供借鉴。  相似文献   

4.
电气石具有释放负氧离子等特殊功能,可以改善环境质量以及促进各种产品的功能化。本研究将电气石以浸渍的方式引入木材中,通过树脂固化的方式将其固定于木材内部,从而得到具有释放负氧离子的功能性木质材料。利用满细胞法,经MUF处理,电气石浓度在5%,偶联剂浓度为4%,浸渍时间为60 min,木材浸渍增重率达到36.9%且分布均匀,负氧离子释放量约为1 086个/cm^3。PEG处理材流失率为15.7%,MUF浸渍处理材的流失率仅为1.3%。  相似文献   

5.
采用三聚氰胺、尿素和乙二醛合成一种环保型三聚氰胺-尿素-乙二醛(MUG)树脂,并以6种质量分数(5%、15%、25%、35%、45%、55%)浸渍处理橡胶木,通过加热聚合,在木材内部形成固体疏水树脂。试验结果表明,随着树脂质量分数的增加,改性材的增重率和密度均增大,吸水率和浸出率减小,抗胀缩率先增大后减小。SEM-EDX分析表明,MUG树脂分布在改性材的细胞腔和细胞壁中。与未改性对照试材相比,25%MUG树脂改性材的抗弯强度和弹性模量分别增大了19.9%、14.3%,顺纹抗压强度增大了19.2%。经MUG树脂改性后,橡胶木的尺寸稳定性等物理性能和抗弯强度等力学性能均明显提高。  相似文献   

6.
采用L(9)34正交试验法,找出了用于木材改性的脲醛树脂的最佳合成条件,实验表明该树脂对板栗木、青岗木、耳木的改性效果良好  相似文献   

7.
为探讨浸注工艺对木材增重率的影响,以PF树脂为浸注材料,以树脂浓度、压缩次数、保压时间、浸渍时间和压缩率为试验因素,采用单因素试验方法在平压浸注装置上对杨木试件进行了浸注填充。结果显示:2次压缩较1次压缩,杨木木材增重率增加了20. 2%;保压时间从0 min延长至10 min,杨木木材增重率增加了11. 5%;浸渍时间从1 h延长至2 h,杨木木材增重率提高了8. 8%;再增加压缩次数、延长保压时间和浸渍时间,杨木木材增重率均变化不大;而杨木木材增重率随PF树脂浓度和杨木木材压缩率增加呈线性增加,PF树脂浓度与压缩率对杨木木材增重率具有显著影响。因此选择压缩次数为2次,保压时间为10 min,浸渍时间为1 h,PF树脂浓度与杨木木材压缩率由改性木材的用途决定。  相似文献   

8.
以不同量比合成乙二醛-尿素浸渍树脂(GU),开发环保型树脂用于橡胶木改性。结果表明,当乙二醛、尿素的量比(G/L)为1.6时,树脂合成反应完全,其固体含量、黏度、水溶性、储存期等综合性能良好。将该树脂调配成质量分数30%的溶液,用于浸渍处理橡胶木,与未处理材相比,改性材的弹性模量和抗弯强度分别提高了21.5%和32.6%,尺寸稳定性(ASE)达到65.9%,改性效果良好。  相似文献   

9.
以木材为基本原料,通过去除木质素,再浸渍折射率相匹配的树脂可以制备出既保留木材的分层结构,又具有优异光学和力学性能的透明木材。脱木素工艺是制备透明木材的关键步骤,然而木质素的过量去除不仅浪费试剂、消耗时间,且容易直接导致木材的机械性能减弱。因此,优化脱木素工艺,实现透明木材的高透光率与优良力学性能的平衡至关重要。笔者采用正交试验法研究了脱木素工艺的影响因素及各因素对化学成分,透明木材光学性能及力学性能变化的作用,优化了透明木材制备过程中的脱木素工艺的最佳参数。同时,结合傅里叶红外光谱分析(FT-IR)、环境扫描电镜分析(SEM)对样品的化学组成和表面形貌进行了评价。实验结果表明脱木素最佳工艺条件为:NaClO_2的质量分数为1%,处理温度为85℃,处理时间为6 h,该条件下制备的透明木材的透光率为68%,拉伸强度为113 MPa。  相似文献   

10.
木材在户外应用过程中易发生开裂、变色、霉变、腐朽等材性劣化现象。利用10%氮羟甲基树脂(1,3-二羟甲基-4,5-二羟基乙烯脲)/20%蔗糖作为改性剂对杨木和辐射松进行改性处理,系统评价了改性处理对木材在哈尔滨户外39个月老化后的性能动态影响。结果显示:老化过程中木材表面的颜色变化主要发生在第1年,未处理木材表面由浅黄色向灰色转变,而氮羟甲基树脂/蔗糖改性木材则由改性后的棕色逐渐褪色至灰色,表明改性处理不能长期保护木材表面颜色。改性处理在最初的12个月内能够明显抑制木材表面微裂,之后抑制效果减弱。老化期间,改性木材含水率及含水率波动均低于未处理材,因此,改性处理有效抑制了木材在户外的变形。傅里叶变换红外光谱和X射线衍射分析显示,改性处理可有效减缓木材三大组分在老化初期(12个月)的降解速度,但经39个月老化后,改性与未改性木材表面木质素浓度和纤维素相对结晶度均下降到相似水平,表明改性处理对木材表面组分的长期保护能力有限。木材老化表面微观形貌观察显示,改性处理抑制了木材表层细胞(尤其是早材细胞)的脱落及变色菌在木材内部生长的深度。氮羟甲基树脂/蔗糖改性能够有效抑制木材在户外老化过程中的含水率波动、变形及变色菌的生长,有助于增强木材的户外耐久性。  相似文献   

11.
以花生壳苯酚液化产物(PL)为主要原料,采用正交试验研究了加成反应的低温反应时间、缩聚反应的高温反应时间以及反应结束时的温度对花生壳苯酚液化产物-甲醛(PLPF)树脂胶合性能的影响,优化了树脂合成工艺,研究了三聚氰胺改性树脂及其PLPF的共混改性工艺,制备出了高耐水性生物质基木材胶黏剂。研究结果表明:当高温反应时间为40 min,最终反应温度为70℃时,可以获得性能优良的PLPF树脂。通过与三聚氰胺改性树脂共混改性PLPF胶黏剂所制试件的胶合强度可知:将PLPF树脂与三聚氰胺以7∶3的质量比共混,可以将共混改性PLPF树脂所制试件的平均胶合强度提高到1.1 MPa;而将改性树脂单独用于胶合板制备时,胶合性能较差。全反射红外光谱图显示,三聚氰胺与PLPF树脂会发生交联反应,改性PLPF树脂的图谱中存在明显的三聚氰胺特征结构,同时,也保留了部分PLPF树脂的特征结构。DSC分析显示,改性PLPF树脂与PLPF树脂相比,固化温度范围变小,反应热降低,热固化反应程度降低。  相似文献   

12.
采用L(90)3^4正交试验法,找出了用于木材改性的脲醛树脂的最佳合成条件,实验表明该树脂对板栗木青岗木耳木的改性效果良好。.  相似文献   

13.
采用新型双官能团偶联剂对木粉进行表面处理,并通过单因素法研究偶联剂种类和含量对材料综合性能的影响,并结合扫描电镜进行了微观形貌分析。结果表明:新型双官能团偶联剂有优于传统偶联剂的改性效果。当添加量为0.8%时,木粉与PVC树脂相容性达到较理想状态,抗弯强度、抗弯弹性模量、冲击韧性和拉伸强度达到最佳值,分别为35.76MPa,2 378.32MPa,1 5.08kJ/m~2,14.01MPa。  相似文献   

14.
用低分子树脂进行泡桐木材表面强化的研究   总被引:2,自引:0,他引:2  
合成一种低分子三聚氰胺-甲醛树脂.对泡桐木材表面进行强化,测试改性后木材的硬度、耐磨性、抗胀缩率、容胀率及增重率等技术性能指标。经过分析,得出泡桐木材可用横向压密,化学试剂固定变形的方法,提高木材的有关物理性能参数的结论。  相似文献   

15.
【目的】采用硅溶胶与乙二醛-尿素(GU)/乙二醛-三聚氰胺-尿素(GMU)树脂混合溶液浸渍处理橡胶木,探究改性剂种类和浓度对橡胶木物理力学性能和热稳定性的影响,以扩大橡胶木的应用范围,提升橡胶木的附加值。【方法】以乙二醛、三聚氰胺和尿素为主要原料,分别合成GU、GMU树脂,与硅溶胶以不同比例配制成均一稳定的水溶性混合溶液。采用混合溶液浸渍处理橡胶木,并与硅溶胶改性橡胶木的增重率、尺寸稳定性和力学性能进行比较,通过热重(TG)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜-X射线能谱仪(FESEM-EDS)等手段,分析改性材的热性能、化学分子结构变化和微观构造。【结果】1)混合溶液改性材的增重率和尺寸稳定性随改性剂浓度增加而增大,当改性剂浓度相同时,S-GMU改性材的增重率和尺寸稳定性优于S-GU改性材; S-20%GMU改性材的增重率(28.32%)和抗胀缩率(42.02%)最大,相比S-20%GU改性材分别提高16.98%和14.40%。2)混合溶液改性材的抗弯强度随增重率增大而增加,S-20%GMU改性材的抗弯强度(114.96 MPa)相比S-20%GU改性材提高11.97%,弹性模量变化不大。3) S-GMU混合溶液起到稳定木材残留物的作用,S-GMU改性材热稳定性增强,S-20%GMU改性材残灰率分别是素材、硅溶胶改性材和S-20%GU改性材的5.25、1.20和1.12倍。4) S-GMU改性材在470 cm~(-1)和1 110 cm~(-1)附近出现Si—O—Si键和C—O—C醚键,说明硅溶胶和GMU树脂能够进入木材;同时,改性材在1 656 cm~(-1)和1 510 cm~(-1)处波峰强度下降,说明改性材的木质素和碳水化合物发生一定程度降解,其中S-20%GMU改性材降解程度最低。5)改性剂成功渗透并沉积在木材细胞腔和细胞壁中,S-20%GMU改性材中Si元素较多,Si元素与混合溶液分布均匀,改性剂浸渍效果更好; S-20%GMU改性材中N元素含量增多,说明GMU树脂能够进入木材。【结论】1)硅溶胶与GU/GMU树脂混合溶液浸渍处理橡胶木的增重率、尺寸稳定性和力学性能均优于硅溶胶改性材,且相同质量分数S-GMU改性材的性能优于S-GU改性材; 2)硅溶胶和GMU树脂成功渗透并沉积在木材细胞腔和细胞壁中,S-GMU混合溶液起到稳定木材残留物的作用,S-GMU改性材热稳定性增强。  相似文献   

16.
对木材进行糠醇树脂改性能够显著提高木材尺寸稳定性、抗生物及化学侵蚀性和硬度, 降低平衡含水率。木材糠醇树脂改性研究近10年来重新得到关注, 并已在欧洲开始商业化生产, 而国内还未见相关研究报道。文中简要介绍糠醇的性质和用途, 详细阐述国外木材糠醇树脂改性的研究进展、成果和商业化情况, 并对未来研究方向和重点提出自己的看法和见解。  相似文献   

17.
采用不同质量分数的低分子量三聚氰胺-脲醛树脂(MUF),及其与硼酸、硼砂复配的改性液,分别对柳杉木材进行浸渍处理。结果表明:树脂溶液和复配改性液均对木材具有良好的渗透性,且木材增重率随改性液质量分数的增大而增加,两种改性液均能有效提高柳杉的物理、力学和阻燃性能。  相似文献   

18.
木材改性用脲醛树脂的合成   总被引:1,自引:0,他引:1  
彭望明  邱国福 《林业科技》1997,22(4):46-47,61
采用L(9)3^4正交试验,确定用于木材改性的脲醛树脂的最佳合成条件,试验表明,该树脂对板栗木,青岗木,耳木的改性效果良好。  相似文献   

19.
前言国内胶合板生产用脲醛胶,一般使用1:1.55~2.0的克分子比合成的。树脂游离醛含量一般为1—20%左右,在胶合板生产过程中有大量甲醛析出,强烈的刺激性气体危害操作工人的健康、污染环境,所以生产上迫切要求研制一种游离醛含量少的脲醛胶。在优质胶合板材(椴木、水曲柳)日益减少的情况下,如何降低单板的压缩率,提高木材利用率,也要求采用低压、快速胶合的新工艺。  相似文献   

20.
稻草中密度纤维板用改性脲醛树脂的研究   总被引:2,自引:2,他引:2  
对比三聚氰胺、二甲基硅油、硅树脂和偶联剂KH-550四种改性剂改性的脲醛(UF)树脂性能的差别及其对稻草中密度纤维板性能的影响,并进行经济评价,最终确定适用于稻草纤维板的改性UF树脂的工艺条件,同时借助于红外光谱(FT-IR)和差热扫描分析(DSC)研究最佳改性UF树脂的结构和固化特性.结果表明,三聚氰胺改性脲醛(MUF)树脂不论是对树脂性能、板性能改善还是从成本分析方面均为稻草纤维板最佳的胶黏剂,FT-IR显示出与未加三聚氰胺相比,加入三聚氰胺后树脂的羟甲基含量降低了10 %,DSC分析则表明其峰值温度有较大幅度的提高,但放出的热量较少.加入三聚氰胺改性的UF树脂其表面张力变小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号