首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
许民  朱毅  姜晓冰 《林业科技》2007,32(2):39-41
以木材纤维和废旧聚丙烯塑料为原料,异氰酸酯(MDI)或马来酸酐(MA)为偶联剂,压制木材纤维/聚丙烯复合材料;通过正交试验,研究聚丙烯(PP)用量对木塑复合材料性能的影响.结果表明:PP比例对复合材料的内结合强度、吸水厚度膨胀率、静曲强度和弹性模量有不同程度的影响.在热压时间、热压温度、复合材料密度相同的条件下,在用MDI做偶联剂,PP用量为40%时,复合材料的性能最佳;在用MA做偶联剂,PP用量为50%时,复合材料的性能最佳.  相似文献   

2.
采用工业大麻纤维与聚丙烯(PP)纤维制备复合材料,考察密度、纤维配比对复合材料物理力学性能的影响。结果表明:随着密度的增加和大麻纤维用量的减少,复合材料的静曲强度增加,耐水性能改善;当密度为0.8 g/cm~3,大麻纤维与PP纤维配比为3∶7时,复合材料的力学性能满足DB 44/T 349-2006《木塑复合材料技术条件》中家具及装修用复合材料的力学性能要求,但耐水性能还有待进一步提高。  相似文献   

3.
木/麻/PP纤维含量对复合材料性能的影响   总被引:1,自引:1,他引:1  
采用无纺织气流成型织坯再热压的工艺,研究汽车内饰用木/麻/PP纤维三元复合材料中,3种纤维含量对复合材料性能的影响.研究结果表明,增加PP纤维含量,可以提高复合材料的静曲强度和耐水性;麻纤维含量增加对提高材料的强度影响显著,但耐水性略有下降.当PP纤维含量为40%、麻纤维为30%、木纤维30%时,复合材料的性能较佳.  相似文献   

4.
在聚丙烯纤维比例为50%的条件下,采用不同竹/木纤维配比制备竹/木/聚丙烯纤维复合材料,考察竹纤维用量对复合材料物理力学性能和微观形貌的影响。结果显示:随着竹纤维用量增加和木纤维用量减少,复合材料的耐水性能增强,力学性能则呈先升后降的趋势,竹纤维用量为25%时力学性能达到最大;试验确定优化竹/木纤维配比为m(竹)∶m(木)=25∶25,复合材料的性能满足TL 52448-1998《天然纤维成型材料热塑性增强材料要求》的要求。  相似文献   

5.
聚丙烯比例对木塑复合材料性能的影响   总被引:3,自引:0,他引:3  
通过正交试验,以木材纤维和废旧聚丙烯塑料为原料,异氰酸酯或马来酸酐作偶联剂,压制木材纤维/聚丙烯复合材料,研究聚丙烯(简称PP)用量对木塑复合材料性能的影响。结果表明,聚丙烯比例对复合材料的内结合强度、吸水厚度膨胀率、静曲强度和弹性模量有不同的影响。在热压时间、热压温度、复合材料密度相同的条件下,用异氰酸酯(简称MDI)作偶联剂,聚丙烯用量40%时复合材料的性能最佳;而用马来酸酐(简称MA)作偶联剂,聚丙烯用量50%时复合材料的性能最佳。  相似文献   

6.
以芦苇纤维作为增强体,以高密度聚乙烯(HDPE)和线性低密度聚乙烯(LLDPE)共混物作为基体,制备芦苇纤维/聚乙烯(PE)复合材料。探讨了芦苇纤维用量对复合材料力学性能以及微观结构的影响。结果表明:当LLDPE和HDPE的质量比为30∶70、芦苇纤维用量为30%时,所得复合材料的综合性能较好;静曲强度达到最高值25.9 MPa,较PE共混材料提升了12.1%;拉伸强度达到最高值22.3 MPa,较PE共混材料提升了14.4%;冲击强度为6.7 KJ·m-2。  相似文献   

7.
使用JC2000A型接触角测量仪测试并研究了蒸馏水和甘油两种液体在稻壳粉填充聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)复合材料表面的接触角.研究表明:通过酸碱处理可明显改变接触角及其随时间变化的规律;其中效果最好的是以水作为探测液时,经酸处理后的PE/稻壳粉复合材料.通过方差分析得知表面改性处理方式对接触角有相当显著的影响.  相似文献   

8.
利用甘蔗渣纤维作为增强剂,回收的聚丙烯塑料作为基体,并添加MAPP为偶联剂,通过熔融混合、注射成型法制成蔗渣纤维/PP 复合材料,研究蔗渣纤维和偶联剂对复合材料静态及动态力学性能的影响。结果表明:与PP相比,添加了蔗渣纤维和MAPP后,除抗拉强度外,复合材料的静态力学强度有所提高;复合材料的储能模量和损耗模量增加,而损耗因子降低;蔗渣纤维/PP复合材料的玻璃化转变温度Tg为61.8℃。  相似文献   

9.
马来酸酐接枝苯乙烯-乙烯-丁烯-苯乙烯(MA-SEBS)用作聚丙烯/木纤维复合体系的界面相容剂及冲击改性剂,来提高其界面粘接及冲击强度。研究了MA-SEBS含量对PP/WF复合材料冲击断裂行为的影响,当MA-SEBS含量达到8%时,冲击性能达到了最大值,进一步增加到10%并未提高其断裂韧性,但动态热机械分析(DMA)表明复合材料刚性的提高,这归因于PP/WF界面的改善,当MA-SEBS超过8%,聚丙烯与木纤维分子间的相互作用增强。扫描电子显微镜(SEM)分析了样品的断裂表面,表明木纤维与聚丙烯表面强烈的界面粘结。图5表1参11。  相似文献   

10.
三种塑料与木纤维复合性能的研究   总被引:6,自引:2,他引:6  
选用线性低密度聚乙烯(LLDPE)、聚丙烯(PP)、聚苯乙烯(PS)为原料,以2种比率与木纤维复合,用热压法制备了3种木塑复合材料,分析了塑料种类对复合材料的物理力学性能的影响.结果表明,LLDPE与木纤维的复合性能最好,其复合材料的抗冲击性好,但弯曲强度和弹性模量最低;PS与木纤维的复合性最差,其复合材料抗冲击性很差,但弯曲强度和弯曲弹性模量高;木纤维与PP复合材料的综合性能最佳.由此提出用LLDPE与PS共混改性制造木/塑复合材料的设想.  相似文献   

11.
Three kinds of composites (fiber/Polypropylene, fiber/Polyethelene, and fiber/Polystyrene) were made by using hot pressing process for substrate of floorboard and the properties of each kind of composites were tested. MORs of PP/wood fiber, PS/fiber, and PE/fiber composites with coupling agent added were raised by 18.4%, 37.1%, and 42%. respectively, compared to those without coupling agent. Among the three kinds of fiber/plastic composites, fiber/PP composite has best mechanical properties, and it can meet quality standard of eligible grade product and come up to the excellent grade products of China when the coupling agent is added. The performance of composite made of PE/fiber or PS/fiber can exceed qualified product grade only with coupling agent added.  相似文献   

12.
The effect of wood species (Chinese fir and Poplar), wood fiber content (10%, 25%, 40%) and wood fiber sizes (16 to 32 mesh, 32-65 mesh, above 65 mesh) on the properties of the wood fiber-Polypropylene composites were studied in this paper. The results indicate that the effect of wood fiber content and size in composite were more important than that of chosen wood species. Compared with polypropylene without wood fiber, the flexural strength of the composites increased when adding wood fiber into polypropylene, but the tensile and unnotched charpy impact strength decreased. And the above strength decreased with the wood fiber content increasing. When the wood fiber size becoming smaller (in higher mesh), the strength increased. In the comparison of wood species, the properties of composite using Chinese fir wood were better than that of Poplar, but not significant. The dynamic mechanical properties of the composites and PP were also tested and analyzed in this paper.  相似文献   

13.
木纤维PP/PE共混物复合材料的流变和力学性能(英文)   总被引:2,自引:0,他引:2  
For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.  相似文献   

14.
郭垂根  王清文 《林业研究》2007,18(3):203-207
MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.  相似文献   

15.
Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryoractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.  相似文献   

16.
ABSTRACT

In this study, wood flour/polypropylene (WF/PP) composites were prepared by incorporating 2?wt% carbon materials with different morphologies, including carbon black (CB), graphite (G), and multi-walled carbon nanotubes (CNTs). WF/PP composite without any additives was included as a reference. All composites were placed in the accelerated UV weathering tester for a total of 960 h. The physical and mechanical properties of composites were compared. The changes in surface morphology and surface chemistry were characterized by SEM AFM, and ATR-FTIR. The results showed that: (1) the addition of CNTs improved both flexural and impact properties of composites; (2) composites containing CNTs exhibited better color stability and less severe surface cracking during weathering; and (3) ATR-FTIR results revealed that all the additives alleviated surface photo-oxidation of composites due to their UV-screening effect. Overall, due to the improved interfacial bonding between WF and PP, CNTs were more effective in protecting wood–plastic composites from photodegradation.  相似文献   

17.
采用两种形态的棉秆与两种塑料复合,制备棉秆/塑料复合板材,分析棉秆形态、塑料种类及工艺因子对复合板材性能的影响。结果表明:刨花态棉秆复合板材的性能优于搓丝态棉秆,热压温度、聚丙烯比例和板材密度对复合板材的性能有显著影响。优化条件下制成的棉秆搓丝/聚丙烯复合板材性能,超过室外结构用刨花板性能指标要求。  相似文献   

18.
采用耐磨微粒液相喷涂技术与装备,研究了胶种、调胶工艺、耐磨微粒与表面改性等对强化地板表面耐磨性能的影响,发现了MF性能与耐磨微粒分布均匀度密切相关,并且耐磨微粒材料、表面改性、粒径与喷涂量对强化地板耐磨转数具有影响。当三氧化二铝(Al2O3)耐磨微粒与MF的质量比为0.35~0.45时,表面改性的耐磨微粒(220目的Al2O3)能大幅度改善耐磨性能。此外,调胶工艺与耐磨纸的预固化度对耐磨性能也有不同程度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号